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Abstract—This paper presents Swing, a framework that ag-
gregates a swarm of mobile devices to perform collaborative
computation on sensed data streams. It endows performance
and efficiency to the new generation of mobile sensing applica-
tions, in which the computation is overly intensive for a single
device. After studying the source of performance slowdown of
the sensing applications on a single device, we design and im-
plement Swing to manage (i) parallelism in stream processing,
(ii) dynamism from mobile users, and (iii) heterogeneity from
the swarm devices. We build an Android-based prototype and
deploy sensing apps – face recognition and language translation
– on a wireless testbed. Our evaluations show that with proper
management policies, such a distributed processing framework
can achieve up to 2.7x improvement in throughput and 6.7x
reduction in latency, allowing intensive sensing apps to reach
real-time performance goals under different device usages,
network conditions and user mobility.

I. INTRODUCTION

Emerging mobile applications involve continuous sensing
and complex computations on sensed data streams. Exam-
ples include cognitive applications (e.g., speech recognition,
natural language translation, as well as face, object, or
gesture detection and recognition) and anticipatory appli-
cations that proactively track and provide services when
needed.

Unfortunately, today’s mobile devices cannot keep pace
with such applications, despite advances in hardware ca-
pability. Consider as an example a mobile face recogni-
tion application. Our experiments show that an individual
mobile device is insufficient for this app, as it requires
continuous, intense computation on sensed image streams.
Figure 1 illustrates this observation as various mobile de-
vices process video frames for face recognition. Each device
can only process 4∼10 frames per second (FPS), which is
far below the minimal 24 FPS required for smooth video
playback. Over time, mismatched arrival and processing
rates cause new frames to queue and end-to-end delays to
increase. Even the fastest device (H , a quad-core LG Nexus
5) fails to keep up — its end-to-end frame delay increases
to 1.2s after only 5s of computation! Even if a user could
perform the computation by herself, the energy burden
would be unbearable. We observe that the camera-based
face recognition app exhausts a fully charged phone battery

*This work was conducted while the author was an intern at the IBM
T.J. Watson Research Center and a PhD student at Duke University.
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Fig. 1: Delay per frame when processed on different phones
at 24 FPS load. Delays build up rapidly, and different phones
have different reactions to the same load.

in about two hours, with 40% of the energy consumed by
computation.

Traditional approaches address this problem by compu-
tation offloading. One approach offloads by sending sensed
streams to remote cloud servers via cellular networks or to
cloudlets via Wi-Fi, where a clone of the app runs [10],
[11], [26]. However, cloudlets may not be widely deployed
and access to cloud infrastructure may yield high network
delays and can be intermittent due to mobility. A second
approach offloads to local accelerators by rewriting code
to use the DSP or GPU within mobile devices. However,
using accelerators requires nontrivial programming effort
and produces widely varying results for diverse codes on
heterogeneous devices. In addition, it is not based on a
high level programming model and is not portable to a
wide range of IoT devices.

We adopt a different approach that looks beyond a single
device but beneath the cloud. Today’s users often carry
multiple mobile devices (e.g., smart watches, phones and
tablets) that provide redundant computing resources. This
trend will increase with the explosive IoT growth of wireless
devices in many shapes and forms. In such situations, idle
devices could collaborate and receive offloaded compu-
tation. Furthermore, additional offload opportunities exist
when multiple co-located users share a common sensing
and computation goal. For example, a security team that
patrols a route can collaboratively sense and analyze the
video for face recognition, or a group of travelers could
benefit from real-time translation of native speakers using
collaborative processing on their mobile devices.



In such usage scenarios and many others, Internet con-
nectivity can be sparse and users may prefer to rely on
local assets rather than the cloud [10], [11]. Moreover,
the mobility of the users may forbid the usage of local
stationary infrastructures such as cloudlet [27], [26]. Such
circumstances leave users with no choice but either run the
app entirely on their own devices, or collaboratively using
the surrounding devices. If several proximate users demand
results from the same application, collaborative computing
can reduce the energy costs for any one user. Moreover, it
mitigates the limitations of individual devices and improves
service quality for all users.

We present Swing (SWarm computing for mobile sens-
ING), a framework that aggregates mobile devices to collab-
oratively compute a shared answer. Swing views a collection
of nearby mobile devices as a swarm. Swing does not
require cloud assistance for executing mobile apps. It uses
a dataflow programming model and Java-based API, which
enables developers to rapidly build Swing applications. A
central issue in such an architecture is meeting real-time
requirements while coping with device heterogeneity and
dynamics of the mobile environment. Swing provides a
distributed resource management framework that aims to
minimize processing latency while reducing resource usage
and energy consumption. It also provides mechanisms for
automatic device discovery, dynamic application deploy-
ment and mobility handling.

