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Abstract

Modern sensing apps require continuous and intense computation on data streams. Unfortu-
nately, mobile devices are failing to keep pace despite advances in hardware capability. In
contrast to powerful system-on-chips that rapidly evolve, battery capacities merely grow.
This hinders the potential of long-running, compute-intensive sensing services such as im-
age/audio processing, motion tracking and health monitoring, especially on small, wearable
devices.

In this thesis, we present three pieces of work that target at improving the energy

efficiency for mobile sensing.

1. In the first work, we study heterogeneous mobile processors that dynamically switch
between high-performance and low-power cores according to tasks’ performance require-
ments. We benchmark interactive mobile workloads and quantify the energy improvement

of different microarchitectures.

2. Realizing that today’s users often carry more than one mobile devices, in the second
work, we extend the resource boundary of individual devices by prototyping a distributed
framework that coordinates multiple devices. When devices share common sensing goals,
the framework schedules sensing and computing tasks according to devices’ heterogeneity,

improving the performance and latency for compute-intensive sensing apps.

3. In the third work, we study the power breakdown of motion sensing apps on wearable

devices and show that traditional offloading schemes cannot mitigate sensing’s high energy

iv



costs. We design a framework that allows the phone to take over sensing and computation
by predicting the wearable’s sensory data, when motions of the two devices are highly
correlated. This allows the wearable to offload without communicating raw sensing data,

resulting in little performance loss but significant energy savings.
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1

Introduction

The mobile ecosystem is blooming. First, hardware manufacturers such as Apple, Samsung
and Qualcomm regularly release new generations of devices and system-on-chips. Then,
thousands of software developers explore these devices to create services and entertainments.
Meanwhile, the hardware manufactures improve the performance of popular services, such
as graphics and video streaming, in the next generation of their hardware. This cycle of
development stimulates the users to upgrade their devices, generating revenue in economics
and advancements in technology.

The mobile workloads have diverse performance requirements. Some involve frequent
user inputs and are computationally intensive, while others are background services that
minimally uses system resources. Some involve short, bursty interactions, while some
others require long-running, continuous sensing. Mobile hardware advances as mobile
workloads evolve. For example, to enable computational intensive tasks, mobile devices are
supplied with an increasing number of CPU cores, GPU, DSP and various accelerators. For
background services and non-intensive tasks, mobile devices integrate asymmetric multi-
processing (AMP), which achieves both performance and energy efficiency by dynamically

switching between high-performance and low-power cores. For ubiquitous sensing, mobile
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FIGURE 1.1: A survey of the number of cores, memory capacity and battery capacity in mobile
phones released in recent years. From 2012 to 2015, the average number of cores in mobile devices
increases by 107%, the memory capacity increases by 120%, while the battery capacity increases by
only 25%.

devices install sensors such as accelerometer, gyroscope, compass, heart rate monitor and
many more, giving rise to prevalent sensing and context learning algorithms.

Performance is not the only demand from users. An extended battery life is a prerequisite
for the execution of the diverse workloads. Sadly, mobile devices’ battery capacities do
not grow as fast as their processing capabilities. In Figure 1.1, we survey 40 mobile
phones released between 2012 and 2015 (the full list is in Appendix A). These devices
have increasing numbers of cores, memory capacity in gigabytes and battery capacity in
Amp-hour. From 2012 to 2015, the number of cores increased by 107%. This, together
with the implementation of 14nm technology (was 32nm in 2015), the increasing clock
rate, and the big.Little microarchitecture, demonstrates the large improvements in mobile
processors. Similarly, the memory has doubled capacities and data rates (upgraded from
LPDDR?2 to LPDDR4). However, the battery capacity has only improved by 25% in three
years. Consequently, many works from all system stacks have been done, in an attempt to
achieve better performance for various workloads without consuming more energy.

In this thesis, we present three pieces of works that target at improving the energy
efficiency of mobile devices. They investigate different aspects of mobile systems, from the

heterogeneous architectures in mobile processors, to distributed networking frameworks on



mobile phones, to efficient sensing on wearable devices, and discover the sources of energy
inefficiency. Although these problems are in different system domains, the key solution
is always to manage hardware resources such that energy goes to services that use it most
efficiently.

In the first work, we find that existing AMP architectures can exploit inter-application
diversity but fail to exploit intra-application diversity—an opportunity for significant energy
savings. Exploiting the latter requires emerging AMP architectures that share the cache
hierarchy and reduce switch latency by orders of magnitude. To explore the AMP design
space, we propose a set of realistic mobile benchmarks on Android that consider user actions
and inputs. We simulate the benchmarks and show that mobile apps benefit substantially
from responsive AMPs that switch quickly to exploit fine-grained microphases. We find
that adaptive AMPs are responsive and use the little core for up to 47% of the instructions in
mobile apps. Fine-grained switching produces 19-42% energy savings. The largest savings
are seen for user actions, such as scrolling and reading, and for background services, such
as a music service. (Chapter 2)

In the second work, we consider a particular class of apps, in which the computation
is overly intensive for a single device, but multiple devies can collaborate toward aligned
sensing and computing objectives. The sharing of the sensing and computing resources
can largely improve the throughput and latency, while extending individual devices’ battery
lives. We present Swing, a framework that aggregates a swarm of mobile devices for the
new generation of mobile sensing apps. We design and implement Swing to manage (i)
parallelism in stream processing, (ii) dynamism from mobile users, and (iii) heterogeneity
from the swarm devices. We build an Android-based prototype and deploy sensing apps
— face recognition and language translation — on a wireless testbed. We show that Swing
manages multiple devices to meet the real-time performance goals of modern sensing apps,
with negligible overhead on each device. (Chapter 3)

Given that users often carry a wearable device and a phone simultaneously, in the third
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work, we manage the ensemble of the two devices to improve the energy efficiency for
continuous sensing apps on wearables. We design Telepath, a framework that supports
communication-free offloading for wearable devices. With offline training, computational
tasks can be offloaded from the wearable to the user’s phone, without transferring raw
sensing data. The key observation is that when the user is carrying both devices, the sensing
streams on the two devices are highly correlated. By exploiting the correlation, the phone
can estimate the watch’s sensing data and emulate the watch. Our evaluations shows that
with Telepath, the phone performs accurately on activity recognition tasks that are designed
for watches, achieving on average 85% of the watch’s accuracy and 2.5x improvement
relative to using the phone’s raw sensing data, while extending the watch’s battery life by
2.1x. (Chapter 4)
In summary, this thesis presents the following contributions.
* Analysis on the development and trend of mobile processors, their microarchitectures
and detailed power breakdown.
* Realistic mobile benchmarks that consider user interactions and background services.
* Analysis on continuous sensing apps and their power and computational bottlenecks.
* Prototyping of a distributed dataflow system that schedules multiple mobile devices
to assist compute-intensive sensing services.
* Analysis on the energy constraints in wearable devices and power consumption of
activity tracking apps.
* Prototyping a framework that minimizes sensing and computing using sensory of-

floading with a systematic signal processing approach.



2

Evaluating Asymmetric Multiprocessing for Mobile
Applications

Today’s mobile processors attempt to achieve two competing goals at the same time: high
performance and low energy consumption. Traditional symmetric multiprocessing (SMP)
might attain the first goal, but fails the second one — identical cores are not efficient for the
diverse performance requirements of mobile applications. As the number of cores grows,
new organizations of multiprocessing systems are needed.

Table 2.1 details mobile processor evolution in three major mobile system-on-chip
families. Observe that in addition to increasing the number of cores and the clock frequency,
the industry has taken two approaches to address SMP limitations. The first approach,
proposed by Qualcomm, provides independent power rails to each of the four cores, so
that each core can adapt its voltage and frequency according to its workload. The second
approach, taken by Samsung (ARM Big.LITTLE) and Nvidia, uses additional low-power
core(s) to handle less intensive tasks and allow the big cores to be turned off.

This second approach, namely, asymmetric multiprocessing (AMP), provides high

performance with a “big” core and energy efficiency with a “little” one. The system



dynamically switches between big and little execution modes according to workload levels.
However, AMP performance and efficiency greatly depends on the physical organization
of its asymmetric functionalities. Today’s designs loosely couple big and little cores via
shared memory with private L2 caches. When switching, the L2 of the current core must
first flush its dirty cache lines to DRAM. As a result, the responsiveness of switching is
inherently limited by data movement and DRAM latencies. Although they are sufficiently
responsive to coarse-grained system phases, they are incapable for exploring finer-grained
software dynamism.

Mobile app diversity provides AMPs many opportunities to switch. The first type of
diversity is inter-application diversity. Some apps, such as video and web browsers, are
compute-intensive and requires big cores; some apps, such as weather and calendar, require
minimal computation and can be performed on little cores. Loosely coupled big and little
cores that share memory are sufficiently responsive to inter-application diversity.

The second type of diversity exists inside individual apps, intra-application diversity. A
mobile app normally contains more than one “activity window,” allowing users to perform
distinct types of actions such as scrolling, reading and typing. Different actions correspond
to different patterns of computation. We observe that user input often triggers a short burst
of processor activity, executing a few billion instructions in a few seconds. Input-triggered
computation exhibits irregular control flow for which speculative and out-of-order execution
perform poorly. For this type of computation, big cores perform no better, and sometimes
worse, than little cores. Therefore, intra-app diversity provides opportunities for tightly
coupled AMPs that share a cache hierarchy and switch quickly between execution modes.

