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It is desirable to develop large complex systems using components based on systematic abstrac-
tion and composition. Our goal is to develop a compositional real-time scheduling framework to
support abstraction and composition techniques for real-time aspects of components. In this paper,
we present a formal description of compositional real-time scheduling problems, which are the
component abstraction and composition problems. We identify issues that need be addressed by
solutions and provide our framework for the solutions, which is based on the periodic interface.
Specifically, we introduce the periodic resource model to characterize resource allocations provided
to a single component. We present exact schedulability conditions for the standard Liu and Layland
periodic task model and the proposed periodic resource model under EDF and RM scheduling, and
we show that the component abstraction and composition problems can be addressed with periodic
interfaces through the exact schedulability conditions. We also provide the utilization bounds of a
periodic task set over the periodic resource model and the abstraction bounds of periodic interfaces
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of overheads that our solution incurs in terms of resource utilization increase and evaluate the
overheads through simulations.
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1. INTRODUCTION
As embedded systems become more complex because of increased function-
alities, it is necessary to develop techniques and methods that facilitate the
designing of large complex systems from subsystems. Component-based de-
sign has been widely accepted as a methodology for designing large complex
systems through systematic abstraction and composition. Component-based
design provides a means for decomposing a system into components, allowing
the reduction of a single complex design problem into multiple simpler design
problems, and composing components into a system through component inter-
faces that abstract and hide their internal complexity. Component-based design
also facilitates the reuse of components that may have been developed in dif-
ferent environments. A central idea in component-based design is to assemble
components into a system without violating the principle of compositionality
such that properties that have been established at the component level also
hold at the system level.

For embedded systems that are also real-time systems, it is important that
the timing properties of components be analyzed compositionally as components
are assembled hierarchically. Otherwise, real-time embedded systems would
not benefit much from component-based design. However, traditional real-time
scheduling frameworks do not support abstraction and composition techniques
for timing properties of component that preserve compositionality, except in
trivial cases. In this paper, we define what it means for a real-time scheduling
framework to support compositionality. We then identify issues to develop such
a real-time scheduling framework and present our approach to the problems.

Our primary goal is to develop a compositional real-time scheduling frame-
work where global (system level) timing properties are established by com-
posing together independently (specified and) analyzed local (component-level)
timing properties. To develop such a framework, we address the component-
abstraction and- composition problems. The component-abstraction problem is
to combine and abstract the collective real-time requirements of a component
as a single real-time requirement, called real-time interface. The component-
composition problem is to compose independently analyzed local (component
level) timing properties under their local schedulers into a global (system-level)
timing property under a global scheduler. For the real-time interface model,
this paper assumes the standard Liu and Layland periodic model [Liu and
Layland 1973]. For scheduling algorithms, this paper assumes the EDF and
RM algorithms, which are optimal dynamic and static uniprocessor scheduling
algorithms for the standard periodic tasks. With these assumptions, the compo-
nent abstraction problem then becomes how to abstract a set of periodic tasks
under EDF or RM scheduling into a periodic interface. After a component has
been abstracted as a periodic interface, the component can be treated as a single
periodic task at the system level. Thus, the component composition problem is
then how to combine a set of periodic interfaces, which will be treated as a set of
periodic tasks, under EDF or RM scheduling into a single periodic interface. We
note that the same periodic model is used for both the component abstraction
and composition problems and, thus, the same technique can be used to find
the solutions of the both problems.
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Fig. 1. Hierarchical scheduling framework: a resource is scheduled by a scheduler and each share
of the resource is subsequently scheduled by a different scheduler.

1.1 Related Work

A hierarchical scheduling framework has been introduced to support hierarchi-
cal resource sharing among applications under different scheduling services.
The hierarchical scheduling framework can be generally represented as a tree
of nodes, where each node represents an application with its own scheduler for
scheduling internal workloads (e.g., threads), and resources are allocated from a
parent node to its children nodes, as illustrated in Figure 1. Goyal et al. [1996]
first proposed a hierarchical scheduling framework for supporting different
scheduling algorithms for different application classes in a multimedia system.

The hierarchical scheduling framework can be used to support multiple ap-
plications while guaranteeing independent execution of those applications. This
can be correctly achieved when the system provides partitioning, where the ap-
plications may be separated functionally for fault containment and for compo-
sitional verification, validation, and certification. Such a partitioning prevents
one partitioned function from causing a failure of another partitioned function.

The hierarchical scheduling framework is particularly useful in the domain
of open systems, where applications may be developed and validated inde-
pendently in different environments. For example, the hierarchical scheduling
framework allows an application to be developed with its own scheduling algo-
rithm internal to the application and then later included in a system that has
a different meta-level scheduler for scheduling applications.

For real-time systems, there has been a growing attention to hierarchical
scheduling frameworks [Deng and Liu 1997; Kuo and Li 1999; Lipari and
Baruah 2000; Feng and Mok 2002; Regehr and Stankovic 2001; Saewong et al.
2002; Lipari and Bini 2003; Shin and Lee 2003; Shin and Lee 2004; Almeida
and Pedreiras 2004; Matic and Henzinger 2005].

Deng and Liu [1997] proposed a two-level real-time scheduling framework
for open systems. Kuo and Li [1999] presented an exact schedulability condi-
tion for such a two-level framework with the RM system scheduler, under the
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assumption that all periodic tasks across components are harmonic. Lipari and
Baruah [2000] and Lipari et al. [2000] presented exact schedulability conditions
for the two-level framework with the EDF system scheduler, while placing a
server between the system scheduler and each component scheduler. The main
role of the server is to compute the resource requirements of components at
runtime so that the EDF system scheduler can use them in scheduling compo-
nents. Each server is assumed to have knowledge of the task-level deadlines
of its corresponding component. The common assumption shared by these pre-
vious approaches is that the system scheduler has a (schedulable) utilization
bound of 100%. In open systems, however, it is desirable to be more general,
since there could be more than two-levels and different schedulers may be used
at different levels.

Mok et al. [2001] proposed the bounded-delay resource partition model for
a hierarchical scheduling framework. Their model can specify the real-time
guarantees that a parent component provides to its child components, where
the parent and child components have different schedulers. Their approach
allows the schedulability of a child node to be analyzed independent of its con-
text in a sufficient manner and thus does not require the assumption that the
parent component’s scheduler has a utilization bound of 100%. In their hierar-
chical framework, a parent component and its child components are separated
such that they interact with each other only through their resource partition
model. Feng and Mok [2002] and Shin and Lee [2004] have considered the com-
ponent abstraction and composition problems with the bounded-delay resource
partition model.

There have been studies on the component-abstraction problem with the pe-
riodic resource model. This periodic resource model can specify the periodic
resource allocation guarantees provided to a component from its parent com-
ponent [Shin and Lee 2003]. Saewong et al. [2002] introduced an exact RM
schedulability conditions based on the worst-case response time analysis and
Lipari and Bini [2003] presented another exact RM schedulability condition
based on time demand calculations.1 Shin and Lee [2003] presented an exact
EDF schedulability condition. Saewong et al. [2002] and Shin and Lee [2003]
also presented utilization bounds. Almeida and Pedreiras [2004] considered the
component-abstraction problem in the presence of mutually exclusive resources
within a component.

Matic and Henzinger [2005] considered the issue of addressing the
component-abstraction problem in the presence of interacting tasks within
a component. They considered two approaches, the RTW (real-time work-
shop) [Mathworks 2005] and the LET (logical executioni time) [Henzinger
et al. 2003] semantics, for supporting tasks with intra- and intercomponent
data dependencies. They showed that our proposed real-time compositional
framework can be extended together with either approach for supporting tasks
with both intra- and intercomponent dependencies. They also showed that

1They presented their schedulability condition as a sufficient condition. However, their conditions
are the sufficient and necessary conditions based on the notion of schedulability under the worst-
case resource supply used in this paper.
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both approaches produce a trade-off between the end-to-end latency and the
component-abstraction overhead.

Regehr and Stankovic [2001] introduced another hierarchical scheduling
framework that considers various kinds of real-time guarantees. Their work
focused on converting one kind of guarantee to another kind of guarantee such
that whenever the former is satisfied, the latter is also satisfied. With their con-
version rules, the schedulability of a child component is sufficiently analyzed
such that it is schedulable if its parent component provides real-time guaran-
tees that can be converted to the real-time guarantee that the child component
demands.

1.2 Contributions

In our earlier work [Shin and Lee 2003], we presented exact schedulability
conditions for a periodic task set scheduled by EDF or RM over the worst-
case resource supply of a periodic resource model. In this paper, we extend
this initial study with an enhanced definition of the proposed compositional
real-time scheduling framework and the following results:

—We provide new utilization bounds that refine previous results [Saewong
et al. 2002; Shin and Lee 2003] under EDF and RM scheduling with a new
parameter. The proposed utilization bounds use as an additional parameter
the relationship between a periodic resource model and the smallest period
of tasks within a component.2

—We provide lower bounds to the interface utilizations of schedulable periodic
interfaces of components, where the components include a periodic task set
under EDF or RM scheduling.

—We evaluate the overheads that periodic interfaces incur in terms of utiliza-
tion increase. We present analytical bounds to the overheads under EDF and
RM scheduling and evaluates the overheads through extensive simulations,
for providing insights regarding how to find a good periodic resource model.

The rest of this article is organized as follows: Section 2 describes the pro-
posed compositional real-time scheduling framework and presents system mod-
els and problem statements. Section 3 introduces the periodic resource model.
For a periodic task set scheduled by EDF or RM over a periodic resource model,
Section 4 presents exact schedulability conditions and Section 5 provides the
utilization bounds of the periodic task set. Section 6 presents the schedulable
component abstraction bounds of periodic interfaces on the components that
consist of a periodic task set scheduled by EDF or RM. Section 7 defines the
overhead that the periodic interface incurs and presents its evaluations through
analytical bounds and simulation results. Section 8 discusses the extensions of
the proposed framework for supporting nonperiodic tasks and interacting tasks
through data dependency or mutually exclusive resources. Finally, we conclude
in Section 9 with discussion on future research.

2The effect of the smallest task period of a component upon component abstraction has been con-
sidered in Feng [2004], and here we develop utilization bounds considering such effect.
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2. COMPOSITIONAL REAL-TIME SCHEDULING FRAMEWORK

This section presents an overview of the proposed compositional real-time
scheduling framework and identifies the problems that need to be addressed for
the proposed framework. Section 2.1 defines terms and notions used in the pro-
posed framework and Section 2.2 provides the system models and assumptions
of the framework. Section 2.3 describes the proposed framework; Section 2.4
presents the problem statement.

