Timed Automata and TCTL syntax, semantics, and verification problems
1
Timed Automata
Finite Automata + Clock Constraints + Clock resets

Timed Automata and TCTL

syntax, semantics, and verification problems

.

Clock Constraints

For set C of clocks with $x,y\in C$, the set of clock constraints over C, $\Psi(C),$ is defined by

$$\alpha ::= x \prec c \mid x - y \prec c \mid \neg \alpha \mid (\alpha \land \alpha)$$

where $c \in \mathbb{N}$ and $\prec \in \{<, \leqslant \}$.

Timed Automata

A timed automaton A is a tuple $(L, l_0, E, Label, C, clocks, guard, inv)$ with

- ullet L, a non-empty, finite set of locations with initial location $l_0 \in L$
- $E \subseteq L \times L$, a set of edges
- Label: $L\longrightarrow 2^{AP}$, a function that assigns to each location $l\in L$ a set Label(l) of atomic propositions
- C, a finite set of clocks
- $clocks: E \longrightarrow 2^C$, a function that assigns to each edge $e \in E$ a set of clocks clocks(e)
- $guard: E \longrightarrow \Psi(C)$, a function that labels each edge $e \in E$ with a clock constraint guard(e) over C, and
- $inv: L \longrightarrow \Psi(C)$, a function that assigns to each location an *invariant*.

5

Timed Automata: Syntax

Timed Automata: Semantics

Timed Automata with *Invariants*

Timed Automata: Example

9

Timed Automata: Example

Timed Automata: Example (sporadic task)

Timed Automata: Example (aperiodic task)

15

Semantics (definition)

- <u>clock valuations</u>: V(C) $v: C \rightarrow R \ge 0$
- *state*: (l,v) where $l \in L$ and $v \in V(C)$
- <u>action transition</u> $(l,v) \xrightarrow{a} (l',v')$ if $f \xrightarrow{g \ a \ r} v'$ g(v) and v' = v[r] and Inv(l')(v')
- <u>delay Transition</u> $(l,v) \xrightarrow{d} (l,v+d)$ if f $Inv(l)(v+d') \text{ whenever } d' \leq d \in R \geq 0$

Timed Automata: Example

17

Modeling Concurrency

- Products of automata
- Parallel composition

CCS Parallel Composition (implemented in UPPAAL)

21

Location Reachability (def.)

n is reachable from m if there is a sequence of transitions:

 $(m, u) \longrightarrow^* (n, v)$

(Timed) Language Inclusion, $L(A) \subseteq L(B)$

$$(a_{0'}, t_0) (a_{1'}, t_1) \dots \dots (a_{n'}, t_n) \in L(A)$$

Tf

"A can perform a_0 at t_0 , a_1 at t_1 a_n at t_n "

$$(\textbf{I}_0, \textbf{u}_0) \xrightarrow{\quad \textbf{t}_0 \quad} (\textbf{I}_0, \textbf{u}_0 + \textbf{t}_0) \xrightarrow{\quad \textbf{a}_0 \quad} (\textbf{I}_1, \textbf{u}_1) \dots \dots$$

23

Verification Problems

- Timed Language Inclusion ⊗
 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 - 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]
- Untimed Language Inclusion ©
- (Un)Timed Bisimulation ☺
- Reachability Analysis ©
- Optimal Reachability (synthesis problem) ☺
 - If a location is reachable, what is the minimal delay before reaching the location?

Timed CTL = CTL + clock constraints

Note that The semantics of TA defines a transition system where each state has a Computation Tree

25

Computation Tree Logic, CTL

Clarke & Emerson 1980

Syntax

 $\phi ::= P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

TCTL

Henzinger, Sifakis et al 1992

Syntax

```
\phi ::= P \mid g \mid \neg \phi \mid \phi \lor \phi \mid z.\phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]
```

where $\textbf{P} \in \text{AP}$ (atomic propositions) and g is a Clock constraint

```
(l,u) sat z.φ iff (l,u[z:=0]) sat φ
```

AG (P imply z.(z<10 or q))