Designing new microarchitectures for mobile AMP requires a comprehensive analysis
of mobile workloads. Existing mobile benchmarks contain inter-app diversity but neglect
intra-app diversity that arise from user actions and inputs. In this chapter, we propose a
set of mobile benchmarks that specifically include typical user activities and a systematic

method to evaluate performance under different AMP designs. Specifically, we make three
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contributions:

Realistic Mobile Apps. In this chapter, we design and implement a set of realistic
mobile benchmarks that are composed of Android apps. They include typical user actions,
such as launching apps, scrolling down lists, reading contents and typing words. They also
include foreground and background apps, such as games and music players. We integrate our
benchmark apps with gem5 Binkert et al. (2011), a cycle-accurate simulator. To assist future
work on mobile architecture design, we open-source the Android code and the simulator’s
disk images, checkpoints and configurations Fan (2015).

Responsive Asymmetric Multiprocessing. With our mobile benchmarks, we evaluate
three AMP designs: 1) loosely coupled big and little cores with shared memory, 2) tightly
integrated physical cores with a shared last-level cache, and 3) a single physical core with
an adaptive datapath and shared cache hierarchy.

Efficient Big-Little Computation. We find that adaptive AMPs are responsive and use
the little core for up to 47% of the instructions in mobile apps. Fine-grained switching
produces 19-42% energy savings. The largest savings are seen for user actions, such as
scrolling and reading, and for background services, such as a music service.

Collectively, we study realistic benchmarks that reflect intra-application diversity to
show that emerging AMP architectures can save substantial energy without harming the

performance of mobile applications.



Table 2.1: Specs of Mobile Processors

SoC Model CPU Freq L1 Cache L2 Semi- Launch
Cache conductor
Nvidia Tegra 2 Dual-Core ARM Cortex-A9 1.2GHz 32KB/32KB 1IMB 40nm 2011
Nvidia Tegra 3 Quad-Core ARM Cortex-A9 1.6GHz 32KB/32KB 1IMB 40nm 2012
(4-Plus-1)
Nvidia Tegra 4 Quad-Core ARM Cortex-A15 | 1.9GHz 32KB/32KB 2MB 28nm 2013
(4-Plus-1)
Nvidia Tegra K1 Quad-Core ARM Cortex-A15 | 2.3GHz 32KB/32KB 2MB 28nm 2014
(4-Plus-1)
Qualcomm Snapdragon S3 Dual-Core Scorpion 1.7GHz 32K/32KB 512KB 45nm 2010
Qualcomm Snapdragon S4 Quad-Core Krait 1.7GHz 4KB/4KB L0 2MB 28nm 2012
+ 16KB/16KB L1
Qualcomm Snapdragon 800 | Quad-Core Krait 2.26GHz | 4KB/4KB LO 2MB 28nm 2013
+ 16KB/16KB L1
Qualcomm Snapdragon 805 | Quad-Core Krait 2.7GHz 4KB/4KB LO + | 2MB 28nm 2014
16KB/16KB L1
Samsung Exynos 4 Dual-Core ARM Cortex-A9 1.4GHz 32KB/32KB 1IMB 45nm 2011
Samsung Exynos 4 Quad-Core ARM Cortex-A9 1.6GHz 32KB/32KB 2MB 32nm 2012
Samsung Exynos 5 Qual-Core ARM Cortex-A15 | 1.9GHz/ | 32KB/32KB 2MB/ 28nm 2013
+ Quad-Core ARM Cortex-A7 | 1.3GHz 512KB
Samsung Exynos 5 Qual-Core ARM Cortex-A15 | 2.1GHz/ | 32KB/32KB 2MB/ 28nm 2013
+ Quad-Core ARM Cortex-A7 | 1.5GHz 512KB

2.1 Mobile Benchmarking

Mobile apps are generally less computationally intensive; bursts of processor activity are
often triggered by user inputs. Moreover, mobile apps often contain more than one activity
window in order to provide multiple functionalities and let users perform distinct types of
actions. Thus, an ideal benchmark set should capture not only the different performance
requirements between apps, but also various user actions inside each app.

Existing mobile benchmarks neglect intra-app diversity, considering only end-to-end
app execution. For example, BBench Gutierrez et al. (2011) provides a set of webpages,
automatically loaded to test mobile web browsing behaviors. It also includes an interactive
game which runs only on testbeds and requires manual inputs to execute, preventing the
usage of cycle-accurate simulators.

MobileBench Pandiyan et al. (2013) includes photo viewing and video playback which
are not interactive. Moby Huang et al. (2014) provides popular mobile apps such as email,
word processing, maps and social network. Typical operations in such apps, such as loading
webpages and opening files, were simulated and do not include user inputs (click, scroll,

type) that interact with apps. In contrast, we create a set of benchmarks for mobile apps that



focus on typical user actions.
2.1.1 Application and User Actions

Consider the apps inside our phones. Some are simple (e.g., weather, photo viewer, or
reader) and require only one type of user action, if any. Other apps, however, provide more
functionality and allow users to perform multiple types of actions frequently. For example,
users of a social app, such as Twitter, may frequently switch between multiple actions.
These actions may include scrolling through a list of tweets, reading the details of a tweet,
and typing a tweet. Reading does not require the mobile processor to do anything other
than display content, but scrolling or launching new activities may trigger a sequence of
computation. We expect different performance requirements for different actions.

To demonstrate this intuition, we conduct an empirical study. We use a hardware
performance monitoring unit to record, in real time, the number of instructions committed
per cycle (IPC) when a human user launches and uses Twitter (version 5.8.1 on Android
JellyBean 4.3) on an ARM Versatile Express development board with one Cortex-A15
core activated ARM (2012). During a 60-second session, the user performs several actions
— launching new activity windows to open tabs or settings, scrolling to see more tweets,
reading, and typing. We record user inputs and corresponding timestamps by reading the
kernel input driver file and tracing click events.

Figure 2.1 presents selected user actions and the corresponding IPC time series. IPC
shows distinct patterns for each action. Launching an activity window introduces a burst
with a maximum IPC of 1.7. Scrolling produces a smaller burst with a maximum IPC of 1.5.
Reading exhibits no computation except for the activity due to background sync tasks, which
produce an average IPC of 0.2. Typing causes sustained IPC fluctuation. Differentiating
such actions is important. If we were to view the Twitter session as a monolithic benchmark,
end-to-end measurement would lose the rich information contained in various user actions.

In our setting, the mobile device is running the full system, with regular background



tasks. For example, the IPC spikes when reading are caused by background network threads
from the stock email client. This setting represents realistic mobile device usage and we

will reproduce the same setting in our simulations.
2.1.2  Microbenchmarks

We create a set of microbenchmarks to represent typical user actions in a social app. In

particular, the microbenchmarks correspond to the four actions in Figure 2.1.

* Launching. We create a set of activities and inject touch screen events that switch
between them. A touch event is injected every 1 second to mimic a user launching

different activity windows (e.g., clicking to view tweet details).

* Scrolling. We create a listview that automatically extends itself. Automatic swipes
are injected to scroll down the list. A swipe is injected every 5S00ms to mimic a user

quickly scrolling down and browsing a list of content.

* Reading. We display an activity with text and pictures (e.g., reading a tweet). No

specific inputs are injected.

* Typing. We create a textview and inject keyboard events to type (e.g., writing a tweet).

Keyboard events are injected at a frequency of two letters per second.

To implement these benchmarks, we create “activities” within Android, loading activity
text and pictures locally. We inject touches, swipes, and keyboard events using Android
Instrumentation, an API that allows app developers to test their activity windows with
emulated user behavior. This method requires access to application source code; our
benchmarks are open-sourced.

Other methods use Android MonkeyRunner or write I/O events to the Linux input driver
file. However, these methods require a time-stamp for each injected event and precisely
specifying the time-stamp to trigger the right event during cycle-accurate, microarchitectural
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simulation is difficult. Alternatively, AutoGUI supports record-replay through VNC and

may be useful once it becomes public Sunwoo et al. (2013).
2.1.3 Macrobenchmarks

In addition to microbenchmarks for input-triggered computation, we include two foreground
tasks, a game and a mobile web browser. We benchmark a game in which the user controls a
submarine by touching the screen. The game uses 2D graphics, which exercises the processor
and neglects the GPU. We benchmark the web browser and use a script, BBench Gutierrez

et al. (2011), that automatically loads local webpages.

Table 2.2: Choices of Benchmarks

Name | Scope | IPC(B) | IPC(L) | Inputs
Launching 1.01 0.80 Periodic
Scrollin , 0.90 0.70 Periodic
Readingg MicroBenchmarks 0.84 0.70 None
Typing 1.05 0.76 Frequent
BBench Web Browsing 0.98 0.76 Periodic
Music Background Task | 0.76 0.63 None
Submarine | Gaming 1.12 0.80 Periodic
SunSpider | Javascript 1.09 0.79

Linpack CpPU 1.26 0.95

To compare mobile workloads against compute-intensive ones, we further deploy
Oxbench Chang (2013) for testing smartphone performance. This open-source bench-
mark suite includes a Java implementation of Linpack and a Javascript benchmark called
SunSpider.

Table 2.2 lists our benchmark and application suite. We classify benchmarks by the
frequency of user inputs. We deploy the benchmarks on the gem5 simulator — see Sec-
tion 2.3.2 for detail. We provide deployment checkpoints, disk images, and methods in our

open-source project Fan (2015).
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2.2 Asymmetric Mobile Processors

Based on the level of sharing in the cache hierarchy, AMP organizations can be classified
into three categories: shared memory, shared last-level cache, and shared first-level cache.
In this section, we first explain existing (and emerging) AMP systems, and abstract them

into our evaluation models by quantifying their switching costs.
2.2.1 Shared Memory

Both Samsung and Nvidia have adopted AMP in their SoCs. However, in addition to the
number of cores and their specifications, these two processors have some major differences.

