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Timed Automata and TCTL

syntax, semantics, and verification problems

Clock Constraints

For set C of clocks with 2,y € C, the set of clock constraints over C, ¥(C), is
defined by

a::=:z;~<c|:r;—y-<c| -a|(o: A a)

where c€ N and < € { <, <}




Timed Automata

A timed automaton A is a tuple (L, 1y, E, Label, C, clocks, guard, inv) with

e L, a non-empty, finite set of locations with initial location Iy € L

e EC L xL,aset of edges

e Label : L —» 24P, a function that assigns to each location I € L a set

Label(l) of atomic propositions

e C, a finite set of clocks

e clocks: E — 2€, a function that assigns to each edge e € E a set of clocks

clocks(e)

e guard : E — ¥(C), a function that labels each edge e € E with a clock

constraint guard(e) over C, and

e inv: L — ¥(C), a function that assigns to each location an invariant.

Timed Automata: Syntax

Action
used

for synchronization

N
Y

Clocks:

—

Guard =clock constraint

Reset
Action perfomed on clocks




Timed Automata: Semantics

L Clocks: x, y
n Guard =clock constraint
Action _ Reset
used x<=5&y>3 Action perfomed on clocks
for synchronization a State
( location , x=v , y=u) where v,u are in R
x:=0 Transitions
(n, x=2.4, y=3.1415) _a .
(m, x=0, y=3.1415)
P N e(1.1)

(n, x=2.4, y=3.1415) - >
(n, x=35, y=4.2415)

Timed Automata with Invariants

n
/ x<=5 Clocks: x, y
X<=5& y>3 Transitions A
Location (n, x=2.4, y=3.1415)
Invariants a

1.1

(n,x=2.4,y=3.1415)
(n, x=3.5, y=4.2415)




Timed Automata: Example

Timed Automata: Example

10




Timed Automata: Example

2<=x<=3
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Timed Automata: Example
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Timed Automata: Example
(periodic task)
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Timed Automata: Example
(sporadic task)

X =>20
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Timed Automata: Example

(aperiodic task)
<x<=100

X:=0
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Semantics (definition)

clock valuations: v(C) v:C—R-o
state: (1,v) where IEL and vEV(C)

action transition (1,v)——'.v'") if f Q-2
g(v) and v'=v[r] and In\l')(V'")

delay Transition (I,v) ——(,v+d)iff
In(l)(v+d') whenever d'sdER=o
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Timed Automata: Example

start& x>2 push X,y :=0 o2
X=y=

X:=0 click y=9 X:=0

(of fx =y =0)—2">(of fx = y=3.5)—L>
(on,x =y =0)—Z—>(on,x = y =) —2">

(on,x =0,y =m)—>(on,x =3,y =m +3)—=2»
(on,x=9~(w +3),y =9)—"—=(of fx =0,y =9)...
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Modeling Concurrency

= Products of automata
= Parallel composition
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CCS Parallel Composition (implemented in UPPAAL)

g a x:=0

g a x:=0

4

g&g’ x:

0
0

I

g a x:=0

a x:=0

om0

c! x:=0

g c? y:=0
m @@

Where ais an actionc!orc? orx
c is a channel name

19

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

a2,maz,........ ,x=0,

Two-way synchronization

on complementary actions.

Closed Systems!

y=3.5,i=7.....)

20
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Verification Problems

21

Location Reachability (def.)

n is reachable from m if there is a sequence of transitions:

(m u) ———*  (n,v)

22
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(Timed) Language Inclusion, L(A) C L(B)

(e t) (ay t) ... (ay t,) € L(A)
If
"A can perform ayatt, a,att, ...... a, att,”
to Qo
(lor uo) (los uo+to) (I uy) oe o

23

Verification Problems

Timed Language Inclusion ®

e 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
e 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]

Untimed Language Inclusion ©

(Un)Timed Bisimulation ©

Reachability Analysis ©

Optimal Reachability (synthesis problem) ©

e If a location is reachable, what is the minimal delay before reaching the
location?

24
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Timed CTL = CTL + clock constraints

Note that The semantics of TA defines a transition system
where each state has a Computation Tree

25

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
¢:=P|-¢ldved|EXd|E[oUG] | AloU¢]

where P € AP (atomic propositions)

26
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TCTL

Henzinger, Sifakis et al 1992

Syntax
¢:=Plgl-¢l¢velzo| E[9Ue] | Al U o]

where P € AP (atomic propositions) and g is a Clock constraint

(l,u) sat z.¢ iff (I,u[z:=0]) sat ¢

AG (P imply z.(z<10 or q))

27

Timed CTL (a simplified version of TCTL)

Syntax
¢ i=pl-¢love|EXe|E[9UQ]|A[DU¢]

where P € AP (atomic propositions) OF a Clock constraint

28
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Timed CTL

Syntax
¢ i=pl-¢love|EXP|E[9UQ][A[DU¢]

where P € AP (atomic propositions) OF Clock constraint

Derived Operators

R

Liveness: p - -> "p leads to g”