Specifically, our contributions are as follows:
1) System architecture. We design and implement a novel
distributed computing framework for compute-intensive
mobile sensing applications. We detail Swing’s program-
ming model and workflows which implement data stream
processing for mobile swarms. Swing APIs allow sophis-
ticated sensing apps with complex computations to be
developed in a rapid and flexible manner. In contrast to
existing approaches, Swing is a collaborative mobile data
stream processing platform that does not require Internet
connectivity. In addition, since it is Java-based it can be
ported to a wide variety of IoT devices.
2) Distributed resource management policies. Swing en-
ables a wide spectrum of resource management policies
for various performance objectives and handles device
joining and leaving, as well as user mobility. We propose a
distributed algorithm that aims for minimization of latency
and energy usage subject to a performance target. The al-
gorithm distributes stream data dynamically across mobile
devices, and manages data flow according to heterogeneous
device capability.
3) Detailed evaluation with real sensing apps and wire-
less testbed. On our Android-based Swing prototype, we
deploy two sensing apps – face recognition and language
translation – on a wireless testbed with up to nine hetero-
geneous, mobile phones and tablets. We demonstrate the
performance heterogeneity of these devices and evaluate
the performance of the framework under various scenarios
such as user moving, leaving and joining the system at run-

time. Collectively, our results show that Swing efficiently
and reliably manages multiple devices to meet the real-time
performance goals of modern sensing apps with negligible
overhead. Compared with a state of the art algorithms
in existing stream processing systems, it achieves a 2.7x
improvement in throughput and 6.7x reduction in latency.

The paper is structured as follows. In Section II, we pro-
vide a summary of related work. In Section III, we demon-
strate the challenges in designing a distributed mobile
computing framework. In Section IV and V, we introduce
the system design and implementation. Finally in Section
VI, we evaluate the performance of system with respect to
different usage scenarios.

II. RELATED WORK

Mobile computation offloading and edge computing.
Existing mobile cloud computing frameworks such as
CloneCloud and MAUI partition and offload mobile code
to the cloud [10], [11]. Cloud offloading techniques cannot
easily support real-time applications due to high delays
between mobile and cloud.

Cloudlets [27] and edge computing reduce the delay by
bringing server infrastructure closer to the mobile devices
(e.g. LAN or WLAN level) and have been shown to support
real time applications [26], [31]. Recent works utilize edge
computing to bypass offloading to the cloud. In [14] edge
gateways act as compute caches and process mobile face
recognition queries directed toward the cloud. The work
in [29] proposes a solution for distributing deep learning
inference computations vertically between device, edge
and cloud infrastructure. These approaches address vertical
distribution of computations assuming a cloud/edge infras-
tructure. Swing focuses on horizontal parallel processing
among multiple devices and does not assume such a
hierarchical infrastructure.

One issue with cloudlet and edge computing approaches
is that they require relatively costly investment in bringing
compute infrastructure close to all mobile devices. They
may exist in locations where a specific real-time appli-
cation is needed but may not be as widely available as
proximal mobile phones, especially in collaborative ad hoc
applications targeted by Swing. Nevertheless, Swing does
support “cloudlet mode” through Android virtual machines
if a cloudlet infrastructure is available.

Industry solutions. A recent industry trend is for cloud
providers to extend their IoT services to the network
edge [7], [16]. These solutions use an edge gateway to
support data aggregation from IoT devices or control-plane
operations such as deployment and configuration of data
analytics to IoT devices. In contrast, Swing enables more
complex sensing applications such as video analytics that
exploit parallel computation on multiple heterogeneous
mobile devices which can be more powerful than IoT
sensors. Tensorflow [5] is a recent platform which expresses
deep learning models as dataflow graphs. It is primarily
designed for GPUs and data center environments but also



Phone ID B C D E F G H I

Model GalaxyNexus Insignia7 NeuTab7 GalaxyS DragonTouch GalaxyNexus Nexus4 Note2
Processing Delay (ms) 92.9 121.6 167.7 463.4 166.4 82.2 71.3 78.0
Throughput (FPS) 10 8 6 2 5 12 13 12

TABLE I: Performance Heterogeneity

supports deployment on mobile devices. Swing is designed
for mobile devices and focuses on general-purpose compu-
tation and sensing applications than deep learning. In order
to support efficient training of deep models, Tensorflow
supports offline mechanisms for optimizing placement of a
deep model dataflow graph stages to processors. However,
it does not provide real-time resource management mech-
anisms that handle device heterogeneity and mobility.