Differences. The key of AMP is the performance/power gap between the big core and
the little core. To achieve this gap, Samsung and Nvidia chose different methods. In Nvidia
Tegra, the four big cores and one little core are identical ARM Cortex-A9 CPUs, but the cores
are fabricated in different process technologies. The big core uses a general process (G) and
a little core uses a low power one (LP). G transistors are conventional transistors, switching
quickly but leaking more static power. LP transistors leak less but switch slowly nvi (2011,
2013). On the other hand, Samsung Exynos uses different microarchitectures for big and
little cores. The big ones are out-of-order ARM Cortex-A15 CPUs and the little ones are
in-order ARM Cortex-A7 CPUs.

The two SoCs also differ in their switching management. Nvidia Tegra implements a
hardware switch controller, and thus the switching between big and little is OS transparent.
In contrast, Samsung Exynos rely on the Linux kernel to schedule transitions.

Similarities. Despite all the differences, both systems share some common characteristics.
First, big cores are identical and share an L2 cache; little core(s) are identical and share
another L2 cache. Therefore, both systems can be viewed as one big cluster with one little
cluster, each with a private last-level cache (LLC). Second, either the big or little cluster is

active at any given time. Cluster have separate power domains that allow big cores and their
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caches to power down when small cores are active, and vice versa.

Based on these characteristics, we abstract these two AMP processors into a model with
one out-of-order core and one in-order core, which have private LL.Cs and shared DRAM.
A big/little switch transfers a thread from one core to another. Because the LLCs of the
big and little clusters are not shared, in order to ensure coherence, the dirty cache lines of
the currently active LLC are flushed to DRAM before switching. This delay dominates the
switching latency.

Switching Cost. The switching delay can be computed by the size of dirty LLC lines
divided by the DRAM bandwidth. That is, if the LLC capacity is 512KB and memory
bandwidth is 12.8GB/s, assuming on average 25% of cache lines are dirty at any given time,!
a 1GHz core must wait 10K cycles (= 25% x 1GHz x 0.5MB /12.8GBps) for the switching
to complete. Although it optimistically assumes transfers at peak memory bandwidth, 10K
cycles is a useful, order-of-magnitude estimate of switching latency for asymmetric cores
that share main memory. In our evaluations later, we use this number to evaluate this AMP
category.

Summary. Existing systems-on-chips have proved that AMP with shared memory is
cost-efficient — tuning operating and fabrication parameters for existing core designs would
be sufficient to build such processors. Switching between big and little is responsive to
coarse-grained system phases (e.g., standby/active mode of the phone), but further flexibility

is constrained by switching overheads.
2.2.2  Shared Last-Level Cache

Although current asymmetric mobile processors share memory, we envision next-generation
AMP with shared last-level cache (LLC). Compared with shared memory, shared LLCs
improve performance in several ways. First, the active core benefits from more cache lines

since the aggregate size of the shared LLC is larger than that of a statically partitioned one.

! This number is measured by our mobile workloads
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FIGURE 2.2: Asymmetric multiprocessor organizations, each with different big/little transition latency:
(a) shared memory requires 10,000 cycles, (b) shared last-level cache requires 500 cycles, (c) shared
first-level cache with adaptive datapath requires 30 cycles.

For example, the ARM Big/Little allots 1IMB and 0.5MB of L2 for its big and little cores,
whereas a shared cache would provide 1.5MB to be used by active cores ARM (2012).
Switching Cost. Second, a shared LLC reduces switching latency, because compared
with flushing dirty lines of a large LLC into DRAM, flushing smaller private caches into the
LLC is much faster. If 25% of lines in a 32KB L1 cache are dirty, flushing the L1 into the
L2 requires 500 cycles (= 25% x 32KB / 16B/cy). By allowing switchings to avoid writing
to main memory, the shared LLC reduces switching latency by two orders of magnitude.
Summary. Although one might argue that implementing shared LLC for AMP requires
much design effort, previous works have demonstrated that such an architecture requires
only modest design costs, unless it needs to be tailored to a specific workload mix Lee and
Brooks (2007a, 2008b); Guevara et al. (2014a). With reduced switching latencies, such
an AMP processor can respond to coarse-grained application phases, such as periodic

behaviors with distinct resource demands Kumar et al. (2003).
2.2.3 Shared First-Level Cache

If sharing the last-level cache is fast, sharing the entire cache hierarchy is faster. Recently
proposed microarchitectures adapt the datapath between out-of-order (OOOQ) and in-order
(I0) execution, thus providing big and little virtual cores in a single physical core. The
cache hierarchy and its contents remain useful and valid across datapath transitions. In

effect, big and little cores share the cache hierarchy, beginning with the L1.
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To design an adaptive core, the architect begins with a high-performance datapath that
implements dynamic instruction scheduling. OOO execution requires register renaming,
issue queues with wake-up and selection logic, and a reorder buffer. For adaptivity, the
architect then adds logic and multiplexors to bypass OOO structures and execute 10. Phys-
ical registers might power off, or the issue queue might switch between CAM and FIFO
blocks. Two recently proposed adaptive cores for general-purpose computing are noteworthy.
MorphCore adapts from an OOO core into a highly multi-threaded IO one Khubaib et al.
(2012). Composite Cores uses a shared front-end that feeds instructions into one of two
backends, one IO and the other OOO Lukefahr et al. (2012a).

Switching Cost. Transition latency is negligible. Datapath transitions affect only ar-
chitected state in registers, not the cache hierarchy. Two implementations are possible. In
the first, a transition flushes the pipeline, powers off OOO structures such as the physical
register file, and resumes instruction fetch in IO mode. Transition latency is proportional to
instruction window size. If the OOO datapath commits two instructions per cycle, flushing
a pipeline with a half-occupied, 192-entry reorder buffer requires approximately 50 cycles.
In a second implementation, the datapath explicitly spills and fills architected state to and
from the L1 cache, which requires 30 cycles in MorphCore.

Summary. This emerging class of adaptive microarchitectures motivates a fresh per-
spective on asymmetric processors and their potential for improving efficiency in mobile
computing. Since a big/little transition can occur every few hundred cycles when each
transition requires only tens of cycles, the adaptive datapath gives an asymmetric proces-
sor agility with which it can respond to an application’s fine-grained microphases, e.g.,
instruction throughput fluctuationsLukefahr et al. (2012a).

Figure 2.2 summaries the three AMP organizations above. The lower the switching
cost, the more responsive the AMP can be to dynamism in mobile workloads. With greater
little core utilization, energy savings are expected to be larger. In the rest of this paper,
we evaluate the benefit of these three AMP designs according to their distinct switching
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latencies.
2.3  Methodology

We simulate, with gem5, varied AMP architectures to understand the impact of intra-app
diversity on energy efficiency. We assume that only one core, either big or little, is active at
any given time. We quantify the maximum percentage of instructions that can be executed on
the little core that safeguards performance (i.e., instructions per cycle) yet improves energy
efficiency. We consider an oracle that collects processor activity during app execution and,
offline, evaluates big-little transitions with varying specifications and costs, as well as with
perfect knowledge of the future.

First, we divide time into intervals. At the beginning of every interval, the oracle
determines whether the other core would offer better performance or efficiency. For example,
if the big core is currently active, the oracle switches to the little core in the next interval, if
IPC(little) is similar to IPC(big). Three parameters affect the calculation of IPC.

Switching interval, measured in instructions, determines how frequently the oracle
makes a switching decision. For example, suppose the interval is 1000 instructions and
the oracle knows that, for the next 1000 instructions, IPC(little) = IPC(big) = 1. The
little core executes instructions more efficiently with no performance penalty and the oracle
considers a switch. Yet this switching decision is not final because, even if the little core
seems capable, switching requires data migration and an additional delay that may cause
performance to be lower than expected.

Switching cost, measured in cycles, quantifies the additional delays. Following the
previous example, suppose that a big-little switch requires 500 cycles. To complete the next
1000 instructions, the little core requires 1500 cycles after accounting for switching cost
whereas the big core requires only 1000. We define

[Interval Insns]
[Interval Insns]/TPC,jq + Cost’
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which is the IPC after accounting for switching cost. In the previous example, performance
clearly suffers since IPC,.,, = 0.7 and IPC,4 = 1.0. Therefore, the oracle might not
consider a switch. However, this is still not the final decision because a switching scheme
might trade performance losses for efficiency gains.

Performance penalty specifies the performance loss that can be tolerated after switch-
ing. The oracle switches from big to little as long as IPC(little) is greater than or equal
to penalized performance IPC(big)/Penalty. In our recurring example, the oracle would
switch only if the penalty tolerance is at least 1.5x. Altogether, the switching interval,
switching cost, and performance penalty define a space of control parameters for switching

between big and little cores.
2.3.1 Oracular Switching

With the parameters defined, the oracle identifies all switch points within the app with the
following procedure. It first compares big and little IPC for each instruction interval to
find those that satisfy conditions for a switch with respect to the penalty tolerance. For the
original IPC time series in Figure 2.3(1), the oracle marks the time serials with “big” and
“little” flags which suggest the most beneficial executing mode for each interval. If adjacent
intervals are marked differently, they define an initial switch point. See points A and B in
Figure 2.3(2).

The oracle then examine each big-to-little switch point based on the switching cost.
Consider switch point A. Suppose that immediately after the switch, interval 7;, reports
IPC(big) = 1.0 and IPC(little) = 0.8. After applying a 500-cycle switching cost, [IPC(little) =
0.57, which exceeds the tolerated performance penalty such that the little core is no longer
good for interval 7;.. The oracle revises its decision, marks interval 7, big, and moves on to
consider whether 7, 1 should use the little core.