AG (p imply AF q)

30
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Bounded Liveness/Response
[TACAS 98]

Verify: "whenver p is true,
q should be true within 10 sec

AG ((P, and x>10) imply q)

REEEE

Use extra clock x and boolean P, NN

Add P, := tt and x:=0 on all edges TR

leading to location P

31

Bounded Liveness/Response
[TACAS 98]

This is not really correct;
Verify: "whenver p is true, “not Pg”_’_s ould be added as guard
q should be true within 10 sec 0 i

AG ((P, and x>10) imply q)

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges

leading to location P

------

N
v

Pb:=ff should be

On all eadges leaving q
32
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Bounded Liveness

Verify: "whenver p is true,
q should be true within 10 sec

P --> (g and x<10)

Use extra clock x N
Add x:=0 on all edges e
leading to P ™

......

[TACAS 98]

~TIilise

33

Timed CTL in UPPAAL

EFP| AGp | EGp | AFp | p-->P

P:=Al|g.|1gy| notP| Por P | PandpP\ P imply P

/AN

Process Clock predicate

Location constraint over data variables
(a location in

automaton A)

p leads to q

denotes
AG (p imply AF q)

34
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Problem with Zenoness

A Zeno-automaton may satisfy the formula
Without containing a state where q is true

y<=5

35

EXAMPLE

We want to specify “whenever P is true,
Q should be true within 10 time units

36
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EXAMPLE

We want to specify “"whenever P is true,

y<=5 Q should be true within 10 time units
®=5
P,:=true AG ((P, and x>10) imply Q)
X:=
37
EXAMPLE
We want to specify “whenever P is true,
y<=5 Q should be true within 10 time units
i i :y<=5
P,:=true AG ((P, and x>10) imply q)
x:=0

is satisfied 1!

38
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Solution with UPPAAL

Check Zeno-freeness by an extra observer
System | | ZenoCheck

Check

ZenoCheck.A - - > ZenoCheck.B

Committed location!

39

REACHABILITY ANALYSIS
using Regions

40

20



Infinite State Space!

() ) gives rise to the
infinite transition system:

(o

z=2 z=2.1 =7 ¢ =27

z=0

However, the reachability problem is decidable © Alur&Dill 1991

41

Region: From infinite to finite

Concrete State Symbolic state (region)

(n, x=2.2, y=1.5) (n, ' )

X .

An equivalence class (i.e. a region)
There are only finite many such!! 42
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Region equivalence (Intuition)

u = v iff (I,u) and (l,v) may reach
the same set of eqgivalence classes

43

Region equivalence (Intuition)

u = v iff (I,u) and (I,v) may reach

d- the same set of egivalence classes

44
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Region equivalence (Intuition)

u = v iff (I,u) and (l,v) may reach
d s the same set of eqgivalence classes

45

Region equivalence /Aiur and bl 1990]

= y,v are clock assignments

" U=V iff
e For all clocks x,
either (1) u(x)>Cx and v(x)>Cx
or  (2) [uC)I=[v(x) |
e For all clocks x, if u(x)<=Cx,
{u(x)}=0 iff {v(x)}=0
e For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
{u()}<= {uly)} iff {v(x)}<= {v(y)}

46
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Region equivalence (alternatively)

u = v iff u and v satisfy exactly
the same set of constraints in
the form of

xi ~mand xi-xj ~ n
where ~ is in {<,>,<,=}
and m,n < MAX

This is not quite correct;
we need to consider the MAX
more carefully

47

Region Graph

Finite-State Transition System!!

1 2 3

OBS: there are only
Finite many regions

X

) wes

(nl ')—»(n,
|x:=0
(m, | ) (m, ')

(m, [u]) — (n, [V]) if (m, u)— (n,v)

48
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Theorem

u=v implies
® u(x:=0) = v(x:=0)
® u+n = v+n for all natural number n
e forall d<1: u+d = v+d’ for some d'<1

"Region equivalence’ is preserved by “addition” and reset.
(also preserved by "subtraction” if clock values are "bounded”)

49

Region graph of
a simple timed automata

B C
l !
0<ze <1 z=1
— “ E D
- l l
z=2 1<z <2
(b)

50
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Fischers again

Untimed case

A1,A2,v=1

A1,CS2,v=2

B1,CS2,v=1

CS1,CS2,v=1

AG(-(CS, A CS,))

\BY
<1 \/-—7Y:=Q/.\Y>1 V=2
. A2 \ B2/) cs
Timed case
Partial
ALA2v=1| || ALA2v=1| |A1A2v=1] |AlA2v=1 Region Graph

x=y=0 0 <x=y <1 x=y=1 1 <xy

S
A1,B2,v=2 A1,B2,v=2 Al1,B2,v=2 | | A1,B2,v=2

y=0

0<x<1l M O0<y<x<lP0<y<x=1pq 0<y<l

1 <x

A1,CS2,v=2

1<xy [

1 <x,y

A1,B2,v=2 A1,B2,v=2

1 <x

No further behaviour possible!!

