
TCOM 370

NOTES 99-9B

Further Notes on Cyclic Codes

Cyclic Shift of Length N Binary Words as   Multiplication "mod(XN+1)"

Consider the polynomial representation T(X) for a length-N codeword.

T(X) = cN-1XN-1+ cN-2XN-2 + ...+ c1X + c0

• Now  XT(X) is a degree-N polynomial in general (is monic if cN-1= 1).

(monic polynomial of degree N à  coefficient of XN is 1)

• Dividing XT(X)  by (XN+1)  will produce the result  cN-1  with a
remainder term.  This remainder term will be the polynomial
corresponding to the one-unit cyclic left shift of the original codeword!

Thus, a cyclic left-shift of a codeword produces codeword corresponding to

remainder{ XT X

X N
( )

+ 1
}   which is usually written as XT(X) "mod(XN+1)"

Generator Polynomial

• Let G(X) be a monic polynomial of degree (N-k), of the form XN-k +… +1

• Let G(X) divide XN+1 without remainder.

Then G(X) generates a linear cyclic (N,K) block code with codewords
(using our previous notation)

Q(X)=G(X)M(X)

Here M(X) is a message polynomial of max. degree (k-1).



Proof:

If Q(X)=G(X)M(X) is a codeword generated this way, consider

XQ(X) = cN-1(XN+1)  + S(X)

where S(X) is the remainder in dividing the left side XQ(X) by (XN+1), and
hence is a cyclic left-shift of the codeword Q(X).  But the left side above is
divisible by G(X) without remainder, and so is (XN+1) on the right side.
Therefore S(X) must be divisible by G(X), hence it is a codeword.

The linearity is obvious from the definition of the codewords as
multiplications.

Systematic Code

The cyclic code generated above is not necessarily systematic, because
codewords G(X)M(X) do not necessarily produce the message bits in the
first k positions of the word.  However, we will see that the set of codewords
generated this way contain all possible combinations of k bits in their first k
positions, and so it is possible to re-assign codewords in a systematic way to
message words.

Consider polynomial Q1(X) = XN-k M1(X) + R1(X)  where R1(X) is the
remainder upon dividing  XN-k M1(X) by G(X).  This polynomial consists of
the message bits in the first k positions.  We claim this is a codeword of the
cyclic code, for which we have to show it is divisible by G(X)  But this is
easy to see, because of the way R1(X) is defined as a remainder.  Thus
Q1(X)=G(X)M2(X) for some M2(X).  We find therefore that the distinct 2k

codewords of the form Q1(X)  are codewords generated through the
operation G(X)M(X) defining our original cyclic code.



CRC Codes

Note that the generator polynomials G(X) of degree (N-k) (usually 12, 16, or
32) used for the common CRC codes for error detection correspond to cyclic
codes for specific values of N=N0;  remember that XN+1 has to be divisible
by G(X), and these CRC polynomials correspond to very large values of
such N0 (by design, to have good error detection capability).  However, in
practice they can be used with shorter codeword lengths N so that they are
not exactly cyclic codes.  Nonetheless, their implementation remains simple
and they inherit the error detection characteristics of the cyclic codes.

A definition:  G(X) is a primitive polynomial of degree m  means that G(X)
divides XN +1 for N=2m-1 and not for any smaller value of N.

The CRC polynomials are often of the form (1+X) times a primitive
polynomial; for example, the 12-bit CRC polynomial is (X11+X2 +1)(X+1).
The first factor is a primitive polynomial and produces a cyclic code with
N=211-1=2047.
The  extra factor (X+1) in the polynomial makes the FCS of length 12 rather
than 11, with the same N=2047 so that k=2035.  The 12-bit CRC polynomial
also exactly divides XN +1 for N=2047, because (X+1) always divides any
XN+1.