Similarly, the oracle examines little-to-big switch points. Consider point B. After

applying a 500-cycle switching cost to interval ¢;, IPC(big) < IPC(little) x 1.25 and the big
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Ficure 2.3: Switching based on oracle knowledge

core is no longer suitable for interval ¢;. The oracle revises its decision, marks interval ¢, little,
and moves on to subsequent intervals. After applying switching costs, the oracle obtains
final switch points that differ from the initial ones — see points C and D in Figure 2.3(3).
The final marks and switch points dictate total performance loss and energy savings.

The final analysis marks more intervals as little because switching to big is costly; the
big core’s performance advantage must be large enough to offset switching delays. Often, an
initial little-to-big switch is discarded in the final analysis and the little core is used instead.
Even though the little core’s performance is low, the big core’s performance is even lower
after accounting for switching costs (e.g., interval ¢;,; in Figure 2.3(3)). As costs increase,
an AMP might use the little core more often because once a little core is used, high costs

make a transition back to the big core hard to justify.
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Table 2.3: Big/Little Specs
Freq. | Width | #ALU | ROB | PRF | L1 I/D | L2 Cache

Big 1GHz 3 2 192 | 256 | 32KB | 512KB
Small | 1GHz 3 1 32 96 | 32KB | 512KB

2.3.2  Simulation

Each mobile benchmark is installed in an Android (version 4.0.2) system image that is
checkpointed immediately before the launching of a benchmark app. To study opportunities
for fine-grained transitions, we collect performance statistics for intervals of 1000 instruc-
tions. The oracle uses IPC reported from big and little executions to determine the optimal
execution mode for each interval.

Because the hardware register counters on the ARM development board cannot sup-
port nanosecond-level measurements, we use gemS Binkert et al. (2011), a cycle-accurate
simulator for evaluation. Gem5 supports full-system Android simulation for our mobile
benchmarks. In Table 2.3, we specify out-of-order and in-order cores for big-little asymme-
try.

We model an in-order core with issue logic that enforces first-in, first-out order. Without
dynamic instruction scheduling, the datapath has fewer instructions in flight. Our datapath
shrinks the physical register file and the reorder buffer to reflect less demand for these
structures, but a more efficient in-order design would bypass them entirely. Our big and little
configurations capture the out-of-order performance advantage and the in-order efficiency
advantage.

Power. We use McPAT Li et al. (2009) to estimate dynamic power for big and little
cores. Figure 2.4 shows the power breakdown for big and little cores when running BBench.
Our in-order core saves much of its power in the rename because it reduces the size of
the physical register file and the reorder buffer. However, because the rename was not

completely removed, a small amount of power continues to be dissipated by this unit. Thus,
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power and energy savings that we report are conservative; an in-order core designed from
first principles forgoes a rename unit and would dissipate even less power.

We compare power numbers from McPAT against power measurements collected, using
on-board power meters, from an asymmetric ARM processor comprised of Cortex A15’s
and A7’s ARM (2012). When one big core is active and running BBench, voltage varies
from 0.9 to 1.05V and average power is 1.10W. When one little core is active, voltage is
0.9V and average power is 0.36W. The big-little power ratio is approximately 2.5x.

MCcPAT reports a lower ratio of 1.7x. The simulated little core differs from the ARM
Cortex A7 in two regards — rename and superscalar width. If the simulated little core were
to bypass rename, McPAT would report a big-little power ratio of 2.6 x, which is more
consistent with our ARM measurements. Without rename, our little core dissipates more
power due to its wider datapath; it issues up to three instructions per cycle whereas the A7
issues only one. We evaluate sensitivity to superscalar width in later sections.

Finally, static power plays a large role in asymmetric processor efficiency. When the
big core is active, the little core is idle and dissipates static power (and vice versa). The
processor cannot use C-states to eliminate static power since that would require separate
power supplies and milliseconds for wake-up. Instead, an asymmetric processor reduces

dynamic power with idleness and reduces static power by power-gating with low-leakage
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PMOS headers, which wake in a few cycles.

We estimate static power as 30% of dynamic power or, equivalently, as 23% of the total.
This estimate is consistent with recent processor implementations: IBM Power 7 static
power is 25% of the total in a 45nm technology Zyuban et al. (2011). Circuit designers and
CAD optimizers tune supply and threshold voltages to balance static and dynamic power.
If static power were too large a fraction of the total, designers would increase Vth at the

expense of circuit speed Horowitz et al. (2005); Nose and Skurai (2000).

2.4 Evaluation

We evaluate three asymmetric processor organizations: shared memory, shared last-level
cache, and shared first-level cache with an adaptive datapath. By abstracting these designs
into switching costs, we compare their energy savings for our suite of mobile benchmarks.
We also assess sensitivity to other parameters such as interval length, IPC prediction
accuracy, superscalar width, and voltage/frequency.

Parameters. Initially, we set the interval length to be 1000 instructions, which illustrates
microphase behavior Lukefahr et al. (2012a) and exercises the adaptive processor with a
shared first-level cache. Later, we explore little core utilization and its sensitivity to this
parameter.

Switching costs are dictated by data movement costs in each asymmetric processor
design strategy: (a) 10K cycles for shared memory, (b) 500 cycles for shared last-level cache,
and (c) 30 cycles for shared first-level cache. Although switching cost normally includes
delays from data movement and wake-up, we assume data movement delay hides wake-up
delay as is the case when power-gating.

We consider a range of tolerable performance penalties, measured in terms of the
performance ratio between big and little cores. If the performance penalty were to exceed

this ratio, little core utilization would reach 100%. Our evaluation sets the penalty below
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this ratio, ranging from 1.00 to 1.45.

Questions and Metrics. Our evaluation answers three questions about asymmetric
multiprocessors for mobile workloads. First, is it necessary to have a little core? To quantify
little core utilization, we use the method described in the previous section to find all the
intervals that are marked little and compute the percentage. Second, is the little core too
slow? We calculate total slowdown to quantify the end-to-end app delay when permitting
little core execution. Third, what can we gain from the little core? We calculate total energy
savings, which measures the ratio of energy consumed by big-little cores to the ratio of

energy consumed by a big core alone.
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Ficure 2.6: Utilization of the little core for scrolling

2.4.1 Case Study with Scrolling

Scrolling is a fundamental microbenchmark for mobile phones. It is characterized by
periodic user inputs that trigger bursts of computation. Once the user touches the screen,
the processor is active for only two to three seconds to execute a few billion instructions. In
many instruction intervals, the little core performs as well as, if not better than, the big core.

For example, Figure 2.5 illustrates the impact of branch mis-prediction. Bursty compu-
tation when scrolling means that branch predictor training is less effective and speculative
execution is often wasted in the big core. Such short and bursty computation, also ob-
served in game and web browser benchmarks, has a direct impact on how an asymmetric
multiprocessor is exploited.

Lower switching costs increase little core utilization, as illustrated by Figure 2.6. The

adaptive core (30-cy) and shared-LLC (500-cy) strategies use the little core for 20-25% of
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Ficure 2.7: Total energy saved, relative to big core energy

instruction intervals, even under stringent constraints on performance penalties. For short
intervals, today’s shared-memory (10K-cy) strategy is ineffective and utilizes the little core
for only 5% of intervals.

The cross-over point between 30-cy and 500-cy strategies highlights a counter-intuitive
observation. Sometimes, the 500-cy strategy uses the little core more often. This is because
switching back to the big core is difficult when switching costs are high and performance
penalties cannot be tolerated — see Section 2.3.1.

Figure 2.7 shows energy savings of up to 30% from responsive AMPs. Recall that our
power analysis for the little core is conservative, which makes the reported energy savings
conservative as well. Big and little energy is calculated by multiplying core power and
the number of active cycles in each mode. In addition, switching energy is calculated by
multiplying big core power and the number of cycles spent switching.

For short intervals, there is no case in which today’s AMPs are effective. The 10K-cy
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strategy performs worst for all three metrics, showing low utilization and low energy saving.
Containing only 1,000 instructions, each interval is too short when compared to the switch

cost and opportunities to switch are limited.
2.4.2  Generalizations with Benchmark Suite

For scrolling, the little core can be well utilized and save energy without harming perfor-
mance. To generalize this conclusion, we present results for little core utilization and energy
savings across all the benchmark apps. To simplify the illustration, we fix the performance
penalty to be 1.15x. In practice, the value of the performance penalty can be tuned to achieve
certain requirements (e.g., an energy budget).

Figure 2.8 shows utilization of the little core. Mobile apps are more little-core friendly
than computationally intensive benchmarks such as Javascript and Linpack. Apps that do
not process user input, such as Read and Music, require little processor activity and utilize
the little core most. Other apps receive periodic user input that demands computation,
such as Launch and Scrolling, but still use the little core 15-24% of the time. Typing is a
notable exception and uses the big core to process frequent user inputs. The 30- and 500-cy
strategies use the little core often (24% and 22%) while the 10K-cy strategy uses it less
(9%).

Figure 2.9 shows total slowdown when the tolerable performance penalty is set to 1.15x.
Fast, fine-grained switches between execution modes can produce negative slowdowns (i.e.,
speedups) because the little core can out-perform the big one (e.g., due to branch mis-
prediction penalties). Slow, coarse-grained switches may harm performance but slowdowns
are capped by the penalty tolerance of 1.15x.