2.1 Scheduling Unit, Component, and Interface

Scheduling assigns resources according to scheduling algorithm in order to
service workloads. We use the term scheduling unit to mean the basic unit
of scheduling and define scheduling unit S as a triple (W, R, A), where W
describes the workloads supported in the scheduling unit, R is a resource model
that describes the resource allocations available to the scheduling unit, and A is
a scheduling algorithm which describes how the workloads share the resources
at all times. For scheduling unit S(W, R, A), we assume that the workload W
and the resource model R may not be synchronized. That is, if the workloads in
W start at time tw and R begins providing resource allocations at time tr , then
we assume tw is not necessarily equal to tr .

We consider that component C consists of a workload set W and a scheduling
algorithm A for W , denoted as C(W, A). The resource demand of component
C(W, A) represents the collective resource requirements that its workload set
W requests under its scheduling algorithm A. The demand-bound function
dbfA(W, t) calculates the maximum possible resource demand that W could
request to satisfy the timing requirements of all individual workloads under A
within a time interval of length t.

Resource model R is said to be dedicated if it is exclusively available to a sin-
gle scheduling unit, or shared otherwise. The resource supply of resource model
R represents the amount of resource allocations that R provides. The supply-
bound function sbfR(t) calculates the minimum possible resource supplies that
R provides during a time interval of length t. Resource model R is said to sat-
isfy the resource demand of component C(W, A) if dbfA(W, t) ≤ sbfR(t) for all
interval length t > 0.

We now define the schedulability of scheduling unit as follows: scheduling
unit S(W, R, A) is said to be schedulable, if, and only if, the minimum possible
resource supply of R can satisfy the maximum resource demand of W under A,
i.e.,

∀t dbfA(W, t) ≤ sbfR(t). (1)

It should be noted that we define the schedulability of scheduling unit with
the notion of worst-case resource supply of resource model R. Under the as-
sumption that the workload W and the resource model R may not be synchro-
nized, it is possible that W and R are aligned at the worst-case scenario, where
W receives the minimum possible resource supply from R. Considering this,
we define the schedulability such that all the timing requirements of W should
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be satisfiable under A even with the (worst-case) minimum possible resource
supply of R.

The real-time interface I of a component C(W, A) specifies the collective real-
time requirements of the component C, which W demands under A, without
revealing the internal information of the component, such as the number of its
workloads and its scheduling algorithm. A real-time interface I of component
C(W, A) is said to be schedulable if scheduling unit S(W, R, A) is schedulable
with R = I .

2.2 System Models

As a workload model, we consider the Liu and Layland periodic task model
T (p, e) [Liu and Layland 1973], where p is a period and e is an execution time
requirement (e ≤ p). The task utilization UT of task T is defined as e/p. For a
workload set W = {Ti}, a workload utilization UW is defined as

∑
Ti∈W UTi . In

this paper, let Pmin denote the smallest task period in the workload set W . We
consider that all tasks in a scheduling unit are synchronous, i.e., they release
their initial jobs at the same time. We assume that each task is independent
and preemptable with no preemption cost.

As a scheduling algorithm, we consider the earliest-deadline-first (EDF) al-
gorithm, which is an optimal dynamic uniprocessor scheduling algorithm [Liu
and Layland 1973] and the rate-monotonic (RM) algorithm, which is an optimal
fixed-priority uniprocessor scheduling algorithm [Liu and Layland 1973].

As a resource model, we consider the periodic resource model !(", #) [Shin
and Lee 2003] that can characterize the periodic behavior of resource alloca-
tions, where " is a resource period and # is a periodic resource allocation time.
The resource capacity U! of ! is defined as #/". Section 3 explains this periodic
resource model in detail.

As a real-time interface model, we consider the periodic interface model
P(P, E), where P is a period and E is an execution time requirement. The
interface utilization UP of P is E/P .

2.3 Compositional Framework Overview

In a hierarchical scheduling framework, a parent component provides resource
allocations to its child components. Once a child component C1 finds a schedu-
lable periodic interface P1, it exports the real-time interface to its parent com-
ponent. The parent component treats the real-time interface P1 as a single
periodic task T1. As long as the parent component satisfies the resource re-
quirements imposed by the single periodic task T1, the parent component is
able to satisfy the resource demand of the child component C1. This scheme
makes it possible for a parent component to supply resources to its child com-
ponents without controlling (or even understanding) how the child components
schedule resources for their own tasks.

We define the (periodic) component-abstraction problem as deriving a real-
time interface of a component. That is, the problem is to abstract the collective
real-time requirements of the component as a single real-time requirement,
called the real-time interface, without revealing the internal structure of the
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Fig. 2. Compositional real-time scheduling framework.

component, e.g., the number of tasks and its scheduling algorithm. We formu-
late this problem as follows: given a component C0 = C(W0, A0), the problem
is to find an “optimal” schedulable periodic interface P0 = P(P0, E0). We define
the optimality with respect to minimizing the interface utilization UP0 of the pe-
riodic interface P0. That is, this problem is to find an optimal periodic resource
model !∗ = !("∗, #∗) that makes scheduling unit S0 = S(W0, !∗, A0) schedu-
lable, if any. Here, the optimal schedulable periodic interface P0 = P(P0, E0) is
P0 = !∗ and E0 = #∗.

Example 2.1. As an example, let us consider component C1 in Figure 2.
Component C1 has two periodic tasks under EDF scheduling, i.e., C1 =
C(W1, A1), where W1 = {T (40, 5), T (25, 4)} and A1 = EDF. Now, we consider
the problem of finding an optimal schedulable periodic interface P1 of C1.
This problem is equivalent to the problem of finding a periodic resource model
!∗ = !("∗, #∗) that makes scheduling unit S1 = S(W1, !∗, A1) schedulable
with the minimum resource capacity U!∗ . When the period "∗ of !∗ is given as
10, the optimal periodic resource model is !∗ = !(10, 3.1). Here, P1 = P(10, 3.1)
is a solution to the component-abstraction problem.

We define the (periodic) component-composition problem as combining mul-
tiple components into a single component through real-time interfaces, pre-
serving the principle of compositionality, i.e., the properties of components are
held in a larger component. We formulate the component composition problem
as follows: given component C0 = C(W0, A0) that consists of two subcompo-
nents C1 and C2 under A0, the problem is to find an “optimal” periodic interface
P0 of C0. Our approach is to develop the optimal schedulable periodic inter-
faces P1 and P2 of C1 and C2, respectively, and to consider C0 = C(W0, A0) as
consisting of two periodic tasks, i.e., W0 = {T1, T2}, where Ti = Pi, i = 1, 2.
The component-composition problem then becomes equivalent to the
component-abstraction problem. Thus, we can address the component compo-
sition problem.
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Example 2.2. As an example, let us consider component C0 = C(W0, A0)
that consists of two subcomponents, C1 and C2, in Figure 2. Let A0 = EDF.
We first determine the optimal schedulable periodic interfaces of the two sub-
components, C1 and C2. An optimal schedulable periodic interface P1 of C1 is
P1 = P(10, 3.1), and that of C2 is P2 = P(10, 4.4). By treating Pi as a single pe-
riodic task Ti, for i = 1, 2, we can consider the workload set W0 has two periodic
tasks, i.e., W = {T1, T2}, where T1 = T (10, 3.1) and T2 = T (10, 4.4). Then, the
problem of finding an optimal schedulable periodic interface P0 of C0 is equiv-
alent to the component-abstraction problem for C0. Here, assuming the period
"∗ of !∗ is given as 5, !∗ = !(5, 4.4) is the optimal periodic resource model
that makes scheduling unit S(W0, !∗, A0) schedulable. Thus, P0 = P(5, 4.4) is
a solution to the component-composition problem for C0.

We define the compositional real-time scheduling framework as a hierarchical
scheduling framework that supports the abstraction and composition of com-
ponents. That is, it supports abstracting the collective real-time requirements
of a component as a real-time interface and composing independently analyzed
local timing properties into a global timing property.

It is desirable that the interface utilization UP of a periodic interface P is
equal to the workload utilization UW of a workload set W . However, UP can be
larger than UW . We define the component-abstraction overhead as UP/UW − 1
to represent a normalized resource utilization increase.

2.4 Problem Statement

Based on the periodic resource model !(", #) that characterizes resource sup-
ply with a periodic behavior, we address the following problems:

—for a scheduling unit S0 = S(W0, R0, A0), where W0 = {T (pi, ei)}, R0 =
!("0, #0), and A0 = EDF/RM, the problems are to (1) analyze its schedu-
lability and (2) derive its schedulable workload utilization;

—for a component C0 = C(W0, A0), where W0 = {T (pi, ei)} and A0 = EDF/RM,
the problems are to (1) develop an optimal periodic interface P0 of C0 and (2)
derive the upper bound on the interface utilization of P0.

In addition, we define the notion of component-abstraction overhead for pe-
riodic interface. We then derive upper bounds on the overheads and evaluate
the overheads through simulation results.

3. PERIODIC RESOURCE MODEL

To be able to analyze the schedulability of a scheduling component independent
of its context, it is necessary to calculate the resource supply provided to the
scheduling component. A resource model is to specify resource allocations that
are provided to a scheduling component and to calculate the resource supply to
the component. In this section, we briefly review a periodic resource model and
its charateristics.

In our earlier work [Shin and Lee 2003], we proposed a periodic resource
model !(", #), where " is a period (" > 0) and # is a periodic allocation time
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Fig. 3. The supply bound function of a periodic resource model !(", #) for k = 3.

(0 < # ≤ "). A resource capacity U! of a periodic resource !(", #) is defined
as #/". The periodic model !(", #) is defined to characterize the following
property:

supply!

(
k", (k + 1)"

)
= #, where k = 0, 1, 2, . . . . (2)

For schedulability analysis, it is important to calculate the minimum re-
source supply of a resource model accurately. For a periodic model !, its supply-
bound function sbf!(t) is defined to compute the minimum resource supply for
every interval length t as follows:

sbf!(t) =
{

t − (k + 1)(" − #) if t ∈ [(k + 1)" − 2#, (k + 1)" − #],
(k − 1)# otherwise, (3)

where k = max('(t − ("−#))/"(, 1). Figure 3 illustrates how the supply-bound
function sbf!(t) is defined for k = 3.

Since the supply-bound function sbf!(t) is a discrete function, its linear
lower-bound function lsbf!(t) is as follows:

lsbf!(t) =
{

#
"

(
t − 2(" − #)

)
if (t ≥ 2(" − #)),

0 otherwise.
(4)

We define the service time of a resource as the duration that it takes for the
resource to provide a resource supply. For a periodic resource !(", #), we define
a service time-bound function tbf!(t) to calculate the maximum service time of
! required for a t-time-unit resource supply as follows:

tbf!(t) = (" − #) + " ·
⌊ t

#

⌋
+ εt , (5)

where

εt =
{

" − # + t − #
⌊

t
#

⌋
if

(
t − #

⌊
t
#

⌋
> 0

)
.