2

Timed CTL (a simplified version of TCTL)

Syntax

```
\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]
```

where $\mathbf{p} \in \mathsf{AP}$ (atomic propositions) **Or** a Clock constraint

Timed CTL

Syntax

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$$
where $\mathbf{p} \in AP$ (atomic propositions) Of Clock constraint

Derived Operators

$$AG p$$

$$AG p$$

$$EG p$$

$$AF p$$

$$AF p$$

$$DF = AF p$$

Bounded Liveness/Response

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x := 0 on all edges leading to location P

31

Bounded Liveness/Response

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x:=0 on all edges leading to location P

Bounded Liveness Verify: "whenver p is true, q should be true within 10 sec P - - > (q and x < 10) Use extra clock x Add x:=0 on all edges leading to P

Problem with Zenoness

A Zeno-automaton may satisfy the formula Without containing a state where q is true

35

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply Q)

37

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply q)

is satisfied !!!

REACHABILITY ANALYSIS using Regions

Infinite State Space!

However, the reachability problem is decidable © Alur&Dill 1991

41

Region: From infinite to finite

Region equivalence (Intuition)

 $u \cong v$ iff (I,u) and (I,v) may reach the same set of eqivalence classes

45

Region equivalence [Alur and Dill 1990]

- u,v are clock assignments
- u≈v iff
 - For all clocks x,
 either (1) u(x)>Cx and v(x)>Cx
 or (2) [u(x)]=[v(x)]
 - For all clocks x, if u(x)<=Cx, {u(x)}=0 iff {v(x)}=0
 - For all clocks x, y, if $u(x) \le Cx$ and $u(y) \le Cy$ $\{u(x)\} \le \{u(y)\}$ iff $\{v(x)\} \le \{v(y)\}$

Theorem

u≈v implies

- $u(x:=0) \approx v(x:=0)$
- $u+n \approx v+n$ for all natural number n
- for all d<1: $u+d \approx v+d'$ for some d'<1

"Region equivalence' is preserved by "addition" and reset. (also preserved by "subtraction" if clock values are "bounded")

49

Region graph of a simple timed automata

Problems with Region Construction

- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. x>1,000,000, y>1,000,000 as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

Zones = Conjuctive constraints

A zone Z is a conjunctive formula:

```
g_1 \& g_2 \& ... \& g_n
where g_i may be x_i \sim b_i or x_i-x_j~b_{ij}
```

- Use a zero-clock x_0 (constant 0), we have
 - $\{x_i-x_j \sim b_{ij} \mid \sim is < or \le, i,j \le n\}$ This can be represented as a MATRIX, DBM

(Difference Bound Matrices)

63

Solution set as semantics

- Let Z be a zone (a set of constraints)
- Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z])

Operations on Zones

- Strongest post-condition (Delay): SP(Z) or Z↑
 - $[Z\uparrow] = \{u+d \mid d \in R, u \in [Z]\}$
- Weakest pre-condition: WP(Z) or Z↓ (the dual of Z↑)
 - $[Z\downarrow] = \{u \mid u+d \in [Z] \text{ for some } d \in R\}$
- Reset: {x}Z or Z(x:=0)
 - $[{x}Z] = {u[0/x] | u \in [Z]}$
- Conjunction
 - [Z&g]= [Z]∩[g]

65

Two more operations on Zones

- Inclusion checking: Z₁⊆Z₂
 - solution sets
- Emptiness checking: Z = Ø
 - no solution

Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone
- Thus, there will be a zone to represent the sets: $[Z\uparrow]$, $[Z\downarrow]$, $[\{x\}Z]$

67

One-step reachability: Si — Sj

- Delay: $(n,Z) \rightarrow (n,Z')$ where $Z' = Z \uparrow \land inv(n)$
- Action: $(n,Z) \rightarrow (m,Z')$ where $Z' = \{x\}(Z \land g)$

if
$$n \xrightarrow{g} x := 0$$

- Reach: $(n,Z) \longrightarrow (m,Z')$ if $(n,Z) \rightarrow (m,Z')$

