

Understanding Query Complexity and its Implications for Energy-Efficient Web Search

Emily Bragg,1 Marisabel Guevara,2 and Benjamin C. Lee2
1Georgia Institute of Technology, 2Duke University

ebragg09@gatech.edu, mg@cs.duke.edu, benjamin.c.lee@duke.edu

Today’s largest datacenters dissipate megawatts of power.
Efficiency is rapidly becoming the primary determinant of
datacenter capability. To understand microarchitectural factors
that affect efficiency, we must study datacenter workloads.

Most studies treat the workload as a large, monolithic piece
of software. But a workload is often comprised of many,
diverse software tasks. For example, a web search engine
executes many individual queries. There is a vast difference
between the complexity of searching for a single term and that
of searching for a collection of related terms interspersed with
Boolean and wildcard operators, which are increasingly
common in search engines [1,6].

Methodology. We use Nutch to crawl Wikipedia and
gather a set of 50,065 documents across a wide range of topics.
We then use Solr and Lucene to search and index text.

We implement a query generator that produces queries with
a specified number of terms and Boolean operators. The
algorithm starts with an initial word and finds other words that
commonly occur in its proximity to add a term to the query.
Recursively invoking this algorithm produces a query of the
desired length. Finally, the algorithm combines multiple query
terms using various Boolean operators.

We deploy web search in cycle-accurate simulation for a
detailed analysis of microarchitectural activity. In contrast, a
recent study of search query complexity considers Bing on
physical Xeons and Atoms [4]. This study of Bing anonymizes
query types whereas we provide transparent insight.

We use MARSSx86, a cycle-accurate processor simulator
that models x86-64 architectures [3]. McPAT provides power
estimates for the processor cores [2]. We link the simulator to
DRAMSIM2, which models memory performance and power
[5]. We focus on the differences between a variety of in-order
(IO) and out-of-order (OOO) cores.

Figure 1. Latency Measurements: OOO cores are most beneficial
for simpler queries (e.g., singleWord). In comparison, benefits
are modest for more complex queries (e.g., inverseSingle).

Average Latency. As shown in Figure 1, latency clearly
depends on query complexity. Single word queries
(‘singleWord’) complete quickly and latencies increase with
query length. The query that finds all documents not matching

a specified term (‘inverseSingle’) is most expensive as it must
search and return the largest number of relevant pages.

Remarkably, OOO benefits are most prominent for the
simplest queries. Latency for singleWord falls by more than
50%. In contrast, latency reductions for inverseSingle are far
more modest. Complex queries are slow regardless of
hardware choice. If OOO cores are scarce, they should be
allocated to simple queries to maximize system throughput.

Latency Variance. Dynamic instruction scheduling
accounts for much of the latency reduction. Further increasing
superscalar width and increasing cache sizes have negligible
effects. Hence, many OOO cores exhibit similar performance.
In contrast, IO cores exhibit higher latency variance since
other microarchitectural parameters play a larger role in
determining performance. Thus, the risk of designing a poor
OOO core is far lower than that of designing a poor IO one.

Latency Cut-offs. Suppose we aim to complete all
queries in less than 30ms. Only a few, power-intensive cores
(>23W) can deliver this performance for complex
inverseSingle queries. At the same time, low-power cores
(2.5W) are suitable for simple, singleWord queries.

By steering complex queries to OOO cores and simple
queries to IO ones, a system might meet the 30ms target.
Without the ability to differentiate query types, a system
would need to rely solely on OOO cores to guarantee latency
for rare, complex queries, a highly inefficient approach. A
system would rather use IO cores. More of them can fit within
a given power budget, thereby increasing system throughput.

Conclusion. Microarchitectural simulations show that
performance and power trade-offs differ significantly
depending on query complexity. While most, common queries
can execute on small cores and meet service-level-agreements,
complex queries on such cores are likely to violate
performance targets. If complexity could be determined when
a query first enters the system, steering rules could be devised
to ensure performance. Our methodological contributions give
a starting-point for designing heterogeneous hardware and
managing software-to-hardware mapping.

Acknowledgements. This work is supported by NSF grant
CCF-1149252 and by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.

REFERENCES
[1] B. Jansen and A. Spink, “How are we searching the World Wide Web?

A comparison of nine search engine transaction logs”. Info. Processing
& Management, Vol. 42, Issue 1, 2006.

[2] S. Li et al., “McPAT,” MICRO, 2009.
[3] A. Patel et al., “MARSSx86,” DAC, 2011.
[4] V. Reddi et al., “Web Search Using Mobile Cores: Quantifiying and

Mitigating the Price of Efficiency,” ISCA, 2010.
[5] P. Rosenfeld et al., “DRAMSim2,” CAL, Vol. 10, No. 1, 2011.
[6] C. Silverstein et al. “Analysis of a very large web search engine query

log,” ACM SIGIR Forum, 1999.

0!
10!
20!
30!
40!
50!
60!
70!

sin
gleW

ord!

doubleA
nd!

doubleN
ea

r!

doubleO
r!

doubleW
ild

ca
rd!

inve
rse

Single!

quad
Word!

trip
leW

ord!

La
te

nc
y

(m
s)
!

In Order! Out Of Order!