Figure 2.10 shows energy savings. Both the 30- and 500-cy strategies reduce energy
by as much as 38%. Reading and Music are much less computationally intensive than
other tasks, providing the most opportunities for the little core. The three strategies offer

energy savings of 24%, 22% and 6%, on average, when the penalty tolerance is stringent.
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When performance targets are relaxed and permit up to a 1.45x penalty, the 30- and 500-cy

strategies offer energy savings of 31% and 25% (average), and 42% and 39% (best case).
2.4.3 Sensitivity to Management Parameters

Interval Length. The interval length determines the switching granularity. Figure 2.11
shows the energy savings for varied interval lengths. The brighter the color, the greater the

energy savings. The 30- and 500-cy strategies enable the shortest intervals and provide the
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greatest savings; the top-left corner is brighter. The longest intervals do not reduce energy
costs; the right-most columns are darker. The 30- and 500-cy strategies are insensitive to
interval length, but the 10K-cy strategy saves energy only when interval length is greater
than 10K instructions.

Apps that process periodic user input, such as Launching, Scrolling, and Submarine, are
sensitive to switching interval and cost. As the interval length increases, the performance
ratio between big and little cores in each interval approaches the average ratio across all
intervals (1.0 to 0.7) and reduces switching opportunities. When the interval includes 10M
or 100M instructions, the little core is rarely used and energy savings are low as indicated by
the dark columns on the right. Finally, compute-intensive apps, such as Linpack, Javascript
and Typing, are insensitive to interval and cost — they rarely use the little core and save little
energy.

Performance Prediction Error. Thus far, our oracle-based evaluations have demon-
strated little core utilization and its energy efficiency. In reality, perfectly knowing processor
performance ahead of execution is impossible. It is possible, however, to build a model that
predicts the performance of the big/little core with historical statistics obtained from hard-

ware performance counters. The predicted IPCs can then be used to determine if a switch
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should happen for the next instruction interval. Such prediction models introduce error, and
in this subsection, we discuss the impact of misprediction to the little core utilization.

To model the relationship between inputs from various hardware performance counters,
linear regression models are often used. In such models, error terms are independent and
identically distributed, following a normal distribution with mean of zero and variance of
o2, To capture this effect in our oracle, we add Gaussian white noise (mean = 0, sd = 0.06) to
the oracle’s IPCs, mimicking predicted IPCs with errors with a distribution that is carefully
tuned to correspond with related work Lukefahr et al. (2012a). We repeat this process ten
times and, each time, recalculate little core utilization.

Figure 2.12 shows the impact of prediction error on little core utilization. Each bar
shows oracle-based utilization while each circle shows prediction-based utilization. Most

of the time, the impact of misprediction is negligible. An outlier exists in the 10K-cycle
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strategy running Submarine Game. Utilization with predicted IPCs tend to be much lower
than that of the oracle-based result.

We explain the outlier as follows. The 10K-cy strategy with 1K switching interval
normally leads to modest utilization of the little core. Utilization that is larger than expected
(e.g., nearly 20% for Game) is explained by rare cases in which the oracle switches from
big to little and then stays in little mode for long periods due to high switching overheads.
Prediction errors avoid becoming stuck on the little core by removing the rare big-to-little
switches.

Other than this outlier, the predicted little core utilizations for 30- and 500-cycle strategies
deviate from the oracle by a maximum of 10.4%. This means that our oracle-based evaluation
represents a realistic estimation of little core utilization. Based on existing prediction

methods, the energy savings in our results are achievable.
2.4.4  Sensitivity to Design Parameters

Superscalar Width. By reducing the width of the little core, the performance gap between
big and little will grow and little core’s utilization will decrease. On the other hand, energy

savings might increase because the little core now dissipates much less power. Figure 2.13
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shows utilization of a 1-wide little core when the tolerable performance penalty is 1.15x.
Compared with Figure 2.8, little core utilization decreases across all AMP design strategies
and mobile benchmarks due to the larger performance gap. Figure 2.14 shows that, although
reducing the width reduces the little core’s dynamic power from 1.85W to 0.96W, the little
core is rarely used and power savings are modest. Thus, the little core must be designed to
balance performance and energy savings.

Voltage and Frequency. Existing AMPs provide individual power supplies for big
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and little cores, which are organized into clusters, allowing the little and big cores to use
different clock frequencies. We evaluate the case when the little core’s frequency is S00MHz
instead of the big’s 1GHz.? Since frequency differs, we no longer use IPC to determine
switch points. Rather, we scale IPC by the frequency difference and measure instructions
per second (IPS) such that IPS(big) = IPC(big)/1 and IPS(little) = IPC(little)/1.25, where
1.25 is the slowdown at 800 MHz.

Figure 2.15 shows little core utilization if 1.15x performance penalty can be tolerated.
Reducing little core performance harms its utilization. Although dynamic power falls by
half, since voltage can be reduced linearly with frequency, Figure 2.16 shows that most
mobile apps do not benefit from reduced frequency.

In summary, reducing little core performance in return for power savings, either through
smaller superscalar width or slower clock frequency, would harm the little core’s energy
efficiency provided. To maximize energy savings, the little core should provide performance
within some competitive range of the big core’s so that a switching mechanism can exploit

program dynamism at fine granularities.

2 This difference corresponds to big-little configuration in the ARM Versatile Express development
board ARM (2012).
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2.5 Related Work

Heterogeneous multicore architectures, due to their exceptional energy efficiency, have been
studied extensively. Previous works have focused on workload assignment Annavaram et al.
(2005); Kumar et al. (2004); Guevara et al. (2013), scheduling Saez et al. (2010); Li et al.
(2007); Koufaty et al. (2010); Fan et al. (2016), thread performance prediction Shelepov and
Fedorova (2008); Van Craeynest et al. (2012), and design space exploration Van Craeynest
and Eeckhout (2013); Guevara et al. (2014b); Lee and Brooks (2007b). The rise of core
fusion Ipek et al. (2007); Kim et al. (2007) and adaptive out-of-order cores Lee and Brooks
(2008a); Lukefahr et al. (2012a); Khubaib et al. (2012) requires computer architects to
rethink heterogeneity and management.

The scheduler for heterogeneous cores must bypass the operating system and make deci-
sions within short time windows. Predicting the next interval’s performance is challenging
as performance variation increases when the interval length shortens Padmanabha et al.
(2013). Researchers have proposed dynamically estimating app performance on another
core type Lukefahr et al. (2012a); Shelepov and Fedorova (2008); Van Craeynest et al.

(2012). Briefly, the IPC on the other core is estimated with a profiled linear model that
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takes memory-level parallelism, instruction-level parallelism, and hardware performance
counters (IPC, cache hits and misses, branch mispredictions, etc.) as inputs.

Our work is inspired by previous works in heterogeneous processing for mobile plat-
forms. Little Rock Priyantha et al. (2011) prototypes a sensing platform in which a small
processor is dedicated to always-on sensor stream processing. GreenDroid Goulding-Hotta
et al. (2011) uses specialized, low-power cores to accelerate the Android software stack.
Zhu and Reddi Zhu and Reddi (2013) analyze the loading of webpages on big and little
mobile processors, and they propose to predict and schedule the loading of webpages onto

heterogeneous cores according to webpage complexity.
2.6  Conclusion

We propose a set of interactive mobile benchmarks that captures intra-app diversity, which
arises from frequent user inputs. Deploying these benchmarks on Android systems and the
gem3 simulator, we explore three asymmetric multiprocessing (AMP) strategies. Strategies
with tightly-coupled big and little cores, which share the cache hierarchy, can efficiently
utilize little cores and reduce energy by up to 42% for interactive apps. Our benchmarks
are open-sourced to help future mobile architecture research Fan (2015). Our evaluation

illustrates the rich design space underlying asymmetric multiprocessing for mobile phones.
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3

Swarm Computing for Mobile Sensing

In this chapter, we explore the potential of distributed computing on multiple mobile devices
and pursue the performance demanded by next generation apps. We consider a particular
class of apps in which co-located users collaborate toward aligned sensing and computing
objectives.

Specifically, consider the following usage scenarios that illustrate our application domain.
Suppose a group of app users travel to a foreign country in which a different language is
spoken. The users wish to better understand native speakers they encounter on the road, by
performing real-time voice recognition and translation on their mobile devices. Because the
travel companions share these objectives, they collaboratively sense and analyze the audio
streams — one user senses audio signals and distributes them for processing, while some
users compute for recognition and some others for translation. In another example, suppose
multiple users comprise a security team that patrols a route. The users wish to perform
face detection and recognition on their mobile devices. The team collaborates — one user
senses and distributes video frames to others for detection and recognition.

In these usage scenarios and many others, Internet connectivity is sparse and users

prefer to rely on local assets rather than the cloudChun et al. (2011); Cuervo et al. (2010).
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Moreover, the mobility of the users forbids the usage of stationary infrastructures such as
cloudletSatyanarayanan et al. (2009); Ra et al. (2011). Such circumstances leave users with
no choice but either run the app entirely on their own devices, or collaboratively using the
surrounding devices.

We present Swing (SWarm computing for mobile sensING), a framework that aggregates
a set of mobile devices from multiple users to collaboratively compute a shared answer. We
view such a collection of nearby mobile devices as a swarm, and by utilizing it dynamically,
the framework improves performance, efficiency, and scalability for mobile sensing applica-
tions that require intense computation on sensed data streams. Specifically, we make the

following contributions:

1. Design and implement the system. We build a distributed computing framework for
compute-intensive mobile sensing applications. We detail Swing’s programming model and
workflows, which implement stream processing for the swarm devices. Our design provides

efficient APIs for programmability, allowing sophisticated sensing apps to be ported easily.

2. Design swarm management policies. Swing’s mechanisms support a wide spectrum of
management policies for various performance objectives. We illustrate several strategies
that distribute app computation across mobile devices, and manage data flow according to
heterogeneous device capability. Further, the framework dynamically handles mobility of

the devices, as well as their joining and leaving.