0 otherwise
(6)

4. SCHEDULABILITY ANALYSIS

For a scheduling unit S(W, R, A), schedulability analysis is to determine
whether a set of timing requirements imposed by the workload set W can be
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satisfied with the resource supply of R under the scheduling algorithm A. The
schedulability analysis is essential to solve the component-abstraction and-
composition problems. In this section, we present exact conditions under which
the schedulability of a scheduling unit can be satisfied, when the scheduling
unit consists of a periodic workload set scheduled by EDF or RM and a periodic
resource model. We then address the component-abstraction and-composition
problems with a periodic interface using the exact schedulability conditions.

4.1 Schedulability Analysis under EDF Scheduling

For a periodic task set W under EDF scheduling, Baruah et al. [1990a] proposed
the demand-bound function dbfEDF(W, t) that computes the total resource de-
mand of W for every interval length t.

dbfEDF(W, t) =
∑

Ti∈W

⌊ t
pi

⌋
· ei. (7)

For an approximate mathematical analysis, we define a linear upper-bound
function ldbfEDF(W, t) of the demand-bound function dbfEDF(W, t) as follows:

ldbfEDF(W, t) = UW · t ≥ dbfEDF(W, t),

where UW is the utilization of the workload set W .
We present the following theorem to provide an exact condition under which

the schedulability of scheduling unit S(W, R, EDF) can be satisfied for the pe-
riodic resource model R.

THEOREM 4.1. Scheduling unit S(W, R, A) is schedulable, where W = {Ti =
T (pi, ei)} and A = EDF, if, and only if,

∀0 < t ≤ LCMW dbfEDF(W, t) ≤ sbfR(t), (8)

where LCMW is the least common multiple of pi for all Ti ∈ W.

PROOF. To show the necessity, we prove the contrapositive, i.e., if Equa-
tion (8) is false, there are some workload members of W that are not schedu-
lable by EDF. If the total resource demand of W under EDF scheduling during
t exceeds the total resource supply provided by R during t, there is clearly no
feasible schedule.

To show the sufficiency, we prove the contrapositive, i.e., if all workload mem-
bers of W are not schedulable by EDF, then Equation (8) is false. Let t2 be the
first instant at which a job of some workload member Ti of W misses its dead-
line. Let t1 be the latest instant at which the resource supplied to W was idle
or was executing a job whose deadline is after t2. By the definition of t1, there is
a job whose deadline is before t2 and which was released at t1. Since Ti misses
its deadline at t2, the total demand placed on W in the time interval [t1, t2) is
greater than the total supply provided by R in the same time interval length
t2 − t1.

The schedulability condition in Theorem 4.1 is necessary in addressing the
component-abstraction problem for a component with the EDF scheduling al-
gorithm. We illustrate this with the following example.
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(a) Solution Space under EDF 

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73

resource period

re
so

ur
ce

 c
ap

ac
ity

(b) Solution Space under RM 
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Fig. 4. Schedulable region of periodic resource !(", #): (a) under EDF scheduling in Example 4.1
and (b) under RM scheduling in Example 4.2.

Example 4.1 Let us consider a workload set W0 = {T (50, 7), T (75, 9)}
and a scheduling algorithm A0 = EDF. The workload utilization UW0 is 0.26.
We now consider the problem of finding a schedulable periodic interface
P0 = P(P0, E0) of component C0 = C(W0, A0). This problem is equivalent
to finding a periodic resource model !0 = !("0, #0) that makes schedul-
ing unit S0 = S(W0, !0, A0) schedulable. We can obtain a solution space
of !0 to this problem by simulating Equation (8). For any given resource
period "0, we can find the smallest #0 such that the scheduling unit S0
is schedulable according to Theorem 4.1. Figure 4a shows such a solution
space as the gray area for each integer resource period "0 = 1, 2, . . . , 75. For
instance, when "0 = 10, the minimum resource capacity U!0 that guarantees
the schedulability of S0 is 0.28. So, #0 = 2.8. That is, the periodic interface
P0 = P(10, 2.8) is an optimal schedulable interface of C0, when P is given as 10.

4.2 Schedulability Analysis under RM Scheduling

For a periodic task set W under RM scheduling, Lehoczky et al. [1989] pro-
posed a demand-bound function dbfRM(W, t, i) that computes the worst-case
cumulative resource demand of a task Ti for an interval of length t.

dbfRM(W, t, i) = ei +
∑

Tk∈HPW (i)

⌈ t
pk

⌉
· ek , (9)

where HPW (i) is the set of higher-priority tasks than Ti in W .
For a task Ti over a resource model R, the worst-case response time ri(R) of

Ti can be computed as follows:

ri(R) = min{t | dbfRM(W, t, i) ≤ sbfR(t)}.
We present the following theorem to provide an exact condition under which

the schedulability of scheduling unit S(W, R, RM) can be satisfied for the peri-
odic resource model R.

THEOREM 4.2. Scheduling unit S(W, R, A) is schedulable, where W = {Ti =
T (pi, ei)} and A = RM, if, and only if,

∀Ti ∈ W ∃ti ∈ [0, pi] dbfRM(W, ti, i) ≤ sbfR(ti). (10)
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PROOF. Task Ti completes its execution requirement at time t ∈ [0, pi], if,
and only if, all the execution requirements from all the jobs of higher-priority
tasks than Ti and ei, the execution requirement of Ti, are completed at time ti.

The total of such requirements is given by dbfRM(W, ti, i), and they are com-
pleted at ti if, and only if, dbfRM(W, ti, i) = sbfR(ti) and dbfRM(W, t ′

i , i) > sbfR(t ′
i )

for 0 ≤ t ′
i < ti. It follows that a necessary and sufficient condition for Ti to meet

its deadline is the existence of a ti ∈ [0, pi] such that dbfRM(W, ti, i) = sbfR(ti).
The entire task set is schedulable if, and only if, each of the tasks is schedula-

ble. This means that there exists a ti ∈ [0, pi] such that dbfRM(W, ti, i) = sbfR(ti)
for each task Ti ∈ W .

We present the following example to show that using Theorem 4.2, we can
address the component-abstraction problem for a component with the RM
scheduling algorithm.

Example 4.2 Let us consider a workload set W0 = {T (50, 7), T (75, 9)} and a
scheduling algorithm A0 = RM. The workload utilization UW0 is 0.26. We now
consider the problem of finding a schedulable periodic interface P0 = P(P0, E0)
of component C0 = C(W0, A0). This problem is equivalent to finding a periodic
resource model !0 = !("0, #0) that makes scheduling unit S0 = S(W0, !0, A0)
schedulable. We can obtain a solution space of !0 to this problem by simulat-
ing Equation (10). For any given resource period "0, we can find the smallest
#0 such that the scheduling unit S0 is schedulable according to Theorem 4.2.
Figure 4b shows such a solution space as the gray area for each integer resource
period "0 = 1, 2, . . . , 75. For instance, when "0 = 10, the minimum resource
capacity U!0 that guarantees the schedulability of S0 is 0.35. So, #0 = 3.5. That
is, the periodic interface P0 = P(10, 3.5) is an optimal schedulable interface of
C0, when P is given as 10.

5. SCHEDULABLE WORKLOAD UTILIZATION BOUNDS

This section starts by presenting the definition of (schedulable workload) uti-
lization bound and provides the utilization bounds on the periodic resource
model under EDF and RM scheduling.

Definition 5.1. The (schedulable workload) utilization bound, denoted as
UB, of a periodic task set W on resource model R under scheduling algorithm
A is defined such that the scheduling unit S(W, R, A) is schedulable if the
workload utilization (UW ) is no greater than the utilization bound.

The utilization bound is particularly suited for on-line acceptance tests. When
checking whether or not a new periodic task can be scheduled with the existing
tasks, computing the utilization bound takes a constant amount of time, which
is much faster than doing an exact schedulability analysis based on a demand-
bound function.

Liu and Layland [1973] presented the utilization bounds of a periodic task set
W on a dedicated resource RD under EDF and RM scheduling; the utilization
bounds are 1 under EDF and n(21/n − 1) under RM, respectively, where n is
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the number of tasks in W . This section extends these seminal results with the
periodic resource model.

We observe that a key relationship between a workload set W and a periodic
resource model !(", #) is the period multiple relationship, which basically in-
dicates how many times that !(", #) can provide W with the whole periodic
allocation time of # during a time interval of length Pmin under the worst-case
resource supply scenario, where Pmin is the smallest task period of W . Here,
we define the functions, K A(Pmin, !(", #)), that computes this period multiple
relationship under RM and EDF scheduling as follows:

—under RM scheduling, KRM(Pmin, !(", #)) is defined as follows:

KRM(Pmin, !(", #)) = max{k is an integer | (k + 1)" − # < Pmin}; (11)

—under EDF scheduling, KEDF(Pmin, !(", #)) is defined as follows:

KEDF(Pmin, !(", #)) = max{k is an integer | (k + 1)" − # − k#

k + 2
< Pmin}.

(12)

Based on the period multiple relationship between !(", #) and W with Pmin,
this section presents the utilization bounds of W on !(", #) as a function of
Pmin under EDF scheduling and as a function of n and Pmin under RM schedul-
ing, respectively. In this direction, this section presents new utilization bound
results that refine the previous results [Saewong et al. 2002; Shin and Lee
2003].

5.1 Utilization Bound under EDF Scheduling

For scheduling unit S(W, R, A), where W = {T (pi, ei)}, R = !(", #), and
A = EDF, we represent its utilization bound as a function of Pmin, denoted as
UB!,EDF(Pmin), such that S(W, R, A) is schedulable if UW ≤ UB!,EDF(Pmin). We
present the following theorem to introduce the utilization bound UB!,EDF(Pmin).

THEOREM 5.1. For scheduling unit S(W, R, A), where W = {T (pi, ei)}, R =
!(", #), and A = EDF, its utilization bound UB!,EDF(Pmin), as a function of Pmin,
is

UB!,EDF(Pmin) = k · U!

k + 2(1 − U!)
, (13)

where k = KEDF(Pmin, R).

PROOF. Let P∗
EDF denote (k + 1)" − 2#, where k ≥ 1. It is shown in Figure 5

that P∗
EDF is the largest time instant (k +1)"−2#, for integer k, that is smaller

than Pmin. Let ε = 2#/(k + 2).
In this proof, we consider four cases in terms of an interval length t: (1)

0 ≤ t ≤ P∗
EDF + ε, (2) P∗

EDF + ε < t ≤ P∗
EDF + #, (3) P∗

EDF + # < t ≤ P∗
EDF + ",

and (4) t < P∗
EDF + ". For each of the above four cases, we want to show that if

UW ≤ UB!,EDF(Pmin), then

dbfEDF(W, t) ≤ sbf!(t).
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Fig. 5. Four cases to consider in deriving a utilization bound under EDF scheduling.