Data stream processing systems. Swing uses a dataflow
graph computation model similar to data stream processing
systems [1], [9], [36], [2], [3]. Such systems typically process
a large number of data streams inside compute clusters or
data centers. Sonora [34] is a stream processing system that
can support processing on mobile phones. However, it is
based on a client-server model and does not support adap-
tive offloading of stream computations between mobile and
cloud. In contrast, we use the dataflow computation model
to program, decompose and distribute collaborative mobile
sensing applications on multiple mobile devices. Unlike
Sonora which assumes that a computation task can enjoy
infinite compute capacity once it is offloaded to the server,
our framework utilizes surrounding mobile devices which
incur challenges in resource management.

Delay-oriented resource management in distributed
systems. Resource management aiming at delay optimiza-
tion has been extensively addressed in a variety of dis-
tributed systems. Scheduling algorithms based on bin pack-
ing for single-stage parallel systems [6] or based on HEFT
heuristic for real-time graph-based applications [35]. Other
approaches solve the problem of mapping a graph of
execution tasks to an underlying network of machines [20],
[12]. Most approaches above require a-priori knowledge
of task execution times and global knowledge of network
state. Distributed scheduling heuristics that estimate task
execution times and avoid stragglers have been developed
for big data platforms (e.g. Mapreduce and Spark) [24].
These approaches are for batch systems that schedule a
finite set of tasks on thousands of machines in a data
center as opposed to infinite data streams on a finite set
of mobile devices. None of the above approaches aims
for minimization of system energy consumption. Existing
stream processing systems specialize on data streams but
typically use round robin scheduling because it is ade-
quate for data center environments [9], [2], [3]. Recent
mobile stream processing systems [23] do not provide
resource management mechanisms that address mobile
heterogeneity and dynamics. As will show in the evaluation
round robin is not adequate for mobile environments. In

summary, the resource management of Swing differs from
previous work on distributed systems in that it operates on
data streams, uses a distributed algorithm, and aims for
delay minimization with a minimum number of compute
resources (which aims to minimize energy consumption).

Distributed and shared mobile computing. Pocket
Switched Networks [19], Throwboxes [8], and ferry-based
networks [17] are distributed mobile frameworks that focus
on efficient communication in mobile networks with inter-
mittent connectivity as opposed to efficient collaborative
mobile computation on sensed data streams. Serendip-
ity [28] is a theoretical framework for delay-optimized task
allocation in mobile networks with intermittent connectiv-
ity. The algorithm greedily selects a single processor over
a network path of minimum estimated task completion
time and is evaluated using simulations. Swing focuses on
real-time parallel processing among multiple connected de-
vices and is evaluated using a real system implementation.
Medusa [25], a crowd-sensing framework for mobile users,
is targeted toward data collection of crowd-sensed data
from multiple devices to a cloud server, rather than real-
time collaborative computations among mobile devices.
Misco [13], Hyrax [21], CWC [6] implement MapReduce-like
frameworks for parallel task execution on mobile phones.
MapReduce caters to a batch processing model rather
than a real-time computation model targeted by our work.
MobiStreams [32] provides a distributed stream processing
runtime for mobile phones and focuses on the orthogonal
issue of fault tolerance. It does not provide any mechanisms
for efficient sharing of execution load among the devices
and requires the assistance of a cellular network and a
centralized server in the cloud for coordination. In contrast,
our framework relies purely on mobile devices and can
utilize mobile hotspot APs, Wi-Fi Direct, WLAN or cellular,
as networking technologies.

III. CHALLENGES

We identify two major factors that challenge the design
of a distributed mobile data stream processing platform:
device heterogeneity and dynamism. In this section, we
quantify their impact with preliminary experiments.

Today’s mobile devices deploy a broad spectrum of
hardware. First, we characterize this inherent performance
heterogeneity with the following experiments. We use nine
devices – A: Galaxy S3, B : Galaxy Nexus, C : Insignia7 tablet,
D : NeuTab7 tablet, E : Galaxy S, F : DragonTouch tablet, G :
Galaxy Nexus, H : LG Nexus4, I : Galaxy Note2. All devices
are connected to a wireless router (Linksys E1200 802.11n
2.4GHz channel 1) and located in the same office. In each



experiment, phone A sends 24 FPS video frames over a
strong Wi-Fi connection to another phone i ∈ {B ,C , · · · , I },
which conducts face recognition. Each i measures and
records the processing delay of each frame. Experiments are
conducted during the night to reduce chances of interfer-
ence from other wireless communications. Each experiment
runs for 10 minutes (14400 video frames).

Device heterogeneity. The second line in Table I reports
the average processing delay per frame (excluding queuing
delay) for each phone. The third line in Table I reports the
corresponding throughputs (inverse delays) which represent
the computational capacity of each device. We observe high
performance heterogeneity: the fastest phone H reports
throughput that is 6 times higher than that of the slowest
phone E . However, even H cannot provide a throughput
that is as high as the input rate of 24 FPS.