51

Problems with Region Construction

= Too many ‘regions’
e Sensitive to the maximal constants

® e.g. x>1,000,000, y>1,000,000 as guards in TA

* The number of regions is highly exponential in the
number of clocks and the maximal constants.

52
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REACHABILITY ANALYSIS
using ZONES

53

Z0nes: From infinite to finite

State Symbolic state (zone)
(n, x=3.2, y=2.5) (n, 1=x<4,1<y<3)
Zone:
conjunction of
y 4 y X-y~n, X~n
(00) L
1 1 X 1 | | L X>

54
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Symbolic Transitions

i:f’“f; 1<=x, 1<=y
y =y<= y -2<=x-y<=3
delays to '
o |
—X
x>3
y y 32<X, 1<=y 3
-2<=X-y<=
conjuncts to /
a xX>3
X e —
X
y:=0 projects to 3<%, y=0
(m) -

Thus (n, 1<=x<=4,1<=y<=3) =a=> (m, 3<x, y=0) |

55

Fischer’s Protocol
analysis using zones

’\Tz/\‘

2 | =
' X
& v

X<10 X:=0 X>10
Initially Vi=1 v=1
V=1 \B1/
Y<10 Vie2 Y:=0 Y>10 Vved

56

28



Fischers cont.

Untimed case

<10 a X:=>10 ~ @

. >10

| AL,A2,v=1 ] A1,B2,v=2 —{ A1,CS2,v=2 ——{ B1,CS2,v=1 |—{ C51,C52,v=1 |

57

Fischers cont.

Untimed case

X<10 X:=(‘)/—\x>10

[AL,A2,v=1 | A1,B2,v=2 |—{ A1,CS2,v=2 |——{ B1,CS2,v=1 |——{ C51,CS2,v=1 |

Taking time into account

58




Fischers cont. <1° X:=>1° _ @

<10 Y:= >10
Untimed case bl

| ALA2,v=1 F———] A1,B2,v=2 —{ A1,C52,v=2 ——{ B1,CS2,v=1 |—{ C51,C52,v=1 |

Taking time into account

59

Fischers cont. @“0 V.=1X:=@>10 @

Untimed case

| AL,A2,v=1 F———{A1,B2,v=2 —{ A1,CS2,v=2 || B1,CS2,v=1 |—{ C51,CS2,v=1 |

Taking time into account

60
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Fischers cont. <1° X:=>1° _ @

@<10 \/-_7Y1=@>10 \/=2 @
Untimed case

| ALA2,v=1 F———] A1,B2,v=2 —{ A1,CS2,v=2 | B1,CS2,v=1 |—{ C51,CS2,v=1 |

Taking time into account

10

10
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Fischers cont.

Untimed case

| AL,A2,v=1 F———] A1,B2,v=2 ——{ A1,CS2,v=2 | B1,CS2,v=1 |—{ C51,CS2,v=1 |

Taking time into account

62
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Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9% g &... &g,
where g; may be x;~ b; or x-x;~by
= Use a zero-clock x, (constant 0), we have
{X-X; ~ b; | ~is <or=, ij=n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

63

Solution set as semantics
» Let Z be a zone (a set of constraints)
» Let [Z]={u | uis a solution of Z}

(We shall simply write Z instead [Z] )

64
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Operations on Zones

Strongest post-condition (Delay): SP(Z) or Z1
e [21] = {u+d| d €R, u€[Z]}

Weakest pre-condition: WP(Z) or Z| (the dual of Z1)
® [Z|] = {u| u+deg[Z] for some deR}

Reset: {x}Z or Z(x:=0)
* [{x3Z] = {u[0/x] | u €[Z]}

Conjunction
* [Z&g]= [Z]N[g]

65

Two more operations on Zones

= Inclusion checking: Z1CZ>
= solution sets

= Emptiness checking: Z = @
= NO solution

66
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Theorem on Zones

The set of zones is closed
under all zone operations

e That is, the result of the operations on a zone is a zone
e Thus, there will be a zone to represent the sets: [Z1], [Z|], [{X}Z]

67

One-step reachability: si— sj

Delay: (n,Z) > (n,Z") where Z'=Z1 A inv(n)

Action: (n,Z) > (m,Z") where Z'= {x}(Z ~qg)

if . g x:=0.

Reach: (n,Z2) —(m,Z") if (n,2) >—>(m,Z")
Successors(n,Z)={(m,Z") | (n,Z2) ———(m,Z"), Z'=D}

68
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Now, we have a search problem

EF ®

35