Case 1. We first consider a case where 0 ≤ t ≤ P∗
EDF + ε. Since P∗

EDF + ε <

Pmin, this is the case where 0 ≤ t < Pmin. From the definition of dbfEDF(W, t),
then,

∀0 ≤ t ≤ P∗
EDF + ε dbfEDF(W, t) = 0.

Since sbf!(t) ≥ 0 for all t ≥ 0, it follows that

∀0 ≤ t ≤ P∗
EDF + ε dbfEDF(W, t) ≤ sbf!(t).

Case 2. We consider a case where an interval length t can be longer than
Pmin, but is no longer than P∗

EDF + #. That is,

P∗
EDF + ε < t ≤ P∗

EDF + #.

It is easy to see that, from the definition of sbf!(t),

∀P∗
EDF + ε < t ≤ P∗

EDF + # sbf!(t) = (k − 1)# + t − P∗
EDF.

When t = P∗
EDF + ε, it follows that

sbf!(P∗
EDF + ε) = (k − 1)# + ε

= k# − k
k + 2

#. (14)

When t = P∗
EDF + ε, it follows that

ldbfEDF(W, t) = UW · t

≤ k · U!

k + 2(1 − U!)
·
(
P∗

EDF + ε
)

= k#

(k + 2)" − 2#
· (

(
(k + 2)" − 2#

)
+

(
ε − "

)
)

= k# + k#

(k + 2)" − 2#
·
(
ε − "

)

= k# + k#

(k + 2)" − 2#
· −(k + 2)" + 2#

k + 2

= k# − k
k + 2

#. (15)
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From Equations (14) and (15), we can see that when t = P∗
EDF + ε,

ldbfEDF(W, t) = sbf!(t). In this case, one can see that sbf!(t) increases lin-
early in t with a slope of 1, and so does ldbfEDF(W, t) with a smaller slope of
UW than 1. Thus, considering dbfEDF(W, t) ≤ ldbfEDF(W, t), in this case, it is
easy to see that

∀P∗
EDF + ε < t ≤ P∗

EDF + # dbfEDF(W, t) ≤ sbf!(t).

Case 3. We consider a case where an interval length t can be longer than
Pmin, particularly longer than P∗

EDF + #, but is no longer than P∗
EDF + " . That

is,

P∗
EDF + # < t ≤ P∗

EDF + ".

From the definition of dbfEDF(W, t), thus,

∀P∗
EDF + # < t ≤ P∗

EDF + " dbfEDF(W, t) < UW · (P∗
EDF + ").

We then have

dbfEDF(W, t) < UW · (P∗
EDF + ")

≤ k · U!

k + 2(1 − U!)
(
(k + 2)" − 2#

)

= k · # since U! = #/"

= sbf!(t).

Case 4. We consider a case where an interval length t is longer than P∗
EDF +

", which is longer than Pmin. That is,

P∗
EDF + " < t.

We then have

dbfEDF(W, t) ≤ UW · t

≤ k · U!

k + 2(1 − U!)
· t

≤ U! · t since 0 < U! ≤ 1
= lsbf!(t)
≤ sbf!(t).

For each of the four cases, we showed that if UW ≤ UB!,EDF(Pmin), then
dbfEDF(W, t) ≤ sbf!(t), that is, the scheduling unit S(W, !(", #), EDF) is
schedulable according to Theorem 4.1.

It should be noted that the utilization bound UB!,EDF(Pmin) becomes 1 with-
out regard to Pmin if the resource capacity U! of periodic resource model ! is 1,
i.e., ! represents a dedicated resource. Thus, UB!,EDF(Pmin) is a generalization
of the result of Liu and Layland [1973].

Example 5.1 As an example, we consider a scheduling unit
S0 = S(W0, !0, A0), where !0 = !(10, 4) and A0 = EDF. Then, the re-
source capacity U!0 of !0 is 0.4. We assume that the smallest task period Pmin
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Fig. 6. Utilization bound as a function of its resource capacity: (a) under EDF scheduling and (b)
under RM scheduling.

of the workload set W0 is greater than 50, i.e., Pmin ≥ 50. Here, k is 4 by the
definition of KEDF(Pmin, R). According to Theorem 5.1, the EDF utilization
bound UB!0,EDF(50) is 0.32. That is, if UW0 ≤ 0.32, then the scheduling unit S0
is schedulable.

Figure 6a shows the effect of resource period, in terms of k, on the utiliza-
tion bound as a function of resource capacity under EDF scheduling, where
k = KEDF(Pmin, !(", #)). The solid line, labeled “limit,” shows the limit of the
utilization bound of a periodic resource, which is obtained when k = ∞. The
other curves show the utilization bounds of a periodic resource when k is given
as shown in the corresponding labels. It is shown that as k increases, the uti-
lization bound of a periodic resource converges to its limit.

5.2 Utilization Bound under RM Scheduling

For scheduling unit S(W, R, A), where W = {T (p1, e1), . . . , T (pn, en)}, R =
!(", #), A = RM, Saewong et al. [2002] represented its utilization bound as
a function of n, denoted as UB!,RM(n). They presented the following result to
introduce the utilization bound UB!,RM(n), derived from the Liu and Layland
[1973]’s utilization bound.

LEMMA 5.1 (THEOREM 7 IN SAEWONG ET AL. [2002]). For scheduling unit
S(W, R, A), where W = {T (p1, e1), . . . , T (pn, en)}, R = !(", #), A = RM, and
pi ≥ 2" − #, 1 ≤ i ≤ n, its utilization bound UB!,RM(n) is

UB!,RM(n) = n
[( 3 − U!

3 − 2 · U!

)1/n
− 1

]
.

We now present a different utilization bound as a function of n and Pmin,
denoted as UB!,RM(n, Pmin). We provide the following theorem to introduce
UB!,RM(n, Pmin).

THEOREM 5.2. For scheduling unit S(W, R, A), where W = {T (p1, e1),
. . . , T (pn, en)}, R = !(", #), A = RM, and pi ≥ 2" − #, 1 ≤ i ≤ n, its
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utilization bound UB!,RM(n, Pmin) is

UB!,RM(n, Pmin) = U! · n
[(2 · k + 2(1 − U!)

k + 2(1 − U!)

)1/n
− 1

]
, (16)

where k = KRM(Pmin, R).

PROOF. The proof is shown in the Appendix.

It should be noted that the utilization bound UB!,RM(n, Pmin) becomes the Liu
and Layland [1973]’s RM utilization bound, which is n(21/n −1), without regard
to Pmin if the capacity of periodic resource U! is 1, i.e., the periodic resource is
essentially a dedicated resource. Thus, UB!,RM(n, Pmin) is a generalization of
the result of Liu and Layland [1973].

Example 5.2 As an example, we consider a scheduling unit
S0 = S(W0, !0, A0), where !0 = !(10, 4) and A0 = RM. Let "0 = 10 and
#0 = 4. Then, the resource capacity U!0 of !0 is 0.4. We assume that the
smallest task period Pmin of the workload set W0 is greater than 50, i.e.,
Pmin ≥ 50. Here, k is 4 according to Equation (16). According to Theorem 5.2,
the RM utilization bound UB!0,EDF(50) is 0.27. That is, if UW0 ≤ 0.27, then the
scheduling unit S0 is schedulable.

Figure 6b shows the effect of resource period, in terms of k, on the utiliza-
tion bound as a function of resource capacity under RM scheduling, where
k = KRM(Pmin, !(", #)). The solid line, labeled “limit,” shows the limit of the
utilization bound, which is obtained when k = ∞. The other curves show the
utilization bound when k is given as shown in their labels. It is shown in the
graph that as k increases, the utilization bound of a periodic resource converges
to its limit.

6. SCHEDULABLE COMPONENT ABSTRACTION BOUNDS

For a component C(W, A), we now explain how to derive a lower-bound B of
the interface utilization (UP ) of P(P, E), such that P(P, E) is a schedulable
interface of C(W, A) if B ≤ UP . If there exists such a bound B, we call it the
(schedulable-component) abstraction bound of periodic interface on the compo-
nent C(W, A).

We define the period multiple relationship between a periodic task set W
and a periodic interface P(P, E), similarly to that between W and a periodic
resource model !(", #). Given Pmin andP(P, E), where Pmin is the smallest task
period of W , this relationship basically represents how many times thatP(P, E)
can be given the whole periodic allocation time of E during a time interval
[t, t + Pmin), for all t > 0, at the worst-case resource supply scenario. Here, we
define K A(Pmin, P(P, E)) that computes this relationship by substituting " and
# in Equations (11) and (12) with P and E, respectively, as follows:

—under RM scheduling, KRM(Pmin, P(P, E)) is defined as follows:

KRM(Pmin, P(P, E)) = max{k is an integer | (k + 1)P − E < Pmin}; (17)
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—under EDF scheduling, KEDF(Pmin, P(P, E)) is defined as follows:

KEDF(Pmin, P(P, E)) = max
{

k is an integer | (k +1)P − E − kE
k + 2

< Pmin

}
.

(18)

Using the period multiple relationship between W and P(P, E), this section
presents the abstraction bounds of periodic interface P(P, E) on a component
C(W, A) as a function of k, denoted as ABW, A(k), under EDF and RM scheduling.

The abstraction bounds can be used in addressing the component abstrac-
tion problem as follows. Given a component C∗ = C(W ∗, A∗) and k∗, for
some positive integer k∗, we consider the problem of finding a periodic in-
terface P∗ = P(P∗, E∗), such that P∗ is a schedulable interface of C∗ and
K A(P∗

min, P∗) = k∗, where P∗
min is the smallest task period of W ∗. We can obtain

a solution space to this problem as follows: for all interface period P∗ ∈ [1, P∗
min],

we compute a range of [E∗
min, E∗

max), where E∗
min and E∗

max are defined as follows:

− E∗
min = max(E0, E1) (19)

where

E0 = min
{

E | (k∗ + 1)P∗ − E − k∗ · E
k∗ + 2

≤ Pmin

}
,

E1 = P∗ · ABW, A(k∗).

and

− E∗
max = min(E2, P∗) (20)

where E2 = min
{

E | (k∗ + 2)P∗ − E − (k∗ + 1)E
k∗ + 3

≤ Pmin

}
.

A range of [E∗
min, E∗

max) is said to be valid if E∗
min ≤ E∗

max . According to the
definition of the abstraction bound, a periodic interfaceP(P∗, E∗) is schedulable
for C∗ if E∗ ∈ [E∗

min, E∗
max) with E∗

min ≤ E∗
max .