Achieving high throughput using multiple devices is also
challenging due to the existence of stragglers, i.e. devices
that either are slow or are on slow wireless network links.
Without proper resource management, stragglers can slow
down the entire computation. To achieve the desired overall
throughput, Swing must use devices collaboratively, taking
into account their device heterogeneity.

Dynamism. In addition to device heterogeneity, the per-
formance of the real-time sensing apps might be affected
by external factors such as user mobility (captured by vari-
ations in signal strength), changes in applications running
in the devices (captured by variations in CPU usage) and
changes in the input data rate (captured by the queuing
delay). To understand the impact of dynamism, we let
A send video frames to B for processing, under three
different scenarios: (1) B is placed in regions of different
Wi-Fi signal strength; (2) B simultaneously runs another
compute intensive benchmark task. (3) A sends frames to
B at different rates.

As shown in Figure 2, Wi-Fi signal strength, processor
utilization, and input data rate affect delays in transmission,
processing and queuing. This suggests that Swing should
dynamically (1) divert more frames to devices of strong
signal strength, and (2) steer frames to accommodate the re-
duced computing capability when processor usage changes,
and (3) control queuing delay on each device by matching
its input data rates to its capability.

IV. SWING OVERVIEW

With the challenges in mind, we design and implement
Swing, a general-purpose framework that enables the col-
laboration between multiple, mobile devices. In this section,
we first present the overview of the system, including
its programming model and workflow, and then detail its
design and implementation.

A. Programming Model

Swing uses a dataflow programming model, that rep-
resents a mobile sensing app as a directed graph. Graph
vertices correspond to computational parts of the app,
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Fig. 2: Decomposition of delays in remote face-recognition
processing. Wi-Fi signal strength primarily affects network
transmission delay; CPU usage affects processing delay;
input data rate affects queuing delay.

which we refer to as function units. App functionality is
divided into multiple interconnected function units. For
example, the face recognition app consists of four function
units that (A) use the camera to capture video frames,
(B) detect faces inside video frames, (C ) match faces with
names, and (D) display the results.

Graph edges represent data flow between function units.
During app execution, each function unit receives a data
tuple from a previous unit via an edge in the graph. The
data tuple contains a list of serializable data structures,
such as a bitmap image, a matrix of floating-point values
or a text string. The function unit processes the incoming
tuple, computes an intermediate result, encapsulates it in
a tuple and passes it to the next unit in the graph. For
a given function unit, a unit from which it receives data
tuples is called an upstream unit, and a unit toward which
it sends data tuples is called downstream unit. Each unit
may interface with multiple upstream or downstream units.
A unit without upstream is a source (e.g., A) and a unit
without downstream is a sink (e.g., D).

To use the Swing framework, the programmer defines
apps as function units with Swing APIs. Specifically, the
programmer constructs the app graph by defining function
units, including a source and sink, and defining edges that
create a topology. For example, the code below describes
the definition the face recognition app.

// The code below defines the application
graph

public AppGraph compose(){
/* Define tuple structure */
ArrayList<String> tuple = new

ArrayList<String>;
tuple.add("value1"); //first part: a byte

array
tuple.add("value2"); //second part: a string
/* Define function units */
FunctionUnit src = FUBuilder(new

Source(),srcId,tuple);
FunctionUnit f1 = FUBuilder(new

FunctionA(),aId,tuple);
FunctionUnit snk = FUBuilder(new Sink(),

snkId, tuple);
/* Define topology */
src.connectTo(f1);
f1.connectTo(snk);
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}

Each function unit is programmed to first receive data,
and then perform certain tasks. For example, the code
below defines a function unit that transforms a received
data tuple into a graphical object, processes it, and sends
the result to the next tuple.

// The code below defines a function unit
public class FunctionA implements

FunctionUnitAPI {
@Override
public void processData(Tuple data) {
/* get a byte array from the data tuple

received */
// use "value1" as the key
byte[] bytes =

(byte[])data.getValue("value1");
/* transform array to an image object */
Mat mGray = new Mat();
mGray.put(0,0,bytes);
matToBitmap(mGray, mBitmap);
/* process on the object */
String name =

faceRecognizer.recognize(mBitmap);
/* pass the result data to the next

function unit */
Tuple output = data.setValues(null, name);
send(output);

}
}

The programmer can also define performance require-
ments that affect resource allocation and task scheduling,
e.g., the maximum input data rate that needs to be sus-
tained by an app. Swing enables programmers to express
a single compute-intensive operation as separate function
units, e.g., detect() and recognize(). This enables
distributing computation load among multiple devices. At
runtime, Swing determines their deployment with respect
to devices’ capabilities.

B. Workflow

Swing runs on devices connected through any IP network
— for example, a WLAN. This WLAN can be an existing
Wi-Fi network or can be created by one of the devices
acting as Wi-Fi hotspot. When a group of devices intend to

collaborate for a mobile sensing app (e.g. collaborative face
recognition), they follow the workflow in Figure 3 to install
the app, join the system, and execute the computation.