3. Evaluate the system with sensing apps. On our Android-based Swing prototype, we
deploy two sensing apps — face recognition and language translation — on a wireless testbed
with up to nine heterogeneous, mobile phones and tablets. Collectively, our results show
that Swing efficiently manages multiple devices to meet the real-time performance goals of

modern sensing apps with negligible processing overhead.
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3.1 The Case for Swing

Aligned Incentives — Why should I participate? We target at application scenarios where
each user wants results from the computation. The only question is whether she leverages
the swarm resources or relies on her own device. Our preliminary study shows that an
individual mobile device is insufficient for apps that require continuous, intense computation
on sensed data streams. Figure 3.1 illustrates this observation as various phones process
video frames for a face recognition app. Each device can process 4~10 frames per second
(FPS), which is far below the minimal 24 required for smooth video playback. Over time,
mismatched arrival and processing rates cause new frames to queue and end-to-end delays
to increase. Observe that even the fastest device (H, a quad-core LG Nexus 5) fails to keep
up — its end-to-end frame delay increases to 1.2s after only 5s of computation.

Even if a user could perform the computation by herself, the energy burden would be
unbearable. We observe that the camera-based face recognition app exhausts a fully charged
phone battery in about two hours, with 40% of the energy consumed by computation. If
several proximate users demand results from the same application, collaborative computing
can reduce the energy costs for any one user. Moreover, it mitigates the limitations of
individual devices and improves service quality for all users.

Thus, Swing leverages endogenous incentives, which arise naturally from self-interested
participants in our application scenarios. Each user shares resources now in return for
reciprocal treatment in future. Although simple, such incentive models are wildly popular
in practice. Examples include P2P file sharing, FON’s WiFi sharing and Open Garden’s
Internet sharing. In contrast, other crowd-based systems such as Amazon Mechanical
Turk and Medusa Ra et al. (2012) rely on exogenous incentives such as physical payments,
implicitly assuming that users will participate in the market.

Privacy & Security — Why should I trust other devices? Swing employs existing and

trusted app distribution models. Users download Swing from an app store, or download
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it from a master device who distributes the app signed by its developer. Based on aligned
incentives, users desire the results from the collaborative computation. Thus, no device
would benefit by deviating from the normal behavior or generating false data.

Swing does not reveal private data, because Swing users only communicate data that is
already freely available from the environment. Neither the sensed data nor its analysis is
private and sensitive — anyone in the vicinity could have sensed or analyzed the data on her
own. It is possible that in some scenarios, sensed data should be shared with restrictions.
For example, users might wish to restrict audio sensing and voice recognition data to devices
inside a conference room. In such scenarios, Swing can benefit from existing WiFi security

protocols, such as WPA, that are external to the system.

3.2 Related Work

Swing inherits the design principles of distributed computing systems. In addition, it is

inspired by many other works on mobile-cloud computing, stream processing and mobile
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distributed computing. To the best of our knowledge, no prior work has been done in
building a distributed computing framework for continuous mobile sensing applications.

Mobile computation offloading. The concept of offloading mobile computation to
more powerful servers was first articulated as cyber foraging in Satyanarayanan (2001).
Since then, it has been applied in the context of mobile cloud computing. Existing mobile
cloud computing frameworks such as CloneCloud and MAUI partition and offload mobile
code to the cloud Chun et al. (2011); Cuervo et al. (2010). Cloud offloading techniques
cannot easily support real-time applications due to high delays between mobile and cloud.
Cloudlets Satyanarayanan et al. (2009) reduce delay by bringing server infrastructure closer
to the mobile devices (e.g. LAN or WLAN level) and have been shown to support real time
applications Verbelen et al. (2012); Ra et al. (2011). Cloudlets do not enjoy the economies
of scale of centralized cloud computing. Thus they may require relatively costly investment
in bringing compute infrastructure close to all mobile devices. They may exist in locations
where a specific real-time application is needed but may not be as widely available as
proximal mobile phones, especially in collaborative ad hoc applications targeted by Swing.
Nevertheless, Swing does support “cloudlet mode” through Android virtual machines if a
cloudlet infrastructure is available.

Odessa Ra et al. (2011) is a cloudlet system that uses a dataflow graph processing model.
Odessa is executed between a mobile and a server and provides mechanisms for adapting
parallelism at server and migrating execution stages between mobile and server. Our system
poses unique challenges because it requires to distribute load and computations among
multiple mobile devices. In our system, we do not do migration of computation stages at
runtime (which incurs additional delays an overhead) but instead pre-install the functional
units and use dynamic data routing for adaptation.

All the above approaches require constant communication with cloud or cloudlet servers,
which may not be easily accessible (sparse Internet, mobile) or required in the collabora-

tive application scenarios targeted by Swing. In contrast, we pursue to enhance mobile
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application performance by aggregating resources from multiple, proximate mobile devices.

Medusa Ra et al. (2012) is a crowd computing framework for mobile phones. Crowd
computing tasks are defined using a task dataflow graph approach similar to ours. These
tasks are high level specifications of actions that cater to human users and not real-time
computations. Furthermore, Medusa does not allow direct collaborative interactions between
workers as our system. However, our system could use a framework like Medusa for app
distribution.

Data stream processing systems. Swing uses a dataflow graph computation model
similar to data stream processing systems Castro Fernandez et al. (2013); Zaharia et al.
(2012). Such systems typically process a large number of data streams inside compute
clusters or data centers. Sonora Yang et al. (2011) is a stream processing system that can
support processing on mobile phones. However, it is still based on a client-server model
and does not support adaptive offloading of stream computations between mobile and cloud.
In contrast, we use this model to program, decompose and distribute collaborative mobile
sensing applications on multiple mobile devices. Unlike Sonora which assumes that a
computation task can enjoy infinite compute capacity once it is offloaded to the server,
our framework utilizes surrounding mobile devices which incur challenges in the resource
management.

Distributed mobile computing. Pocket Switched Networks Hui et al. (2006), Throw-
boxes Banerjee et al. (2007), and ferry-based networks Guo et al. (2006) are distributed
mobile frameworks that focus on efficient communication in mobile networks with intermit-
tent connectivity as opposed to efficient collaborative mobile computation on sensed data
streams. Misco Dou et al. (2010), Hyrax Marinelli (2009), CWCArslan et al. (2012) imple-
ment MapReduce-like frameworks for parallel task execution on mobile phones. MapReduce
caters to a batch processing model rather than a real-time computation model targeted by
our work. MobiStreams Wang and Peh (2014) provides a distributed stream processing
runtime for mobile phones and focuses on the orthogonal issue of fault tolerance. It does
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not provide any mechanisms for efficient sharing of execution load among the devices and
requires the assistance of a cellular network and a centralized server in the cloud for coordi-
nation. In contrast, our framework relies purely on mobile devices and can utilize mobile
hotspot APs, Wi-Fi Direct, WLAN or cellular, as networking technologies. REPC Dong
et al. (2014), which studies task assignment on mobile devices to achieve performance
objectives. However, it solves a static task assignment problem for a set of tasks, whereas in
our framework tasks arrive online, and the assignment has to cope with dynamic changes in
processing delay, network delay and dynamically handle device joining and leaving.
Distributed Mobile Sensing. When a user carries multiple devices, or when multiple
users face the same ambiance, the devices and sensors can collaborate. CoMon+ Lee
et al. (2016) is a general-purpose sensing framework that focuses on ambience monitoring,
such as dust monitoring, CO2 sensing and GPS localization. The authors demonstrate the
opportunities for collaboration in devices’ daily usages and propose management policies
that maximize energy savings, based on individual device’s sensing qualities at different
times. The work is based on a distributed framework called Orchestrator Kang et al. (2010),
which computes static task-distributing plans for devices to adopt at real time, with respect
to concurrent apps and various sensors. These works improve the energy efficiency of
continuous sensing and ambiance monitoring on mobile devices. In contrast, our works is a
framework of distributed computing designed for compute-intensive sensing apps, using

dataflow graphs to assign sensing and computing tasks dynamically.
3.3 Challenges

User mobility and device heterogeneity exacerbate the challenges in managing parallelism
in a distributed system. In this section, we conduct preliminary experiments to discover
the sources of dynamism and heterogeneity, as well as the performance objectives of the

system.
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Table 3.1: Performance Heterogeneity

Phone ID B C D E F G H I

Processing
Delay (ms) 92 121 167 463 166 82 71 78

Throughput
(EPS) 10 8 6 2 5 12 13 12

Experimental setup. Today’s mobile devices include phones and tablets that deploy a
broad spectrum of hardware. First, we characterize this inherent performance heterogeneity
with a simple experiment. We use nine phones — A: Galaxy S3, B: Galaxy Nexus, C"
Insignia7 tablet, D: NeuTab7 tablet, £: Galaxy S, F': DragonTouch tablet, G: Galaxy
Nexus, H: LG Nexus4, I: Galaxy Note2. All devices are connected to a wireless router
(Linksys E1200 802.11n 2.4GHz channel 1) and located in the same office. We let phone A
send video frames containing faces, at a rate of 24 FPS, to another phone i € {B,C,--- | I}
to conduct face recognition. The processing delay is measured on each ¢, and after each
¢ finishes processing, it sends back an ACK so that A can record the end-to-end delay for
each frame. Experiments are conducted during the night to reduce chances of interference
from other wireless communications. Each experiment runs for 10 minutes (14400 video
frames).