6.1 Abstraction Bound under EDF Scheduling

For component C(W, A), where W = {T (pi, ei)} and A = EDF, we present the
following corollary from Theorem 5.1 to introduce the abstraction bound of its
periodic interface P as a function of k, denoted as ABW,EDF(k).

COROLLARY 6.1. For component C(W, A), where W = {T (pi, ei)}, and A =
EDF, the abstraction bound ABW,EDF(k) of a periodic interface P(P, E) is

ABW,EDF(k) = (k + 2) · UW

k + 2UW
, (21)

where k represents the period multiple relationship of W and P(P, E), such that
k = KEDF(Pmin, P(P, E)) defined in Equation (18).

PROOF. Theorem 5.1 states that scheduling unit S(W, !(", #), EDF) is
schedulable if UW ≤ UB!,EDF(Pmin), i.e.,

UW ≤ k · U!

k + 2(1 − U!)
.
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Fig. 7. Spaces of schedulable periodic interfaces, obtained through the abstraction bounds, for (a)
example 6.1 under EDF scheduling and (b) example 6.2 under RM scheduling.

That is, S(W, !(", #), EDF) is schedulable if

U! ≥ (k + 2) · UW

k + 2UW
. (22)

Suppose, there is a periodic resource model !("′, #′) that satisfies Equation
(22). Then, the periodic interface P(P ′, E ′), where P ′ = "′ and E ′ = #′, is a
schedulable interface of C(W, EDF).

Example 6.2. As an example, we consider a component C∗ = C(W ∗, A∗),
where W ∗ = {T (33, 5), T (75, 7), T (100, 10)} and A∗ = EDF. The workload uti-
lization UW ∗ is 0.35, and Pmin = 33. We consider finding a periodic inter-
face P∗ = P(P∗, E∗) of C∗ through the abstraction bound. Assume that the
period multiple relationship between W and P∗ is given by k = 3, where
k = KEDF(Pmin, P∗). According to Corollary 6.1, ABW,EDF(3) = 0.47. Under the
constraint of k = 3, we can compute E∗

min and E∗
max for all interface period

P∗ ∈ [1, 33], where E∗
min and E∗

max are defined in Equations (19) and (20).
In this example, E∗ has a valid range of [E∗

min, E∗
max) for all interface period

P∗ ∈ [8, 13], as shown in Figure 7a. That is, the shaded region of this figure
shows the space of schedulable periodic interfaces of the component C∗.

Figure 8a shows the effect of interface period, in terms of k, on the abstrac-
tion bound as a function of workload utilization under EDF scheduling, where
k = KEDF(Pmin, P(P, E)). The solid line, labeled “limit,” shows the limit of the
abstraction bound, which is obtained when k = ∞. The other curves show the
abstraction bounds when k is given as shown in their labels. It is shown that as
k increases, the abstraction bound of a periodic interface converges to its limit,
i.e., goes closer to the workload utilization.

6.2 Abstraction Bound under RM Scheduling

For component C(W, A), where W = {T (pi, ei)} and A = RM, we present the
following corollary from Theorem 5.2 to introduce the abstraction bound of its
periodic interface P as a function of k, denoted as ABW,RM(k).

COROLLARY 6.2. For component C(W, A), where W = {T (p1, e1), . . .,
T (pn, en)} and A = RM, the abstraction bound ABW,RM(k) of a periodic
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Fig. 8. Abstraction bound as a function of workload utilization: (a) under EDF scheduling and (b)
under RM scheduling.

interface P(P, E) is

ABW,RM(k) = UW

log
(

2k+2(1−UW )
k+2(1−UW )

) , (23)

where k represents the period multiple relationship of W and P(P, E), such that
k = KRM(Pmin, P(P, E)) defined in Equation (17).

PROOF. Theorem 5.2 states that the scheduling unit S(W, !(", #), RM) is
schedulable if UW ≤ UB!,RM(n, Pmin), i.e.,

UW ≤ U! · n
[(2k + 2(1 − U!)

k + 2(1 − U!)

)1/n
− 1

]
. (24)

When n is large, we have

n
[(2k + 2(1 − U!)

k + 2(1 − U!)

)1/n
− 1

]
- log

(2k + 2(1 − U!)
k + 2(1 − U!)

)
. (25)

From Equations (24) and (25), it follows

U! ≥ UW

log
(

2k+2(1−U! )
k+2(1−U! )

) .

Since UW ≤ U!, we have

log
(2k + 2(1 − UW )

k + 2(1 − UW )

)
≤ log

(2k + 2(1 − U!)
k + 2(1 − U!)

)
. (26)

From Equation (26), the scheduling unit S(W, !(", #), RM) is schedulable,
if

U! ≥ UW

log
(

2k+2(1−UW )
k+2(1−UW )

) .

Then, the periodic interface P(P, E) is a schedulable interface of C(W, A),
where P = " and E = #.
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Example 6.3. As an example, we consider a component C∗ = C(W ∗, A∗),
where W ∗ = {T (33, 5), T (75, 7), T (100, 10)} and A∗ = RM. The workload uti-
lization UW ∗ is 0.35, and Pmin = 33. We consider finding a periodic inter-
face P∗ = P(P∗, E∗) of C∗ through the abstraction bound. Assume that the
period multiple relationship between W and P∗ is given by k = 3, where
k = KEDF(Pmin, P∗). According to Corollary 6.2, ABW ∗,RM(3) = 0.66. Under the
constraint of k = 3, we can compute E∗

min and E∗
max for all interface period

P∗ ∈ [1, 33], where E∗
min and E∗

max are defined in Equations (19) and (20). In
this example, E∗ has a valid range of [E∗

min, E∗
max) only for all interface period

P∗ ∈ [9, 11], as shown in Figure 7b. That is, the shaded region of this figure
shows the space of schedulable periodic interfaces of the component C∗.

Figure 8b shows the effect of interface period, in terms of k, on the abstrac-
tion bound as a function of workload utilization under RM scheduling, where
k = KRM(Pmin, P(P, E)). The solid line, labeled “limit,” shows the limit of the
abstraction bound, which is obtained when k = ∞. The other curves show the
abstraction bounds when k is given as shown in their labels. It is shown that as
k increases, the abstraction bound of a periodic interface converges to its limit.

7. COMPONENT ABSTRACTION OVERHEADS: ANALYTICAL BOUNDS AND
SIMULATION RESULTS

In this section, we address the problem of evaluating the overhead that a pe-
riodic interface incurs in terms of utilization increase, to solve the component
abstraction problem. For a periodic interfaceP of component C(W, A), we define
its (component) abstraction overhead (OP ) as

OP = UP − UW

UW
, (27)

where UP and UW are the utilizations of P and W , respectively.
Section 7.1 derives upper bounds to the abstraction overheads under EDF

and RM scheduling; Section 7.2 evaluates the abstraction overheads through
simulation.

7.1 Component-Abstraction Overhead Bounds

This section introduces an upper bound to the abstraction overhead of an op-
timal schedulable periodic interface. We define the overhead bound O∗

P (C) of
component C(W, A) as a number such that there exists a schedulable periodic
interface P of C such that OP ≤ O∗

P (C).
According to Corollary 6.1 and 6.2, a periodic interface UP is schedulable if

UP ≥ ABW, A. That is, the minimum interface utilization UP of a schedulable
periodic interface P is upper bounded by ABW, A. We can then compute the
overhead bound O∗

P (C) of C as

O∗
P (C) = ABW, A − UW

UW
.
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Fig. 9. Component abstraction overhead bound as a function of workload utilization: (a) under
EDF scheduling and (b) under RM scheduling.

Under EDF scheduling, we can derive the overhead bound O∗
P (C) of compo-

nent C(W, A), where W = {T (pi, ei)} and A = EDF, from Corollary 6.1, i.e.,

O∗
P (W, EDF) = 2(1 − UW )

k + 2 · UW
, where k = KEDF(Pmin, P). (28)

Under RM scheduling, we can derive the overhead bound O∗
P (C) of component

C(W, A), where W = {T (pi, ei)} and A = RM, from Corollary 6.2, i.e.,

O∗
P (W, RM) = 1

log
(

2k+2(1−UW )
k+2(1−UW )

) − 1, where k = KRM(Pmin, P). (29)

Figure 9 shows the effect of period of a periodic interface, in terms of k
in Equations (28) and (29), on the overhead bound as a function of workload
utilization under EDF and RM scheduling. The solid line, labeled “limit,” shows
the limit of the bound, which is obtained when k = ∞. The limit is 0 under
EDF scheduling and 1/log (2) − 1, which is approximately 0.443, under RM
scheduling. The other curves show the bounds when k is 1, 2, 4, and 8. It is
shown that as k increases, the bounds converge to their limits.

7.2 Simulation Results

This section evaluates the component abstraction overhead through simulation
results. During simulations, we have the following simulation parameters and
value ranges:

—The number of tasks (n) in the workload set W is 2, 4, 8, 16, 32, or 64.
—The workload utilization (UW ) of the workload set W is in the interval

[0.1, 0.7].
—Each periodic task T (p, e) has a period p randomly generated in the range

[5, 100] and an execution time requirement e generated in the range [1, 40].
—Scheduling algorithm (A) is EDF or RM.
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Fig. 10. Abstraction overheads as a function of workload utilization: (a) under EDF scheduling
and (b) under RM scheduling.

—Period multiple relationship (k) between a workload set W and a periodic
interface P(P, E) is 1, 2, 4, 8, 16, 32, or 64, where k = K A(Pmin, P(P, E)) as
defined in Equation (17) or (18) depending on A.

Our simulation procedure is as follows:
—For the ith simulation case, i = 1, 2, . . . , Nsim, where Nsim is the number of

total simulation cases, we do the following.
—Given n and UW , we randomly generate a workload set W .
—We do the followings for a case where A = EDF and, for the other case, where

for A = RM, respectively.
—Given W and A, we do the following for all values of k, where k =

1, 2, 4, 8, 16, 32, 64: We find the periodic interface P(P∗, E∗) that is a schedu-
lable interface of the component C(W, A) with the minimum resource capacity
requirement, such that k = K A(Pmin, P(P∗, E∗)). We find such E∗ by evalu-
ating Equation (8) or (10), depending on A.

—We use OW, A(k, i) to denote the minimum abstraction overhead for k in the
ith simulation case.

—As performance metrics, let OW, A(k, mean) denote the mean of OW, A(k, i) for
all i ∈ [1, Nsim], and let OW, A(k, worst) denote the worst-case (maximum)
value of OW, A(k, i) for all i ∈ [1, Nsim].