Step 1: Installing the App. Each device downloads and
installs the specific stream processing app in her device.
The app could be obtained from one of the devices or from
an online app-store where developers submit their apps
written with Swing APIs.

Step 2: Launching and Joining. Upon app installation,
one device first launches a master thread, followed by
others launching worker threads. The master initiates the
app, broadcasts its IP address, launches a socket server and
waits for connections. Workers then connect to the master’s
socket server.

Step 3: Deploying Function Units. The master deploys
the app dataflow graph by assigning function units and con-
necting devices. Since each device has already installed all
the function units, the master simply provides each worker
the name of the function units it must activate . Then,
the master informs workers about the IP addresses of their
upstream and downstream workers, and the connections
between workers can then be formed. The master thread
is responsible only for control, bootstrapping connections
and sending start/stop commands. It can co-locate on the
same device with worker threads.

Step 4: Executing the App. After function deployment,
the master instructs the worker devices with source func-
tion units to sense data and generate tuples. As source begin
transmitting data tuples, downstream function units begin
computation. In Figure 3¯, source A distributes data tuples
to the two devices running function unit B , which then
pass intermediate results to downstream devices running
function unit C .

In summary, developers write sensing apps using Swing
APIs, and users download and install the apps on their
devices. When a group of devices wish to run an app
collaboratively, one of them initiates a master thread and
the others initiate worker threads. The master then deploys
the app’s dataflow graph, which interconnects the worker
threads across multiple devices.

C. Design and Implementation

Each Swing instance can be viewed as a distributed
program that runs across multiple devices. A master thread



controls multiple worker threads and assigns software func-
tions to them. Since masters and workers correspond to
software threads, a single device could execute multiple
worker and master threads.

We designed and implemented Swing on top of SEEP [9],
a JAVA-based stream processing platform. SEEP provides
a convenient interface for defining graph topologies by
abstracting away the details of TCP socket connections and
inter-thread communications. However, SEEP is targeted
for static data center clusters as opposed to a dynamic
mobile environment. The Swing architecture consists of the
following service components.

Swarm Management Service. Swing dynamically man-
ages device usages to achieve performance objectives and
energy efficiency. Each upstream thread maintains a routing
table with downstream threads’ IDs and their weights, so
that data tuples could be routed accordingly. We describe
this algorithm in more detail in Section V.

Discovery Service. Swing automatically establishes con-
nections between participating swarm devices. During ini-
tialization, the master broadcasts itself by registering a
Network Service on the network, using Android Network
Service Discovery (NSD). Each worker device maintains a
background service that listens for the master and connects
to it upon discovery.

Handling Joining and Leaving. In order to involve new
devices as soon as they join, the master constantly listens
for incoming connections and instantly activates function
units on the new devices. The workers’ routing tables are
updated accordingly. When a network link is broken, due to
poor wireless signal or a user leaving, the affected upstream
units automatically remove the corresponding downstream
from the routing tables and re-route data to other units. We
evaluate dynamics in Section VI.

Serialization Service. Communicating through socket
connections requires serialization. SEEP uses Kryo and Java
serialization methods to serialize the data tuples transmit-
ted between function units. However, mobile sensing apps
may require transmitting customized objects, such as an
image container, a multi-dimensional sensor vector, or a
segment of audio stream. Swing extends SEEP’s serialization
function and transforms customized objects into a byte
array, which is serializable, at the sender, and transforms
the array back to the object at the receiver.

Reordering Service. Performance heterogeneity and dy-
namism cause each tuple’s end-to-end delay to differ —
tuples that are dispatched earlier may arrive later, and vice
versa. To solve this problem, we buffer results as they arrive
at the sink and sort them in-order before playback. A large
buffer ensures better ordering but delays the display of
the results. We will evaluate the effectiveness of our buffer
sizing strategy in Section VI.

Background Service. Swing extends Android Service to
run in the background without interrupting user activi-
ties. Swing acquires a CPU wake lock to prevent service
termination due to processor sleep modes. Swing runs on

Android version 4.0 or higher, which includes the majority
of Android devices.

V. RESOURCE MANAGEMENT

In order to satisfy real-time requirements of mobile
sensing apps, the primary objective of Swing is to minimize
latency while meeting input rate requirements and using as
few resources and energy as possible. This must be achieved
through a low-complexity and distributed mechanism that
rapidly reacts to mobile dynamics in real-time.

A. LRS algorithm

Swing uses a distributed low complexity routing algo-
rithm that we call LRS (Latency-based Routing with worker
Selection). LRS is executed at each upstream function
unit in the application dataflow graph using information
communicated periodically from its downstream function
units (every 1 s in our implementation).

