
Demo: A Framework for Collaborative Sensing and
Processing of Mobile Data Streams

Songchun Fan
Duke University

Theodoros Salonidis
IBM T.J. Watson Research

Benjamin Lee
Duke University

1. INTRODUCTION
Emerging mobile applications involve continuous sensing

and complex computations on sensed data streams. Examples
include cognitive apps (e.g., speech recognition, natural lan-
guage translation, as well as face, object, or gesture detection
and recognition) and anticipatory apps that proactively track
and provide services when needed. Unfortunately, today’s mo-
bile devices cannot keep pace with such apps, despite advances
in hardware capability. Traditional approaches address this
problem by computation offloading. One approach offloads by
sending sensed streams to remote cloud servers via cellular net-
works or to cloudlets via Wi-Fi, where a clone of the app runs [2,
3, 4]. However, cloudlets may not be widely deployed and access
to cloud infrastructure may yield high network delays and can
be intermittent due to mobility. Morever, users might hesitate to
upload private sensing data to the cloud or cloudlet. A second
approach offloads to accelerators by rewriting code to use DSP
or GPU within mobile devices. However, using accelerators
requires substantial programming effort and produces varied
benefits for diverse codes on heterogeneous devices.

We adopt a different approach that looks beyond a single
device but beneath the cloud. Today’s users often carry multiple
mobile devices (e.g., smart watches, phones and tablets) that
provide redundant computing resources. This trend will increase
with the explosive IoT growth of wireless devices in many shapes
and forms. In such situations, idle devices could collaborate and
receive offloaded computation. Furthermore, additional offload
opportunities exist when multiple users share a common sens-
ing and computation goal. For example, travelers could benefit
from real-time translation of native speakers using collaborative
processing on their mobile devices.

This demo presents Swing (SWarm computing for mobile
sensING), a distributed framework for compute- and sensing-
intensive mobile apps. Swing views a collection of nearby mobile
devices as a swarm and aggregates them to efficiently compute
a shared answer. This is achieved by effectively managing
stream processing parallelism, mobility, and device heterogene-
ity. Swing uses an intuitive programming model where mobile
sensing apps are expressed by a dataflow graph.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiCom’16 October 03-07, 2016, New York City, NY, USA
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4226-1/16/10.

DOI: http://dx.doi.org/10.1145/2973750.2985620

2. Swing FRAMEWORK
Programming Model. Swing uses a dataflow programming

model. A Swing app is represented by a directed graph. Graph
vertices correspond to computational parts of the app (which
we call function units) and graph edges represent data flow be-
tween function units. During app execution, each function unit
receives data tuples from an upstream function unit specified by
a directed edge in the graph. Each tuple contains a list of data
structures. The function unit processes each incoming tuple,
computes a result, encapsulates the result in another tuple, and
passes it to the next downstream unit in the dataflow graph.

Developers write Swing apps using Java-based APIs. The APIs
consist of defining data tuples and constructing the app graph
topology by defining function units and edges between them.
Swing enables expressing a compute-intensive operation as sep-
arate function units. This enables reduction of per-device com-
putation through executing different function units on different
devices. For example, a face recognition app can be represented
by a line graph of four sequential function units: source using the
camera to capture video frames, detector detecting faces inside
video frames, recognizer matching faces with names, and sink
displaying results. These function units are deployed to all de-
vices as part of the app. During execution, Swing’s resource man-
agement framework decides in real time which function units
will execute at each device.

Workflow. The following steps are executed when a group of
users wish to run a Swing app.

Step 1: Installing the App. Each device downloads and installs
the app, obtained from one of the devices or from online app-
store where developers submit apps developed with Swing APIs.

Step 2: Launching and Joining. One device initiates the work-
flow by launching a master thread, followed by others launching
worker threads and connecting to the master.

Step 3: Deploying Function Units. The master deploys the app
graph by providing each worker 1) the names of the function
units it must activate, and 2) the IP addresses of their upstream
and downstream workers to form the connections.

Step 4: Executing the App. The master instructs the worker
devices with source function units to sense data and generate tu-
ples. As source begin transmitting data tuples, downstream func-
tion units begin computation.