In Figures 10, 11, and 12, component abstraction overheads are plotted un-
der EDF and RM scheduling as a function of workload utilization, interface
period, and the number of tasks, respectively. In the graphs, the solid curve, la-
beled “overhead bound,” shows the overhead bound, which is obtained through
Equation (28) or (29), depending on scheduling algorithm. A dotted curve, la-
beled “simulation result (mean),” shows the mean of component-abstraction
overheads, OW, A(k, mean), which are obtained through simulations. Each point
in this curve represents the mean of 1000 simulation results unless specified
otherwise. The 95% confidence intervals for data range from ±0.01 to ±0.13 of
the means shown in the curve.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 30, Publication date: April 2008.



Compositional Real-Time Scheduling Framework with Periodic Model • 30:25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16 32 64
k

Abstraction Overhead under EDF (U=0.4, n=8)

overhead bound 
sim. result (worst)
sim. result (mean)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16 32 64
k

Abstraction Overhead under RM (U=0.4, n=8)

overhead bound 
sim. result (worst)
sim. result (mean)

Fig. 11. Abstraction overheads as a function of interface period: (a) under EDF scheduling and (b)
under RM scheduling.
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Fig. 12. Abstraction overheads as a function of the number of tasks: (a) under EDF scheduling
and (b) under RM scheduling.

The other dotted curve, labeled “simulation result (worst),” shows the worst-
case component-abstraction overhead, OW, A(k, worst), during simulations.

Figure 10 shows the effect of workload utilization on the abstraction over-
heads under EDF and RM scheduling, where k = 3 and n = 8. It is shown
that the abstraction overhead generally decreases as the workload utilization
increases. The figure also shows that the abstraction overhead is clearly lower
under EDF scheduling than under RM scheduling, which is consistently shown
in Figures 11 and 12.

Figure 11 shows the effect of interface period, in terms of k, on the abstraction
overheads under EDF and RM scheduling, where UW = 0.4 and n = 8. It is
shown that the abstraction overhead decreases as k increases.

Figure 12 shows the effect of the number of tasks on the abstraction over-
heads under EDF and RM scheduling, where UW = 0.4 and k = 3. It is shown
that the abstraction overhead decreases as the number of tasks increases under
EDF scheduling. Under RM scheduling, however, the abstraction overhead is
relatively independent of the number of tasks.
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The implications of our simulation results can be summarized as follows: the
abstraction overhead of a periodic interface is smaller under EDF scheduling
than under RM scheduling. Interface period is a factor that most significantly
affects the abstraction overhead of periodic interface. Under EDF scheduling,
both the workload utilization and the number of tasks slightly affect the ab-
straction overhead. Under RM scheduling, however, they have little impact on
the abstraction overhead. In summary, our approach incurs less abstraction
overheads when we have a smaller interface period under EDF scheduling.

8. DISCUSSION

So far, we have addressed the component-abstraction problem under the as-
sumptions that (1) the task model is the pure periodic task model and (2) tasks
are independent. This section discusses the issues of extending our framework
in relaxing these assumptions.

8.1 Supporting Aperiodic Tasks

In addition to the periodic tasks that execute repeatedly at regular time inter-
vals, real-time systems may consist of tasks whose release times are not known
a priori, since they are to respond to asynchronous external events. We con-
sider two task models, sporadic and aperiodic task models, to characterize the
workload generated in response to these events. In this section, we mainly dis-
tinguish them by the property of their deadlines: hard or soft.3 Sporadic tasks
are released with hard deadlines at random time instants with the minimum
interarrival separation time between consecutive jobs. Aperiodic tasks can be
released with soft deadlines at any arbitrary time instant without any restric-
tion. One approach for handling sporadic and aperiodic tasks is to reject some
of their jobs if they cannot complete in time. The other approach is to accept all
sporadic and aperiodic tasks and to allow all sporadic tasks to complete prior
to their hard deadlines and some aperiodic tasks to complete later than their
soft deadlines. Here, we discuss how to extend our framework for supporting
the sporadic and aperiodic task models with the latter approach.

A sporadic task τi can be defined by a triple (ei, di, si), where ei is a worst-
case execution time requirement, di is a relative deadline, and si is a minimum
interarrival separation between any two jobs of τi. Baruah et al. [1990b] have
shown that the cumulative resource demands of jobs of τi over an interval
[t0, t0 + t) is maximized if the first arrives at the start of the interval (i.e., at
time instant t0) and subsequent jobs arrive as rapidly as permitted (i.e., at
instants t0 + k · si, k = 1, 2, 3, . . .). They presented the demand-bound function
that computes the total resource demand of a sporadic task set W under EDF
scheduling. This demand-bound function dbf∗

EDF(W, t) calculates the maximum
possible resource demands of W for every interval length t as follows:

dbf∗
EDF(W, t) =

∑

τi∈W
max

(
0,

(⌊ t − di

pi
+ 1

⌋
× ei

))
. (30)

3We here treat a sporadic task with a soft deadline as an aperiodic task.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 30, Publication date: April 2008.



Compositional Real-Time Scheduling Framework with Periodic Model • 30:27

This approach is pessimistic, but can guarantee the schedulability of sporadic
tasks at design time. Some dynamic resource reclaiming approaches [Lehoczky
and Ramos-Thuel 1992] can be used to complement the pessimism of this ap-
proach, dynamically reclaiming unused resources reserved for sporadic tasks
when the sporadic tasks are released with longer interarrival separation than
their minimum separation.

For an aperiodic task, we do not make any assumption on its interarrival sep-
aration and execution time. A desirable property in supporting aperiodic tasks
is to minimize their response times without violating the real-time guarantees
of periodic and sporadic tasks. One approach for this is to make the execu-
tion of aperiodic tasks interrupt-driven according to the bandwidth-preserving
server [Lehoczky et al. 1987; Sprunt et al. 1989; Strosnider et al. 1995; Spuri
and Buttazzo 1994; Abeni and Buttazzo 1998]. When an aperiodic task arrives,
the execution of periodic or sporadic tasks are interrupted, and the aperiodic job
is executed as long as its bandwidth-preserving server has a capacity enough to
execute it. Our issue here is to discuss if and how such a bandwidth-preserving
server can be used to support aperiodic tasks in a hierarchical scheduling frame-
work.

For simplicity, we consider a deferrable server (ps,cs) [Strosnider et al. 1995],
which is the simplest of bandwidth-preserving servers, that emulates a periodic
task with a period ps and an execution budget es. Whenever there is an aperiodic
task to execute, the deferrable server is scheduled and it executes the aperiodic
task until its budget is expired; it consumes an execution budget whenever
executing an aperiodic task. Its budget is replenished to cs every period ps.
Given that the deferrable server (ps,es) has the highest priority, the demand-
bound function of a periodic task Ti is defined under fixed-priority scheduling
as follows [Strosnider et al. 1995]:

dbf+
RM(W, t, i) = ei + es +

⌈ t − es

ps

⌉
es +

i−1∑

k=1

⌈ t
pk

⌉
ek . (31)

Our framework can then be extended with aperiodic tasks through the use of
the deferrable server, by plugging in the demand bound function dbf+

RM(W, t, i)
into Theorem 4.2.

8.2 Supporting Interacting Tasks with Data Dependency

Until now, we have addressed the component-abstraction problem under the
assumption that the tasks of a component are independent, i.e., they can exe-
cute in any order. In many real-time systems, data and control dependencies
among tasks may constrain the order in which they can execute. For exam-
ple, in a radar surveillance system, the signal-processing task is the producer
of track records, while the tracker task is the consumer. There are two ap-
proaches for supporting data dependencies between the producer and consumer
tasks.

One approach is to place the precedence constraint between the producer
and consumer tasks so that a consumer job synchronize with the corresponding
producer job(s) and wait until the latter completes in order to execute.
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Fig. 13. Data producer and consumer tasks in the RTW model: (a) with a hold block and (b) with
a delay block.

The other approach is not to synchronize producer and consumer tasks.
Rather, each producer places the data generated by it in a shared address space
to be used by the consumer at any time. In this case, the producer and consumer
are independent, because they are not explicitly constrained to execute in turn.
In this approach, a problem of data integrity can happen between data producer
and consumer tasks running at different rates. The data integrity problem ex-
ists when the input to a data consumer task changes during the execution of
that task. For example, a faster producer task supplies the input to a slower
consumer task. The slower consumer reads an input value v1 from the faster
producer and begins computations using that value. The computations are pre-
empted by another execution of the faster producer, which computes a new
output value v2. A data integrity problem now arises: when the slower con-
sumer resumes execution, it continues its computations, now using the “new”
input value v2.

Here, we briefly examine an approach, namely, the real-time workshop (RTW)
approach, that can resolve the data integrity problem in real-time data transfer
between the producer and consumer tasks with different periods.

RTW is a tool for automatic code generation that can be used in the MAT-
LAB/Simulink environment [Mathworks 2005]. The tool addresses the data in-
tegrity problem by placing race transition blocks, hold or delay blocks, between
the data producer and consumer tasks of different periods, under the restric-
tion that the periods of producer and consumer tasks should be harmonic. The
tool assumes that a priority-based preemption mechanism will be used for task
execution. Figure 13 shows an example of adding hold and delay blocks.

A hold block is inserted between a faster producer task T1 and a slower
consumer task T2, for guaranteeing that the input value of T2 from T1 does not
change during the execution of T2. The hold block has the same period of T2 but
is a higher-priority task than T2, so that it reads the latest output value of T1
before T2 executes and holds it until T2 finishes executing.

A delay block is used for the inverse case, being inserted between a slower
producer task T1 and a faster consumer task T3. The delay block has the same
period of T1 but is a higher-priority task than T1, for ensuring that no matter
when T1 finishes, the delay block does not overwrite the input value of T3 during
the execution of T3.
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Resolving the data-integrity problem between the producer and consumer
tasks using the hold and delay blocks, the RTW approach inherently allow
these producer and consumer tasks to be treated independently. That is, even
though a component C consists of interacting tasks with data dependency, the
component C can be treated as consisting of only independent tasks. Assuming
the negligible execution times of the hold and delay blocks, Matic and Henzinger
[2005] showed that our proposed framework can be used for abstracting the
component C. In addition to the RTW approach, they also showed that another
approach, namely, the logical execution time (LET) approach [Henzinger et al.
2003], can be used for supporting interacting tasks with data dependencies and
that our proposed framework can be used with LET for abstracting components
with the interacting tasks.

8.3 Supporting Mutually Exclusive Resource Sharing

In many practical applications, there is a need for synchronization in the mutu-
ally exclusive access to shared resources. We here discuss how to support local
(i.e., within-component) and global (i.e., between-components) resource shar-
ing in the proposed compositional scheduling framework. In this section, for
simplicity, we only consider fixed-priority preemptive scheduling within each
component and a task is assumed to access one local and one global shared
resources. A task Ti is characterized by (pi, ei, xL

i , xG
i ), where xL

i and xG
i are

the worst-case execution times of Ti within local and global critical sections
(WCET-CS), respectively, and ei includes xL

i and xG
i .