Each upstream function unit measures the total rate of
its incoming data tuples Λ and estimates the mean latency
Li of each downstream function unit i . Based on this
information, LRS operates in two steps outlined below.

Worker Selection. First, the upstream function unit se-
lects a subset S of its downstream function units D . More
specifically, it sorts function units in descending order of
service rates µi = 1/Li and selects the minimum number of
function units S such that

∑S
i=1µi ≥Λ.

Sorting seeks to select the fastest downstream function
units in order to avoid stragglers. Selecting the minimum
number of function units seeks to minimize the amount
of compute resources and energy consumed. The sum rate
constraint seeks to satisfy the input rate requirement. If
the sum rate constraint cannot be satisfied, all downstream
function units are selected.

Data Routing. This step decides what fraction of in-
coming tuples will be routed to selected function units
in S. Each upstream function unit maintains a routing
table, which contains ID and a normalized weight pi for
all its downstream function units in D . pi is computed
based on the measured downstream latencies: pi = 1/Li∑

j (1/L j ) .

LRS routes incoming tuples to selected function units in
proportion to normalized service rate pi . Routing more
data to faster downstreams avoids high queuing delays
and straggler effects on slower downstreams. In addition,
this assignment equalizes latencies among downstreams
which helps minimizing maximum latency and minimize
additional delays in case of tuple reordering requirements
at the sink.

LRS uses probabilistic routing by treating the normalized
weights as probabilities. Upon arrival of a data tuple, the
upstream generates a weighted random number and sends
the tuple to the specified downstream ID. This approach
yields fast low complexity routing decisions per tuple as it
only requires random number generation.
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Fig. 4: Average system throughput and the min, max, average and variance of per-frame latency in two applications.

B. Latency estimation

Li is estimated as a moving average of latency estimates
obtained as follows. The upstream attaches a timestamp to
each tuple. Each downstream, after processing the tuple,
sends back an ACK with the original timestamp. Upon
receiving the ACK, the upstream calculates latency estimate
for this tuple by subtracting the timestamp from the current
time. Thus, Li includes network delay between the up-
stream and downstream device (dominated by transmission
time), queuing delay and processing delay the downstream
function unit, and the ACK transmission delay (negligible
due to ACK’s small size). In order to estimate Li of the
function units that were not selected in previous rounds,
each upstream function unit switches periodically every few
rounds to round robin mode for a short time, sending a few
tuples to all its downstream function units.

C. Discussion

In summary, the key design points in LRS are Worker
Selection and Latency-based Routing.

Worker Selection serves a dual purpose. First, it addresses
the problem of stragglers by filtering out downstream func-
tion units running on devices that are slow or are on slow
network links. Second, it aims to improve energy efficiency
by using enough resources to meet an input rate target.
However, Worker Selection may not be necessary if devices
have similar capabilities. Therefore, one alternative is not to
include Worker Selection and let data routing handle device
heterogeneity.

Latency-based Routing aims to minimize the overall
latency and avoids downstream function units on slow
wireless links. However, it might rely heavily on func-
tion units running on devices with fast network links but
computationally less capable. Some of the more compu-
tationally capable devices are newer and more energy-
efficient. Therefore, one alternative to Latency-based Rout-
ing is Processing-delay-based Routing, which routes data to
devices based only on their computational capabilities and
potentially providing a higher energy efficiency.

In the upcoming evaluation section, we will compare the
performance of LRS against the above alternatives.

VI. EVALUATION

We evaluate Swing, assessing its ability to address key
challenges in mobile swarm-based computing. We first
explain the experiment applications, followed by the eval-
uations of comparing swarm management strategies. We
then evaluate how the system adapts to user mobility.

A. Experiment Applications

We use two open-source sensing applications to evaluate
Swing. The first app is face recognition [4], which uses
the OpenCV CascadeClassifier class to detect faces in an
image and the FaceRecognizer class to recognize faces. We
modified its source code with Swing API to create four
function units: reading video frames from files (source),
detecting faces from frames (detector), matching faces with
databases and return results (recognizer), and displaying
results (sink). The size of each video frame is 400×226 pixels
(6.0kB).

The second app is voice translation. It contains four
function units: reading audio frames from files (source);
recognizing audio streams into English words (based on
CMU Pocketsphinx [18]); translating those words into Span-
ish (based on Apertium [15]); and displaying results (sink).
The size of each audio frame is 72.0kB.

B. Comparison of Data Routing Methods

In this subsection, we compare the performance of LRS
with four alternative algorithms, with respect to throughput,
latency and energy efficiency metrics.

We deploy nine phones (A · · · I in Section III) and con-
figure device A to act as source and run a master thread
while the rest run worker threads. To account for network
heterogeneity, we place devices B ,C ,D at locations of poor
Wi-Fi signals, yielding slower wireless links.