Throughput and performance heterogeneity. Table 3.1 shows the average processing
delay per frame for each phone (and the numbers also correspond to Figure 3.1). Each
throughput number here is the inverse of the processing delay (the largest previous integer),
representing the capability of each device. Intuitively, if the processing delay is 92 millisec-
onds for each frame on device B, it means that device B can process at most 10 frames per
second (assuming frames are being processed one after another). Observe that differences
between phones are significant — the fastest phone H reports throughput that is 6 times
higher than that of the slowest phone £. However, even H cannot provide a throughput that
is as high as the input rate of 24 FPS. To achieve the desired overall throughput, Swing must

utilize multiple devices collaboratively, with respect to their performance heterogeneity.
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Ficure 3.2: Decomposition of delays in remote face-recognition processing. Transmission delay
changes with WiFi signal strength. Processing delay changes with CPU usage. Queuing delay
changes with input data rate.

End-to-end delay and dynamism. Swing must minimize end-to-end delay, because
for real-time sensing applications, results that arrive late will have no use. Processing delay
is only part of the end-to-end delay. Network transmission delay and queuing delay also
contributes largely to the end-to-end delay. To understand each of the three parts, we let A
send video frames to B for processing, under three different scenarios: (1) B is placed in
regions of different signal strength; (2) B’s processor simultaneously runs another compute
intensive benchmark. (3) A sends frames to B at different rates. As shown in Figure 3.2,
WiFi signal strength, processor utilization, and input data rate affect delays in transmission,
processing and queuing. Signal strength varies due to user mobility and thus, the system
should divert more tasks to easily reachable devices. Processor utilization varies as the
user’s private tasks (email, social network, gaming, etc.) demand computation and the
system should steer tasks to accommodate the reduced computing capability when such
changes occur. Lastly, the system should control queuing delay on each device by matching
its input data rates (e.g., FPS) to its capability. Above all, to adapt to all the dynamism, the
scheduling decisions should be computed online.

Efficiency and overhead. Figure 3.3 indicates that a same data input rate would cause

different levels of overhead on different devices — 5 FPS incurs 7% CPU utilization on phone
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face recognition app.
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Ficure 3.4: Workflow of Swing: Installing, Joining, Deploying and Running

I, but 85% on phone £. A high CPU utilization directly affects users’ experience during
their regular interaction with their phones. Moreover, the CPU utilization is proportionally
correlated to processor energy consumption. Therefore, Swing must carefully and efficiently
control the input data rate to each device in order to minimize the CPU utilization and

energy cost.
3.4 System Overview

With the challenges in mind, we design and implement Swing, a general-purpose framework
that supports the collaboration between multiple, mobile devices. In this section, we first
present the overview of the system at a high level, including its programming model and

workflow, and then detail its implementation.
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Each Swing instance can be viewed as a multi-threaded program that runs across multiple
devices. A master thread controls multiple worker threads, assigns software functions to
them, and manages data flows between them. Since masters and workers correspond to
software threads, a single device could contribute multiple workers, or it could act as both

master and worker simultaneously.
3.4.1 Programming Model

Swing uses a stream processing model, which represents a mobile sensing app as a directed
dataflow graph. Graph vertices correspond to computational parts of the app, which we
refer to as function units. In this programming model, app functionality is divided into
several interconnected function units. For example, the face recognition app consists of
four function units that (A) use the camera to capture video frames, (B) detect faces inside
video frames, (C') match faces with names, and (D) display the results.

Graph edges represent data flow between function units. During app execution, each
function unit receives a data tuple from a previous unit via an edge in the graph. The data
tuple contains a list of serializable data structures, such as a bitmap image, a matrix of
floating-point values, and a text string. The function unit processes the incoming tuple,
computes an intermediate result, and passes it to the next unit in the graph — also in the
form of a tuple. From the perspective of a given function unit, a unit from which data arrives
is called an upstream unit and a unit for which data leaves is called a downstream unit. Each
unit may interface with multiple upstream or downstream units. A unit without an upstream
is a source and a unit without a downstream is a sink. Function units A and D are the source
and sink in our example.

To use the Swing framework, the programmer defines apps as function units with Swing
APIs. Specifically, the programmer constructs the app graph by defining function units,
including a source and sink, and defining edges that create a topology. The code below

shows an example of defining an application graph.
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/!l The code below defines the application graph

public AppGraph compose(){

/% Define tuple structure x/

ArrayList<String> tuple = new ArrayList<String >;

tuple .add(” valuel 7); // first part: a byte array

tuple .add(” value2”); //second part: a string

/% Define function units x/

FunctionUnit src = FUBuilder(new Source (), srcld ,tuple);
FunctionUnit fl1 = FUBuilder(new FunctionA (),ald, tuple);
FunctionUnit snk = FUBuilder(new Sink (), snkld, tuple);
/% Define topology =/

src.connectTo (fl);

fl1.connectTo(snk);

Each function unit is programmed to first receive data, and then perform certain tasks.
For example, the code below defines a function unit that transforms a received data tuple

into a graphical object, processes it, and sends the result to the next tuple.

/1 The code below defines a function unit
public class FunctionA implements FunctionUnitAPI {
@OQverride
public void processData(Tuple data) {
/# get a byte array from the data tuple received =/
// use “valuel” as the key
byte[] bytes = (byte[]) data.getValue(”valuel 7);
/% transform array to an image object =/
Mat mGray = new Mat();
mGray . put (0,0, bytes );
matToBitmap (mGray, mBitmap);
/% process on the object x/

String name = faceRecognizer.recognize (mBitmap);
/% pass the result data to the next function unit 3x/
Tuple output = data.setValues(null, name);

send (output);

The programmer can define performance requirements that affect resource allocation
and task scheduling. We also suggest programmers create a separate function unit for each

computation stage that could be heavy. For example, create separate function units for
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detect () and recognize (). At runtime, Swing determines their deployment with

respect to devices’ capabilities.
3.4.2  Workflow

Suppose a group of users agree to compute collaboratively for a mobile sensing app. Fig-
ure 3.4 illustrates the Swing workflow in which users install the app, join the system, and
execute the computation.

Step 1: Installing the App. Each participating user downloads and installs the specific
stream processing app in her device. Users could obtain the app from the master device, or
from an online app-store in which programmers submit their apps written with Swing APIs.

Step 2: Launching and Joining. After app installation, one user launches a master
thread and others launch worker threads. The master initiates the app, broadcasts its IP
address (and port number) so that other devices on the local network may discover it, and
launches a socket server to receive incoming connections. Simultaneously, workers discover
the master’s IP by listening to the WLAN and join the system by connecting to the master’s
socket server. The master holds the IP addresses of all participating devices in order to
connect them with each other (see 4.4 for detail).

Step 3: Deploying Functions. The master deploys the application dataflow graph by
assigning functions (vertices) and connecting devices (edges). Since each device already
holds all of the app’s function units, the master simply gives each worker the name of the
functions it must run (see 3.5.1 for detail). Second, the master informs each worker about
the IP addresses of its upstream and downstream function units’ worker threads — the
connections between workers could then be formed.

The master thread is responsible only for control, bootstrapping connections and sending
start/stop commands. Since it neither relays data nor executes functions during run-time,
the master thread can co-locate on the same device with worker threads. By default, the

source and sink function units are deployed on the same device that initiates the master
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thread (see Figure 3.4@®).

Step 4: Executing the App. After function deployment, the master sends a start
command to the source device, instructing it to sense data and generate tuples. Function
units are data-triggered and begin computation as soon as data starts to flow from the source.
In Figure 3.4®, source A distributes data tuples to the two devices running B, which then
pass intermediate results to downstream devices running C'. Ideally, when the system is
balanced, sink D receives results at the same rate that A distributes data. The rate at which
results are received at the sink defines the maximum system throughput.

In summary, developers write sensing apps using Swing APIs, and users download
and install these apps on their devices. When a group of users and their devices wish to
run the app collaboratively, one of them initiates a master thread and the others initiate
worker threads. The master connects workers together according to the app’s dataflow graph,
deploys the function units, and manages the data flow during run-time. Swing encapsulates
run-time dynamics and, therefore, the end user needs only touch a button to signal her

participation.
3.4.3 Implementation

We implement Swing atop SEEP Castro Fernandez et al. (2013), a stream processing
platform written in Java. SEEP provides a convenient interface for defining graph topologies
by abstracting away the details of TCP socket connections and inter-thread communications.
In addition to the effort of porting the framework (caused by the change of Java runtime
— same code might behave differently on JVM and Dalvik), we enhances SEEP with the
following functionalities:

Dynamic Swarm Management. In Swing, instead of sending code to workers threads,
the master “activates” function units of the workers by informing them the classname of
the function unit. Given an application dataflow graph, deciding which function units to

activate on each device in order to maximize performance objectives (latency or throughput)
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with subject to resource constraints is an NP-hard optimization problem Cuervo et al. (2010).
In our application scenario, assignment decisions must promptly respond to dynamism
(e.g., device joining/leaving). Thus, we propose a heuristic greedy algorithm to solve the
function-to-device mapping problem.

At runtime, Swing manages device usages to achieve performance objectives and energy
efficiency. Each upstream thread has a routing table with downstream threads’ IDs and
their weights. In order to adapt to real-time changes in network and device usages, we
periodically monitor processing-delay at the downstream and per-frame end-to-end delay at
the sink and update the routing tables accordingly (see 3.5 for the design of dynamic swarm
management strategies).

Discovery. Swing automatically establishes connections between the swarm devices
upon users’ participation. During initialization, the master broadcasts itself by registering a
Network Service on the network, using Android Network Service Discovery (NSD). Each
worker device maintains a background service that listens for the master. Upon discovery,
the background service connects to the master, also using NSD, so that the master knows
the worker device’s IP address.