8.3.1 Supporting Local Resource Sharing. We consider an issue of sup-
porting local resource sharing in a hierarchical scheduling framework. When
a task tries to enter a critical section (for an access to a mutually exclusive
resource), it can be blocked if there is another task inside the critical section at
that time. Let Bi denote the maximum blocking time of a task Ti that Ti can
experience in trying to enter a critical section.

The resource (processor) demand of a task Ti should then be extended with
blocking Bi as follows:

dbfS
FP(t, i) =

i∑

k=1

⌈ t
pk

⌉
ek + Bi. (32)

Several protocols [Sha et al. 1987; Rajkumar et al. 1988] were proposed to
bound the maximum blocking time Bi of a task Ti under fixed-priority schedul-
ing. For example, under priority ceiling protocol (PCP) [Rajkumar et al. 1988],
a task can be blocked by, at most, one of its lower-priority tasks. Therefore, Bi
is defined as the maximum WCET-CS of lower-priority tasks that can block Ti
under PCP.

It has been shown in Almeida and Pedreiras [2004] that traditional syn-
chronization protocols, such as priority inheritance protocol (PIP) [Sha et al.
1987] and priority ceiling protocol [Rajkumar et al. 1988], can be employed in
a hierarchical scheduling framework to support local resource sharing, when
Equation (32) is used as the demand-bound function of each task Ti; the
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computation of Bi depends on which synchronization protocol is used. This is
mainly because that all properties of any synchronization protocol established
in a dedicated resource (processor) remains the same when applied to local re-
source sharing in a hierarchical scheduling framework. That is, the blocking
and critical section entrance/leave within a component does not get affected by
the other components. The only difference is that the blocking time and the
duration of a critical section are inflated in a hierarchical scheduling frame-
work, unlike over the dedicated resource (processor). Since we can take care of
this time inflation with the supply bound function sbf!(t) of a periodic resource
model !, independent of Bi and dbfS

FP(t, i), our framework can be extended to
support local resource sharing under the PIP or PCP protocol.

8.3.2 Supporting Global Resource Sharing. We now explain how to sup-
port global resource sharing in a hierarchical scheduling framework. For sim-
plicity, we assume that a single resource is accessed by a single task per com-
ponent and there is no priority between components. Furthermore, we also
assume that each task accesses, at most, one resource. We first present a
basic global synchronization protocol under these assumptions and later dis-
cuss how to relax these assumptions. For the basic protocol, we assume that
each global shared resource is guarded by a semaphore and the semaphore
has a queue. Whenever a task tries to access the shared resource, the task
is placed into the corresponding semaphore queue. For simplicity, our pro-
tocol assumes that the semaphore queue is managed by the FCFS (first-
come-first-served) manner. We now consider schedulability analysis for this
protocol.

Once the task Ti enters a global critical section, the task will be interfered by
only its higher-priority tasks within the same component. We can then compute
the maximum possible interference of higher-priority tasks to the task Ti within
a critical section during an interval of length t as follows:

dbf-XFP(t, i) = xG
i +

i−1∑

k=1

⌈ t
pk

⌉
ek , (33)

As an approach to reduce dbf-XFP(t, i), we can assign the highest priority to the
task Ti that accesses a global shared resource. Then, it is simply dbf-XFP(t, i) =
xi.

We can compute the worst-case response time rxi(!) of a task Ti within a
critical section over a periodic resource model ! as follows:

rxi(!) = min{t | dbf-XFP(t, i) ≤ sbf!(t)}.

When a task Ti tries to enter a global critical section, it can be placed into a
corresponding semaphore queue. Let Q(Ti) denote a set of tasks for which the
task Ti should wait in the worst case in order to enter the critical section. We
can compute the maximum blocking time BG

i of Ti for a global critical section
as follows:

BG
i =

∑

Tk∈Q(Ti )

rxk(!k), (34)
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where !k denotes the periodic resource model associated with the component
to which a task Tk belongs. Under the assumption that there is only one task
within a component accessing a global resource, the task Ti can be blocked
by m − 1 tasks across components, where there are m components that would
access the same global resource. We note that if this assumption is relaxed, the
task Ti can be blocked by n−1 tasks, when there are n tasks accessing the same
global resource across components.

Now, a task Ti that accesses a global shared resource can be viewed as an
independent task to the other tasks within the same component, with the max-
imum blocking time of BG

i . Therefore, we can compute the worst-case response
time of Ti as follows:

rG
i (!) = min{t | dbfFP(t + BG

i , i) ≤ sbf!(t)},
where the demand-bound function dbfFP(t, i) of Ti is given in Equation (9).

We can now see that all components subject to global resource sharing are
schedulable, if, for each component C(W, A = FP),

∀Ti ∈ W rG
i ≤ pi. (35)

In this section, we have described how our framework might be extended to
support global resource sharing with the basic global synchronization protocol.
We note that this protocol requires many extensions with relaxed assumptions
to be practically useful. For example, when a task is allowed to access multiple
global shared resources, it should prevent deadlocks involving global shared
resources. Furthermore, when multiple tasks within a component are allowed to
access the same global shared resource, it should handle the priority inversion
problem between those tasks with the same component. When components
have priorities, it should also handle the priority inversion problem between
components. These issues, however, are beyond the scope of this paper as they
require to extend the basic protocol, and we leave them as an interesting future
work.

9. CONCLUSION

In this article, we defined the proposed compositional real-time scheduling
framework. Problems need to be addressed and our approaches to the prob-
lems presented using the periodic interface model. We proposed the peri-
odic resource model as a conceptual basis for the periodic interface. With
the periodic resource model, we defined the scheduling unit and then de-
veloped its exact schedulability conditions and its schedulable workload uti-
lization bound under EDF and RM scheduling. With the periodic interface
model, we addressed the component-abstraction and composition problems
and derived the schedulable component-abstraction bounds under EDF and
RM scheduling. We also evaluated the overhead that the periodic interface in-
curs in terms of utilization increase through analytical bounds and simulation
results.

In this article, we considered a compositional scheduling framework for
component-based hard real-time systems. An interesting future work is to ex-
tend the framework for component-based soft real-time systems. This raises
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the issues of developing soft real-time interface models. We believe that soft
real-time task models, such as the (m, k)-firm deadline model [Hamdaoui and
Ramanathan 1995] and the weakly hard task model [Bernat et al. 2001] can be
used to develop the real-time interface model of a compositional soft real-time
scheduling framework.

APPENDIX

In Section 5, we presented Theorem 5.2 to introduce a utilization bound for a
scheduling unit S(W, R, A) under RM scheduling. Here, we present the proof
of Theorem 5.2.

We consider a scheduling unit S(W, R, A) such that W = {Ti = T (pi, ei)},
R = !(", #), and A = RM. A workload set W is said to fully utilize a resource
model R if a scheduling unit S is schedulable, but S becomes no longer schedu-
lable if the execution time ei of any task Ti is increased. If a scheduling unit S
is schedulable, the workload utilization UW of a workload set W is said to be
a schedulable workload utilization. The least upper bound to the schedulable
workload utilization is said to be a utilization bound.

Our proof is organized as follows: We first consider a task period restriction
that the largest ratio between task periods is less than 2. Lemma 9.1 and 9.2
show the properties of a workload set W , when its workload utilization UW is
the least upper bound to the schedulable workload utilization. Using the results
of the two lemmas, Theorem 9.1 derives a utilization bound and Theorem 9.2
removes the task period restriction.

We first start our discussion under the assumption that the ratio between any
two task period is less than 2. This assumption is later removed in Theorem
9.2. We present the following lemma to introduce a property of a workload
set W in terms of the execution time requirement ei of each task Ti, when
the workload utilization UW is the the least upper bound to the schedulable
workload utilization.

LEMMA 9.1. For scheduling unit S(W, R, A), where W = {Ti = T (pi, ei)},
R = !(", #), and A = RM, under the restriction that the ratio between any two
task periods of W is less than 2, if the workload set W fully utilizes the resource
! under RM scheduling with the smallest possible workload utilization, then it
follows that

∑

Ti∈W
ei = sbf!(Pmin),

where Pmin is the smallest task period of the workload set W.

PROOF. We mainly adapt the proof of Liu and Layland [1973] to prove this
lemma. For the workload set W , we assume that p1 < p2 < · · · < pn−1 < pn. We
now assume that the workload set W fully utilizes the resource ! under RM
scheduling with the smallest possible workload utilization U ∗

W . Let e∗
1, e∗

2, . . . , e∗
n

be the execution times of the tasks T1, T2, . . . , Tn that determine U ∗
W . Then, we

first need to show that

e∗
1 = sbf!(p1, p2),
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where we define sbf!(t1, t2) as sbf!(t2) − sbf!(t1) for notational simplicity. We
now show this by contradiction.

Suppose that

e∗
1 = sbf!(p1, p2) + &, & > 0. (36)

Let

e′
1 = sbf!(p1, p2), e′

2 = e∗
2 + &, e′

3 = e∗
3, . . . e′

n = e∗
n.

Given that e∗
1, e∗

2, . . . , e∗
n guarantee the schedulability of the scheduling unit

S and that any increase in e∗
i will make S unschedulable, it is clear that a

workload set with e′
1, e′

2, . . . , e′
n is schedulable over ! and that any increase

in e′
i will violate the schedulability of the task set over !. Let U ′

W denote the
corresponding utilization. We have

U ∗
W − U ′

W = (&/p1) − (&/p2) > 0.

Hence, this assumption given in Eq. (36) is false, when & > 0.
Alternatively, suppose that

e∗
1 = sbf!(p1, p2) − &, & > 0. (37)

Let

e′′
1 = sbf!(p1, p2), e′′

2 = e∗
2 − 2&, e′′

3 = e∗
3, . . . e′′

n = e∗
n.

Again, a workload set with e′′
1, e′′

2, · · · , e′′
n−1, e′′

n is also schedulable over ! and
any increase in e′′

i will violate the schedulibility of the task set. Let U ′′ denote
the corresponding utilization. We have

U ∗
W − U ′′

W = −(&/p1) + (2&/p2) > 0.

Again, this assumption given in Equation (37) is also false, when & > 0.
Therefore, if indeed U ∗

W is the least upper bound of the workload utilization,
then

e∗
1 = sbf!(p1, p2).

In a similar way, we can show that

e∗
2 = sbf!(p2, p3), e∗

3 = sbf!(p3, p4), . . . e∗
n−1 = sbf!(pn−1, pn).