We compare LRS with four different strategies:
(1) RR (round-robin routing). We let each upstream

thread send data to all its downstream threads in turns,
each tuple at a time. This is the default data distribution
mechanism used in existing data center-based stream pro-
cessing systems [9], [2], [3] and it is also used in recent
mobile ones [23], [32].

(2) PR (Processing-delay-based routing w/o worker se-
lection). This routing policy uses only processing delay W
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Fig. 5: Resource usage and input data rate of each device in two applications. RR sends an equal amount of data to each
device. Swing consumes a larger share of processor time when the processor is weak (e.g., phone E) and a smaller share
when it is strong (e.g., I ). In contrast, LRS minimizes the usage of devices located in regions with weak signals (B , C , D)
and devices that produce latency stragglers (E , F ).

instead of latency L. It seeks to route traffic to the most
capable and energy-efficient devices.

(3) LR (latency based routing w/o worker selection).
Similar to LRS, but eliminating Worker Selection. The
comparison between LR and LRS would show the impact
of device heterogeneity, and how Worker Selection helps
improve energy efficiency.

(4) PRS (processing-delay-based routing with worker se-
lection). Similar to PR, but using Worker Selection.

1) Performance: Figure 4 shows the average throughput
of the system and the min, max, average and variance of
latency per frame. Latency based routing methods (LR and
LRS) provide lower delay per frame (e.g., smaller mean
and variance). Processing-delay based methods (PR and
PRS) fail to provide the target rate of 24 FPS, because
they schedule data purely based on the capabilities of
downstream threads, regardless of their locations in the
network. Specifically in this experiment, PR and PRS often
route data to threads on device B and C which are located
in locations of weak signals. As a result, the TCP and Wi-
Fi rate adaptation protocols require the sender to lower
network transmission rates for the devices of downstream
function units, which directly reduces throughput and in-
creases latency. The results also show that worker selection
increases the throughput and decreases the average and
variance of the latency. The reason is that worker selection
filters out stragglers.

In summary, Swing’s LRS strategy performs best in terms
of throughput and latency. Compared with the baseline
RR, LRS provides 2.7x improvement in throughput and 6.7x
reduction in average latency.

2) Overheads: Swing incurs two types of overheads: pro-
cessor utilization and data transmission. We evaluate these
two overheads and estimate the energy consumption on
each device.

Processor Utilization: To measure the processor utiliza-
tion at run-time, all the devices are initially set idle, and
when Swing launches, a background thread is launched
simultaneously which executes top and records the mea-
surements periodically.

Figure 5 shows average CPU utilization during the ex-
periments. For different devices, the processor utilizations
depend highly on their hardware capabilities. In the first
two graphs in Figure 5, we observe that under RR, the same
data arrival rate and computation load consume a larger
share of processor time when the processor is weak (e.g.,
E) and a smaller share when the processor is strong (e.g.,
I ). This is caused by the device heterogeneity.

For both apps, Swing incurs low CPU overhead — it
distributes computations among devices with additional
14% CPU utilization per device, on average. This level of
overhead has no perceptible impact on user experience. We
note that some devices report CPU usage even when they
are not selected for computation (e.g. D,E,F under PRS) —
in addition to Swing, CPU utilization includes background
operations from OS and other apps that we could not
disable.

Data Transmission: Figure 5’s right two graphs show the
amount of data transmitted from the source to each worker
device. The observations match the design of routing poli-
cies: RR evenly distributes, P* policies prefer faster devices
(e.g. B,I), L* policies avoid devices in poor Wi-Fi locations
(e.g. B,C), and *S policies select a subset of devices.

Power Consumption: Monitoring the actual real-time
power consumption at app level for many different devices
under various experimental configurations is extremely
challenging [11], [33], [22]. Our experiments were not an
exception. We thus use power consumption modeling ap-
proaches proposed by previous works [11], [33], [22]. These
models were shown to yield adequate accuracy and can
provide a good indication of the relative power performance
of the different policies we evaluate. In order to create these
models, we use the following profiling procedures.

Offline profiling: for each devices, we first measure its
idle power. Then, we measure peak power by stressing the
processor with 100% utilization for 30 minutes, recording
the change in battery level in this duration, and estimating
the corresponding change in energy given the device’s
battery capacity.
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Online measurements: after building the profile model,
during each experiment run, we measure the real-time
CPU usage on each device. We then estimate the run-
time processor power as a percentage of peak based on
the measured processor utilization.

