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Today’s largest datacenters dissipate megawatts of power. 
Efficiency is rapidly becoming the primary determinant of 
datacenter capability. To understand microarchitectural factors 
that affect efficiency, we must study datacenter workloads.  

Most studies treat the workload as a large, monolithic piece 
of software. But a workload is often comprised of many, 
diverse software tasks. For example, a web search engine 
executes many individual queries. There is a vast difference 
between the complexity of searching for a single term and that 
of searching for a collection of related terms interspersed with 
Boolean and wildcard operators, which are increasingly 
common in search engines [1,6].  

Methodology. We use Nutch to crawl Wikipedia and 
gather a set of 50,065 documents across a wide range of topics. 
We then use Solr and Lucene to search and index text.  

We implement a query generator that produces queries with 
a specified number of terms and Boolean operators. The 
algorithm starts with an initial word and finds other words that 
commonly occur in its proximity to add a term to the query. 
Recursively invoking this algorithm produces a query of the 
desired length. Finally, the algorithm combines multiple query 
terms using various Boolean operators. 

We deploy web search in cycle-accurate simulation for a 
detailed analysis of microarchitectural activity. In contrast, a 
recent study of search query complexity considers Bing on 
physical Xeons and Atoms [4]. This study of Bing anonymizes 
query types whereas we provide transparent insight.  

We use MARSSx86, a cycle-accurate processor simulator 
that models x86-64 architectures [3]. McPAT provides power 
estimates for the processor cores [2]. We link the simulator to 
DRAMSIM2, which models memory performance and power 
[5]. We focus on the differences between a variety of in-order 
(IO) and out-of-order (OOO) cores.  

 

 
Figure 1. Latency Measurements: OOO cores are most beneficial 
for simpler queries (e.g., singleWord). In comparison, benefits 
are modest for more complex queries (e.g., inverseSingle).  

Average Latency. As shown in Figure 1, latency clearly 
depends on query complexity. Single word queries 
(‘singleWord’) complete quickly and latencies increase with 
query length. The query that finds all documents not matching 

a specified term (‘inverseSingle’) is most expensive as it must 
search and return the largest number of relevant pages.  

Remarkably, OOO benefits are most prominent for the 
simplest queries. Latency for singleWord falls by more than 
50%. In contrast, latency reductions for inverseSingle are far 
more modest. Complex queries are slow regardless of 
hardware choice. If OOO cores are scarce, they should be 
allocated to simple queries to maximize system throughput.  

Latency Variance. Dynamic instruction scheduling 
accounts for much of the latency reduction. Further increasing 
superscalar width and increasing cache sizes have negligible 
effects. Hence, many OOO cores exhibit similar performance. 
In contrast, IO cores exhibit higher latency variance since 
other microarchitectural parameters play a larger role in 
determining performance. Thus, the risk of designing a poor 
OOO core is far lower than that of designing a poor IO one.  

Latency Cut-offs. Suppose we aim to complete all 
queries in less than 30ms. Only a few, power-intensive cores 
(>23W) can deliver this performance for complex 
inverseSingle queries. At the same time, low-power cores 
(2.5W) are suitable for simple, singleWord queries.  

By steering complex queries to OOO cores and simple 
queries to IO ones, a system might meet the 30ms target. 
Without the ability to differentiate query types, a system 
would need to rely solely on OOO cores to guarantee latency 
for rare, complex queries, a highly inefficient approach. A 
system would rather use IO cores. More of them can fit within 
a given power budget, thereby increasing system throughput.  

Conclusion. Microarchitectural simulations show that 
performance and power trade-offs differ significantly 
depending on query complexity. While most, common queries 
can execute on small cores and meet service-level-agreements, 
complex queries on such cores are likely to violate 
performance targets. If complexity could be determined when 
a query first enters the system, steering rules could be devised 
to ensure performance. Our methodological contributions give 
a starting-point for designing heterogeneous hardware and 
managing software-to-hardware mapping.  
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