Consequently,

e∗
n = sbf!(0, pn) − 2(e∗

1 + e∗
2 + · · · + e∗

n−1)
= sbf!(0, pn) − 2sbf!(p1, pn)
= sbf!(0, p1) − sbf!(p1, pn)

Finally, we have
∑

Ti∈W
e∗

i = sbf!(p1).

We present the following lemma to show another property of a workload
set W in terms of Pmin, where Pmin is the smallest task period in W , when
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W fully utilizes the resource !(", #) with the smallest workload utilization.
More specifically, the following lemma shows that the least upper bound to the
schedulable workload utilization becomes smallest when Pmin = (k + 2)" − 2#

for all Pmin ∈ [(k + 1)" − #, (k + 2)" − #), where k = 1, 2, 3, · · · , .

LEMMA 9.2. Consider a scheduling unit S(W, R, A), where W = {Ti =
T (pi, ei)}, R = !(", #), and A = RM. Let Pmin denote the smallest task period of
W, and it is assumed that 2("−#) < Pmin. A range of Pmin can be categorized as
Pmin ∈ [(k +1)"−#, (k +2)"−#) with a positive integer k = 1, 2, 3, · · · , . If the
workload set W fully utilizes the resource ! under RM scheduling with the small-
est possible workload utilization, UW is minimized when Pmin = (k + 2)" − 2#

for all Pmin ∈ [(k + 1)" − #, (k + 2)" − #), where k = 1, 2, 3, · · · , .

PROOF. Suppose that the workload set W fully utilizes the resource ! with
the smallest possible workload utilization under RM scheduling. Then, accord-
ing to Lemma 9.1, the following holds:

∑

Ti∈W
ei = sbf!(Pmin).

Let P∗
k denote (k + 2)" − 2#. We consider two cases in terms of Pmin: (1)

Pmin ∈
[
P∗

k − (" − #), P∗
k
)

and (2) Pmin ∈
(
P∗

k , P∗
k + #

)
.

1. For the first case where Pmin ∈
[
P∗

k −("−#), P∗
k
)
, it is clear that sbf!(Pmin) =

k#, since there is no resource supply during the interval
[
P∗

k − ("−#), P∗
k
)

at the worst-case resource supply. We transform W = {T (pi, ei)} to W ′ =
{T (p′

i, e′
i)} such that

T (p′
i, e′

i) =
{

T (pi, ei) if (pi ≥ P∗
k ),

T
(
P∗

k , ei
)

otherwise,

With this transformation, W ′ has the smallest task period of P∗
k and still

fully utilizes the resource !(", #) while its workload utilization decreases,
i.e., UW ′ < UW .

2. For the second case, where Pmin ∈
(
P∗

k , P∗
k +#

)
, there is a resource supply of

# during the interval
[
P∗

k , P∗
k +#

)
at the worst-case resource supply. Let us

consider Pmin = P∗
k + δ, where 0 < δ < #. In this case, sbf!(Pmin) = k# + δ.

We wish to show that

sbf!(P∗
k ) <

P∗
k

Pmin
sbf!(Pmin). (38)

It follows that
sbf!(P∗

k )
P∗

k
− sbf!(Pmin)

Pmin
= k#

P∗
k

− k# + δ

P∗
k + δ

< 0.

We transform W = {T (pi, ei)} to W ′′ = {T (p′′
i , e′′

i )} such that

T (p′′
i , e′′

i ) = T (q · pi, q · ei), where q = P∗
k /Pmin.
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With this transformation, W ′′ has the smallest task period of P∗
k , and

UW ′′ = UW . According to Lemma 9.1, if W ′′ fully utilizes the resource !

with the smallest possible workload utilization under RM scheduling , it
should satisfy

∑

T (p′′
i ,e′′

i )∈W ′′

e′′
i = sbf!(P∗

k ). (39)

However, it follows
∑

T (p′′
i ,e′′

i )∈W ′′

e′′
i = q ·

∑

T (pi ,ei )∈W

ei = q · sbf!(Pmin) > sbf!(P∗
k ).

Thus, we may need to decrease some e′′
i to make S(W ′′, R, A) schedulable,

and this consequently decreases the workload utilization UW ′′ , which leads
to UW ′′ < UW .

Using the properties shown in Lemma 9.1 and 9.2, we present the following
theorem to introduce a utilization bound UB!,RM(n, Pmin) for a scheduling com-
ponent S(W, R, A), where W = {T1(p1, e1), . . . , Tn(pn, en)}, R = !(", #), and
A = RM.

THEOREM 9.1. Scheduling unit S(W, R, A) is schedulable, where W =
{T (p1, e1), . . . , T (pn, en)}, R = !(", #), and A = RM, under the restrictions
that the ratio between any two task periods of W is less than 2, if

UW ≤ U! · n
[( (2k + 2) − 2 · U!

(k + 2) − 2 · U!

)1/n
− 1

]
,

where k = KRM(Pmin, !(", #)), defined in Equation (11), and Pmin is the smallest
task period in W.

PROOF. For a workload set W = {T1 = T (p1, e1), . . . , Tn = T (pn, en)}, we
assume that pn > pn−1 > · · · > p2 > p1. Let e∗

1, e∗
2, · · · , e∗

n be the execution times
of the tasks T1, T2, · · · , Tn that determine the least upper bound of UW subject
to the schedulability guarantee of the scheduling unit S. Let U ∗

W denote the
least schedulable utilization bound for S. To achieve U ∗

W , Lemma 9.1 shows
that the execution times e∗

1, e∗
2, · · · , e∗

n should be determined as follows:

e∗
1 = sbf!(p1, p2), . . . , e∗

n−1 = sbf!(pn−1, pn), e∗
n = sbf!(0, p1) − sbf!(p1, pn).

Then, we can derive U ∗
W as follows:

U ∗
W =

e∗
1

p1
+ · · · +

e∗
n−1

pn−1
+ e∗

n

pn

= sbf!(p1, p2)
p1

+ · · · + sbf!(pn−1, pn)
pn−1

+ sbf!(0, p1) − sbf!(p1, pn)
pn

.

(40)
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Now, we want to find the the minimum value of U ∗
W . According to Lemma 9.2,

the smallest task period p1 should be P∗
k , where P∗

k = (k+2)"−2#, to minimize
U ∗

W . Thus, we rewrite Equation (40) as follows:

U ∗
W = sbf!(P∗

k , p2)
P∗

k
+ · · · + sbf!(pn−1, pn)

pn−1
+ sbf!(0, P∗

k ) − sbf!(P∗
k , pn)

pn

= sbf!(P∗
k , p2)

P∗
k

+ · · · + sbf!(pn−1, pn)
pn−1

+ k# − sbf!(P∗
k , pn)

pn
. (41)

To find the minimum value of U ∗
W , Equation (41) must be minimized over the

pi ’s. Since the supply bound function sbf!(t1, t2) is a discrete function. However,
it is difficult to obtain the minimum value of U ∗

W through a numerical analysis.
Thus, we replace sbf!(t1, t2) with its linear lower-bound function lsbf!(t1, t2)
to obtain the minimum value of U ∗

W through the numerical analysis. Now, we
rewrite Equation (41) as follows:

U ∗
W = lsbf!(P∗

k , p2)
P∗

k
+ · · · + lsbf!(pn−1, pn)

pn−1
+ k# − lsbf!(P∗

k , pn)
pn

= U!(p2 − P∗
k )

P∗
k

+ · · · + U!(pn − pn−1)
pn−1

+ k# − U!(pn − P∗
k )

pn

= U!

( p2

P∗
k

+ · · · + pn

pn−1
+ k" + P∗

k

pn
− n

)
. (42)

We can now find the minimum value of U ∗
W by minimizing Equation (40) over

the pi ’s. This can be done by setting the first derivative of U ∗
W , with respect to

each of the pi ’s equal to zero and solving the resultant difference equations:

∂U ∗
W /∂ pi = p2

i − pi−1 · pi+1

pi−1 · p2
i

= 0, i = 2, 3, · · · , n. (43)

The definition pn+1 = (k" + P∗
k ) has been adopted for convenience.

The general solution to Equation (43) can be shown to be

pi = ((k + 2)" − 2#) ·
( (2k + 2)" − 2#

(k + 2)" − 2#

)(i−1)/n
, i = 1, 2, · · · , n. (44)

It follows from Equations (42) and (44) that

U ∗
W = U! · n

[( (2k + 2)" − 2#

(k + 2)" − 2#

)1/n
− 1

]

= U! · n
[( (2k + 2) − 2 · U!

(k + 2) − 2 · U!

)1/n
− 1

]
.

This completes the proof.

The restriction that the largest ratio between task periods less than is 2 in
Theorem 9.1 can actually be removed; we now present Theorem 9.24 as follows.

4Theorem 9.2 is identical to Theorem 5.2.
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THEOREM 9.2. Scheduling unit S(W, R, A) is schedulable, where W =
{T (p1, e1), . . . , T (pn, en)}, R = !(", #), and A = RM, if

UW ≤ U! · n
[( (2k + 2) − 2U!

(k + 2) − 2U!

)1/n
− 1

]
,

where k = KRM(Pmin, !(", #)), defined in Equation (11), and Pmin is the smallest
task period in W.

PROOF. Consider a task set W = {T1 = T (p1, e1), · · · , Tn = T (pn, en)}. With-
out loss of generality, we assume that p1 ≤ p2 ≤ · · · ≤ pn. Assume that
e1, e2, · · · , en guarantees the schedulability of W over ! and that any increase
in ei for any task Ti ∈ W will violate the schedulability of W over !. Let UW
denote the corresponding utilization.

Suppose that for some task Tk ∈ W , /pn/pk0 > 1. To be specific, let pn =
q · pk +r, q > 1 and 0 ≤ r < pk . Let us replace the task Tk by a task T ′

k , such that
p′

k = q · pk and e′
k = ek , and increase en by the amount needed to maximize the

utilization subject to the schedulability guarantee over !, according to Theorem
4.2. This increase is, at most, ek(q − 1), the time within the critical window of
Tn occupied by Tk , but not by T ′

k . Let UW ′ denote the utilization factor of such
a set of tasks. We have

UW ′ = UW + ek(q − 1)
pn

+ ek

p′
k

− ek

pk

= UW + ek(q − 1)
q · pk + r

+
(

ek

q · pk
− q · ek

q · pk

)

= UW + ek(q − 1)
( 1

qpk + r
− 1

qpk

)
.

Since q − 1 > 0 and [1/(qpk + r)] − (1/q · pk) ≤ 0, UW ′ < UW . Therefore, we
conclude that in determining the least upper bound of the processor utilization,
we need only consider task sets in which the ratio between any two request
periods is less than 2. The theorem thus follows directly from Theorem 9.1.
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