We estimate the Wi-Fi power using a similar method:
measure idle power and measure peak Wi-Fi power by
sending data at maximum bandwidth with iperf[30] for
30 minutes and recording the change in battery level. Given
the profile model, we then estimate Wi-Fi power as a
percentage of peak based on the measured data transmis-
sion rate during the experiments. Each bar in Figure 6
shows the estimated power consumption of CPU and Wi-
Fi on each device, and the numbers on top indicate the
aggregate power consumption across all the devices. CPU
power consumption dominates Wi-Fi power consumption,
which is indicative for the evaluated CPU-intensive apps.
Slower devices (e.g., phone E) tend to consume more power
due to the inefficiency of their processors. PRS consumes
minimum power policy because it uses the fastest and more
energy-efficient devices. On the other hand, LRS has highest
power consumption as it may select devices with fast

network connection but less energy-efficient processors.
Energy efficiency: In order to compare the policies in

terms of both performance and energy consumption, we
use FPS/Watt, an energy efficiency metric that reflects
useful work done per Watt. To do so, we divide throughput
(from Figure 4) by aggregate power consumption (from
Figure 6). We observe that Worker Selection (*S) greatly
improves energy efficiency. In addition, LRS outperforms
all policies in the face recognition app and is slightly worse
than PRS in the voice translation app. Since LRS is the
only policy that can always meet the real-time input rate
requirement, it is a preferable policy overall in terms of
performance and energy efficiency.

Tuple Order: Tuples are sent out from the source in
sequence, but performance and network heterogeneity will
cause tuples to arrive in different order. The loss of tuple
order leads to an unpleasant user experience, such as
choppy video playback in the case of a face recognition
app. We engineer the size of the buffer with respect to
the data rate generated at the source, i.e., timespan of 1
second. Figure 8 illustrates this loss of order by showing
the timestamp at which the result for each tuple arrives
at the sink (see the gray dots) for the face recognition
app. A perfectly ordered tuple sequence should produce
a linear sequence of gray dots. We observe that the dots
are scattered except in LRS. The solid lines in Figure 8
illustrate the playback times for re-ordered tuples when the
reorder buffer of length 24 (i.e., one second) is applied.
Routing methods with Worker Selection, especially LRS,
have smoother curves than others because they use less
devices and produce smaller variances in latency. LRS is
better than PRS, as it reduces latency variances by taking
into account the network transmission and the queuing
delays in addition to processing delays.

C. Handling Mobility

In this subsection, we demonstrate how Swing adapts
to mobile users, who join the system during computation,
move in ways that affect network connectivity, and leave
the system abruptly.

Joining: We start with phone A running the master and
phones B ,D running worker threads. As they compute,
we launch Swing on G , which then joins the computation
automatically. Upon detecting an incoming connection, the
master connects G with B and D , and the later two add
G’s thread IDs to their routing tables to re-calculate all the
probabilities (using LRS). Figure 9 (left) shows that, within
a second of G’s arrival, throughput rises to its maximum
level of 24 FPS in the face recognition app. The system
preserves all the existing links during the transition and no
data is lost.

Leaving: In this experiment, we first deploy three worker
phones B ,G , H with the LRS data routing scheme. In the
midst of computation, we manually terminate the Swing
thread on G . Upon detecting the lost connection, the
upstream traces the connection’s downstream ID, removes
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the ID from the routing table, and re-calculates data rout-
ing probabilities for the remaining downstreams. Figure 9
indicates that real-time throughput drops drastically after
the device leaves and before the system updates the routing
table. The upstream attempts to route data to the discon-
nected device and, during the recovery phase, 13 frames are
lost. Yet, within one second, throughput recovers to 16 FPS,
which is the best that can be achieved with the remaining
devices.

Moving: The system deploys phones B ,G , H with the LRS
routing method, which copes with variations in network
delay. Initially, phones are all placed at a location with good
Wi-Fi signals (RSSI>-30dBm). After one minute, G’s user
walks to a location with slightly weaker signals (between
-70dBm and -60dBm), stays there for one minute, and then
walks to a third location with poor signals (between -80dBm
and -70dBm). Figure 10 shows the effect of mobility on
signal strength, which affects overall throughput (top graph)
and per-device throughput (bottom graph). We observe that
the overall throughput recovers quickly after G moves to a
region with weak signals as Swing re-routes data to the
other two phones.

VII. CONCLUSION

In this paper, we design, implement and evaluate a
distributed mobile computing framework, targeting con-
tinuous sensing applications that are compute-intensive
and delay-sensitive. We developed Swing, a framework that
allows multiple mobile devices to perform computations
based on a dataflow graph. We identified the major chal-
lenges for achieving the performance potential and propose
resource management and routing techniques for coping
with device heterogeneity and dynamics. We built a system
prototype using Android devices and a Java-based stream
processing platform. By evaluating with two sensing appli-
cations and multiple mobile devices on a wireless testbed,
we show that performance requirements and efficiency
can be satisfied through device management with minimal
computational overhead.
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