
1

Real-Time Systems

Insup Lee
Department of Computer and Information Science

School of Engineering and Applied Science
University of Pennsylvania
www.cis.upenn.edu/~lee/

CIS 480, Spring 2009

Acknowledgement

Slides are borrowed and/or adapted from the
following people:

o Doron Peled

o P.S. Thiagaranjan

o Jane Liu

o Sebastian Fischmeister

Spring ‘09 CIS 480 2

2

Spring ‘09 CIS 480 3

What are Real-Time Computer
Systems?

Real-Time Computer System

o Correct functioning depends on:
 the values of the results produced.

AND

 the physical times at which the results are produced.

Real-Time Computer System is embedded in a
larger physical system.

Spring ‘09 CIS 480 4

What are real-time systems?

The state of the system evolves with time.

o Position, velocity, acceleration

o Pressure, temperature, level, concentration

The state needs to be sensed and controlled by the
computer system.

3

Spring ‘09 CIS 480 5

Control Function

Computing system

Plant

Sense
Actuate

Spring ‘09 CIS 480 6

Real time

System time and external physical time are the same!

At least must have a predictable relationship

o bounded skew, bounded clock rates, etc.

4

Spring ‘09 CIS 480 7

Timing Constraints on computation

The computing system must sense, compute and
actuate in a timely fashion.

Many sensors and many actuators.

Many control functions!

Must schedule computational tasks for different
control functions in a timely fashion.

Computations must finish on time.
o QoS

o End-to-end timing constraints

Spring ‘09 CIS 480 8

Hard and Soft Real-Time Tasks

Task: a unit of work - a granule of computation, a unit of transmission

Hard real-time tasks –
o Critical tasks, deterministic tasks: failure of a task to complete in time a

fatal error

o Timing constraints must meet always

o Reactor control, automotive electronics

Soft real-time tasks:
o Essential tasks, statistical tasks: such a task is completed always even when

it requires more than available time.
Examples: display updates, interpretation of operator commands

o Non-essential tasks: such a task may be aborted if it cannot be completed
in time.

Examples: connection establishment, monitoring non-critical changes

o Transaction Processing system, Multi-media streaming applications.

Soft vs. hard real-time systems

o Hard real-time systems are typical embedded systems.

o Determined externally

5

Spring ‘09 CIS 480 9

Desired Characteristics of Hard
Real Time Computing Systems

Timeliness

Peak Load Handling

o The system should not fail at peak load conditions

Predictability (not speed, fairness, etc.)

Fault Tolerance

Maintainability

Spring ‘09 CIS 480 10

Impact on System Architecture

Must avoid non-determinism (why?)

Sources of non-determinism:

o Direct Memory Access (DMA) by peripheral devices
 Contention for system bus

o Cache

o Interrupts generated by I/O devices

o Memory Management (paging)

o Dynamic data structures, recursion, unbounded loops
(language level)

6

Spring ‘09 CIS 480 11

Examples of real-time applications

On-line transaction systems and interaction systems

Real-time monitoring and signal processing systems
o Typical computations

o Timing requirements

o Typical architectures

o E.g., Railway Switching Systems

Control systems
o Computational and timing requirements of direct computer control

o Hierarchical structure

o Intelligent control

o E.g., Chemical and Nuclear Plant Control, flight control

Embedded systems

o Resource limitation

o E.g., Automotive applications

Spring ‘09 CIS 480 12

Current State

Ad hoc techniques, heuristic approaches.

Code written in C, assembly language

Programmed timers

Low level device handling

Direct manipulation of task and interrupt priorities.

Goal: Optimized predictable execution on simple
architectures.

7

Spring ‘09 CIS 480 13

Drawbacks

Tedious programming

o Code quality depends on the programmer

Difficult to understand, maintain, and reuse

Verification/testing of timing constraints is practically
impossible

System could collapse in rare and unforeseen
circumstances leading to disasters

Spring ‘09 CIS 480 14

Laws of Real Time Systems [Buttazzo]

If something can go wrong, it will go wrong.
(Murphy’s law)

Any software bug will tend to maximize damage

The worst software bug will be discovered 6 months
after the field test

A system will stop working at the worst possible
time

Sooner or later the worst possible combinations of
circumstances will occur

8

Concepts, methods, and Techniques

Formal methods

Time triggered architecture

Real-time scheduling

Feedback in computer systems

Assurance cases

Etc.