Design and Implementation. Swing is implemented atop
SEEP [1], a JAVA-based stream processing platform. SEEP pro-
vides an interface for defining graph topologies by abstracting
the details of TCP socket connections and inter-thread com-
munications. It also provides a parallel processing interface for
scaling up or down computation threads. SEEP targets static
homogeneous data center environments. In contrast, Swing

501



Figure 1: The demo setup includes multiple Android devices and
a Wi-Fi router. One device acts as master and rest act as workers.

provides mechanisms to handle heterogeneous and dynamic
mobile environments.

Each Swing app is a distributed program of software threads
running on multiple devices. A master thread controls multiple
worker threads and assigns function units to them. Swing opti-
mizes performance through dynamic data routing and function
activation among devices. Each Swing function unit is imple-
mented as a separate thread. Each upstream thread maintains
a routing table with downstream threads’ IDs and their weights,
so that data tuples could be routed accordingly.

Swing features various novel data routing algorithms which
can exploit parallelism and distribute load to optimize for var-
ious objectives along the throughput, delay and energy space.
These algorithms are low-complexity, fully distributed and can
react to mobile dynamics in real-time. This is achieved with
lightweight monitoring mechanisms where downstream threads
report delay or energy measurements to upstream threads. Using
this information, upstream threads assign weights to their down-
stream threads and route their incoming data streams according
to these weights. Each optimization objective corresponds to a
different calculation of the routing weights.

Swing can run on devices connected through an IP network.
In this demo we use a WLAN-based implementation. Swing han-
dles new device arrivals and disconnections due to device mobil-
ity or power-down. During initialization, the master broadcasts
its address by registering a Network Service, using Android Net-
work Service Discovery (NSD). The master constantly monitors
the WLAN for incoming devices. When a new device joins, the
master activates function units on it and signals existing workers
to update their routing tables accordingly. Each device monitors
the wireless links to its downstream devices. When a link discon-
nects, the upstream units remove the downstream units from the
routing tables and re-route tuples to other units.

3. DEMO DESCRIPTION
Our demo setup consists of mobile devices connected to a Wi-

Fi access point as shown in Figure 1. The demo will illustrate ben-
efits of using proximal devices for performing compute intensive
tasks. These benefits include augmenting the compute and data
boundaries of a single device.

Swing APIs. The demo will first show to the attendees how mo-
bile apps can be developed using Swing APIs. We will use four
Swing apps as examples: face recognition, language translation,
fall detection and image-based motion detection. An example
code is shown in left part of Figure 2.

Distributed face recognition app. This part of the demo will
use a face recognition app to demonstrate the capabilities of the
Swing runtime environment. The first part will show that execut-
ing face recognition on a video using a single smartphone is very
slow and does not meet real-time requirements. Also faces of the

Figure 2: Examples of Swing distributed face recognition mobile
app code (left) and screenshot (right).

people in the video are detected but not recognized because the
phone’s face database is incomplete.

In the second part, the smartphone will discover and use prox-
imal helper devices to process the same video. These devices will
include Android devices in different forms such as smartphones,
tablets, or smartwatches. The face databases of the helper de-
vices will collectively contain the faces of the people in the video.

The attendees will be able to see two effects in real time. First,
a high computation speedup achieving video processing in real
time. Second, in addition to detection the names of the people
will now appear on the processed video since the face databases
of helper phones will be utilized. The attendees will be able to
interact with the demo in various ways. At start time, they will be
able to modify the input load (through video frame rate) and the
data routing policy. They will be able to observe performance
by inspecting the quality of the analyzed video or a dashboard
which will show system throughput, delay and energy consump-
tion in real time.

Cloud infrastructure mode. We will also demonstrate that
Swing can easily integrate with cloud infrastructure using An-
droid VMs. More specifically we will use an Android VM on a
laptop connected to the same Wi-Fi AP as the devices and will
demonstrate performance for cloudlet and cloud scenarios by
varying the network delay to the Android VM using dummynet.
In this way, the attendees will be able to see how processing in
cloud, cloudlet and proximal devices relate to each other.

4. DEMO REQUIREMENTS
The demo will use Android devices (smartphones, tablets,

smartwatch), a Wi-Fi access point, a monitor and a laptop. At
least two power plugs and a table large enough to place the above
equipment will be needed. Setup time will be minimal. Internet
access would be desirable although not a requirement for this
demo.

5. REFERENCES
[1] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and

P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management.
SIGMOD ’13.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: Elastic execution between mobile device and
cloud. EuroSys ’11.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: Making
smartphones last longer with code offload. MobiSys ’10.

[4] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: Enabling interactive perception
applications on mobile devices. MobiSys ’11.

502