Spring ‘09 CIS 480 15

Spring ‘09 CIS 480 16

Formal Methods (The Ideal!)

Model real time systems precisely

o External events

o System events

Verify timing properties

Propagate timing constraints down to the system
level

Verify implementation meets the specification at
each level

9

What are formal methods?

Techniques for analyzing systems, based on some
mathematics.

This does not mean that the user must be a
mathematician.

Some of the work is done in an informal way, due to
complexity.

Spring ‘09 17 CIS 480

Examples for FM

Deductive verification:

Using some logical formalism, prove formally that the software satisfies its

specification.

Model checking:
Use some software to automatically check that the software satisfies its
specification.

Testing:

Check executions of the software according to some coverage scheme.

Spring ‘09 18 CIS 480

10

Typical situation:

Boss: Mark, I want that the new robot software will
be flawless. OK?

Mark: Hmmm. Well. Oh! Ah??? Where do I start?

Bob: I have just the solution for you. It would solve
everything.

Spring ‘09 19 CIS 480

Some concerns

Which technique?

Which tool?

Which experts?

What limitations?

What methodology?

At which points?

How expensive?

How many people?

Needed expertise

Kind of training

Size limitations

Exhaustiveness

Reliability

Evidence

Expressiveness

Support

Spring ‘09 20 CIS 480

11

Seven Myths of Formal Methods

Myth 1: Formal methods can guarantee that software is perfect

Myth 2: Formal methods are about program proving

Myth 3: Formal methods are only useful for safety-critical systems

Myth 4: Formal methods require highly trained mathematicians

Myth 5: Formal methods increases the cost of development

Myth 6: Formal methods are unacceptable to users

Myth 7: Formal methods are not used on real, large-scale software

[Anthony Hall, IEEE Computer, Sep 1990]

Spring ‘09 CIS 480 21

Some exaggerations

Automatic verification can always find errors.

Deductive verification can show that the software is
completely safe.

Testing is the only industrial practical method.

Spring ‘09 22 CIS 480

12

10/1/98 23

Advantages of Formal Methods

Formal methods treat system components as
mathematical objects and provide mathematical
models to describe and predict the observable
properties and behaviors of these objects.

There are several advantages to using formal
methods for the specification and analysis of real-
time systems.
o the early discovery of ambiguities, inconsistencies and

incompleteness in informal requirements

o the automatic or machine-assisted analysis of the
correctness of specifications with respect to requirements

o the evaluation of design alternatives without expensive
prototyping

Our approach

Learn several methods (deductive verification,
model checking, testing process algebra).

Learn advantages and limitations, in order to choose
the right methods and tools.

Learn how to combine existing methods.

Spring ‘09 24 CIS 480

13

Things to do

Check the kind of
software to analyze.

Choose methods and
tools.

Express system
properties.

Model the software.

Apply methods.

Obtain verification results.

Analyze results.

Identify errors.

Suggest correction.

Spring ‘09 25 CIS 480

Different types of software

Sequential.

Concurrent.

Distributed.

Reactive.

Real-time.

Protocols.

Abstract algorithms.

Finite state.

Spring ‘09 26 CIS 480

14

27

Formal Specification Methods

Logic
o Z, VDM, First order logic, temporal logic

State Machines

o Finite state machines, communicating state machines,
extended state machines

o State Chart, Objectime, Automata, Timed Automat

Petri Nets

Process Algebra
o CSP , CCS, ATP, ACSR

o CWB, PARAGON

28

Verification Methods

Verification is to show
Behavior(Design) Behavior(Requirement)

Verification Methods
o Proof System : SP f

o Model Checking : Pd f
o Behavioral Specification : Pd sat f

 E.g. 0 <=(# of coins in t) - (# of candies in t) <= 1

o Algebraic(bisimulation, process containment):
Pr ~ Pd,, Pr Pd,