Handling Joining and Leaving In a mobile environment, users join and leave the sys-
tem during run-time. To quickly involve newly joined devices, the Swing master constantly
listens for incoming connections and activates function units on the new devices as they
join. The routing tables of other workers are updated accordingly.

When a data link is broken, due to departing users or network error, the affected upstream
units automatically delete the corresponding downstream threads from their routing tables
and re-route data to other threads.

Serialization. Communicating through socket connections requires the data to be
serialized first. SEEP uses Kryo and default Java serialization methods to serialize the
data tuples transmitted between function units. However, mobile sensing apps may involve
transmitting customized objects, such as an image container, a multi-dimensional sensor
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vector, or audio files. Swing extends SEEP’s serialization function and transforms such
customized objects into a byte array at the sender, which is serializable, and transform the
array back to the object at the receiver.

Reorder buffer. Data parallelism and performance heterogeneity cause each tuple’s
end-to-end delay to differ. Tuples that are dispatched to workers earlier may arrive later, and
vice versa. To solve this problem, we buffer results as they arrive at the sink and sort them
in-order before playback. A larger size of the buffer ensures better ordering, but postpones
the display of the results for longer. In our current implementation, the size of the buffer
equals to the data rate generated at the source, i.e., timespan of 1 second. We will evaluate
the effectiveness of this length in our evaluation section.

Background Service. Swing extends Android Service to run in the background without
interrupting other user activities. Swing acquires a CPU wake lock to prevent service
termination due to processor sleep modes. Swing runs on Android version 4.0 or higher,

which includes the majority of Android devices.
3.5 Managing Swarm

The biggest difference between Swing’s swarm computing and traditional distributed com-
puting is that mobile devices are heterogeneous. To guide our swarm management design,

we first formalize three objectives that our system desires to achieve.

* Throughput: the rate at which results are produced by the sink. Swing must maximize
throughput, though the upper bound is implicitly determined by the rate at which data is

produced by the source (and that rate is hereafter noted as A).

* Latency: the end-to-end delay from the time a data frame leaves the source till its result
is produced by the sink (hereafter noted as latency). Swing must minimize not only the
average latency per frame, but also the variance — a large variance of latency would require

a larger reorder buffer which postpones the display of the results.
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* Efficiency: throughput divided by the sum of energy consumption on each participating
device. Swing must consider not only the performance but also the power consumption of

the whole system.

Given a task graph, finding a task assignment (e.g., determine which device to run
which function and how much data to process) that minimizes the latency with throughput
constraints is proven to be NP-hard Dong et al. (2014). In our system, we also need to
consider the energy efficiency of such assignment. Moreover, the task assignment must react
fast to dynamism in the system, thus the time it takes to compute the assignment should be
minimized. In order to solve this problem, we propose a heuristic algorithm comprising three
procedures: (1) Function Activation, (2) Worker Selection, and (3) Data Routing. Each
procedure is repeated periodically to handle all the dynamism: joining/leaving, transmission
delay changes, processing capacity changes, etc.

At a high level, Function Activation connects newly joined devices with existing devices
in the execution pool and activates the function units on them. Worker Selection periodically
decides which downstream threads to send data to, for each upstream thread. Data Routing
decides which exact thread, among the selected downstream threads, to send each data
tuple to. In this section, we explain the details and the choices we made in designing each

procedure.
3.5.1 Function Activation

At the bootstrapping stage, the master activates function units on each device. The master
first commands every participating device to launch m worker threads, where m is the
number of function units (except source and sink) in the app graph. As the pseudocode
below shows, each thread in the worker device then activates one function unit. Consequently,
every device can execute any function unit at run-time.

Since the actual execution of worker threads is data triggered, by controlling data flow

at the upstreams, the Data Routing procedure can manage the usage of the threads and thus
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Algorithm 1 Function Activation Procedure

procedure FuNCTION ACTIVATION

while listen for new connections do )
receive new device s and add it to device pool S

1:

2

3

4: command device s to launch m worker threads
5: T = the thread pool of s

6: for j = {1,---,m} do

7 activate function j on worker thread ¢,

8

: end for

9: connect thread ¢,, to source
10: connect thread ¢,  to sink
11: forj ={1,--- ,m—1}do
12: connect ts, with ¢, |
13: for each other device s’ in .S do
14: connect ts, with t83-+1
15: connect ¢y with ¢,
16: end for
17: end for
18: end while

19: end procedure

the resource consumption of devices. Function Activation procedure only needs to ensure
that every thread is connected to each other, providing maximum flexibility (see Figure 3.5).

In addition to the bootstrapping stage, this procedure is also called when new devices join.
3.5.2  Worker Selection

After Function Activation, each upstream thread has multiple downstream threads connecting
to it. When data tuples are ready to enter the next function unit, the upstream thread needs to
decide which downstream threads should receive them. The simplest policy for centralized
data scheduling is round robin (RR) — the upstream sends data tuples to each downstream
in turns. Apparently, RR is unlikely to work well in mobile crowds since the devices
rarely have equal or sufficient capability. The existence of “stragglers”, i.e., devices of
low computational capabilities, increases the average end-to-end delay per frame and also
degrades the overall throughput.

In addition to avoid “stragglers”, Swing seeks to maximize energy efficiency. Because
computation in stream processing is data triggered, a downstream thread that receives

more data performs more processing and thus, worker selection determines each thread’s
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Ficure 3.5: Topology after Function Activation: An Example

utilization and the corresponding device’s energy consumption. The Worker Selection
procedure needs to minimize overall energy consumption while maximizing performance.

A solution exists for both performance and efficiency. Recall that the throughput of
the system has an input rate A that is determined by the source. Efficiently achieving
performance targets means that mobile sensing apps should meet but not exceed goals for
service quality. For example, the face recognition app should process and replay video at
24 FPS. Throughput that is lower than this target fails to meet requirements for real-time
analysis, but throughput that is higher consumes additional resources without perceptible
benefit. Therefore, Worker Selection procedure can meet performance targets with only a
few of the most capable devices since mobile devices with the newest processors analyze
data streams more quickly and consume less energy doing so.

Identifying the most efficient subset of threads is a variation of the Knapsack problem
— given many downstream threads, each capable of analyzing tuples at rate \;, choose a
subset of threads that minimize the sum of their rates while meeting the target rate A.
For tractability, we relax the optimization objective and minimize the number of selected
downstream threads rather than the sum of their processing rates. Specifically, we solve the

following:

N N
minimize Z x;, such that Z Nz = A,
i i
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where x is a binary vector that denotes whether downstream ¢ is selected (z; = 1) or not
(x; = 0), and N is the number of downstream threads. A = 1/WV where WV is the processing
delay of a downstream thread. Our solution sorts devices in descending order by \; and
chooses the top devices such that their throughput sums to at least A. Algorithm 2 details

each step in Worker Selection.

Algorithm 2 Worker Selection Algorithm

procedure WORKER SELECTION
for each downstream function unit 7 € M do
Ssorted = sOrt (2) based on W, where i € S

1:

2

3

. 1

4 while ZieSj W_z7 < Ado

5: add ¢;; to T

6: remove ¢ from S,,q

7 end while ) o
8 select T); for downstream function unit j
9

10:

: end for
end procedure

Profiling of Processing Delay: The worker selection procedure requires to the upstream
threads to know the processing delay of each downstream thread on each device (W ).
Therefore, to adapt to changes of W, the upstream threads periodically operates with round
robin (i.e., sending data to all the downstream threads in turns), so that each downstream
thread processes the data and reports its W, to the upstream thread. The upstream thread

then repeats the selection procedure.
3.5.3 Data Routing

Given a set of selected downstream threads, the upstream thread needs to distribute data
tuples to them. A natural solution is to route different portions to different threads. We
adopt probabilistic routing — each upstream thread maintains a routing probability table
that holds the probability p; of selecting downstream i. Every time the upstream routes a
data tuple, it generates a weighted random number according to the probability table and
sends the tuple to the specified downstream ID.

One way of computing the probabilities is to ensure that the faster a thread processes data,
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the more data is sent to it. In other words, this policy computes probabilities in proportion

to the inverse of thread’s processing delay:
i/Wi
2,(1/W;)

for all 4,p; =

The processing delay may change: the user may launch another computationally intensive
app even as Swing runs on the same device; in addition, different frames may have different
processing costs. For this reason, each downstream thread reports its W, periodically (e.g.,
every second) to the upstream thread which then updates its routing table. Notice that we
directly measure the processing delay, instead of indirectly estimating it from CPU and
memory usage. Although the latter has been widely used in other systems, it does not
provide accurate information about how fast a thread processes data tuples. For instance, a
thread on a fast device with a high CPU usage might still process data faster than a thread
of a slow device with a low CPU usage.

However, as we have stated earlier, processing delay is merely part of the delay. Routing
purely based on processing delay might end up using devices that are located in regions of
weak WiFi signals, resulting in performance degradation. Therefore, another way of routing
is to use probabilities that are inversely proportional to threads’ latencies, so that more data
routes to threads with lower latencies:

1 /L;
)
where L; is measured as follows: the upstream attaches a time-stamp to each tuple before
sending. Each downstream, after finishing processing the tuple, sends back an ACK to
the upstream with its own ID and the tuple’s time-stamp. Upon receiving the ACK, the
upstream calculates the overall latency of the tuple by subtracting the time-stamp from the
current time.
The measured latency L; therefore includes the network delay (dominated by trans-

mission delay) from the upstream thread’s device to the downstream thread’s device, the
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processing delay and the queuing delay in the downstream thread (and the return trip’s
transmission delay which is negligible due to the small size of an ACK). Notice that since
the subtraction is done on the upstream device only, no clock synchronization is needed. The
upstream then registers the latency to the corresponding worker thread ID for the probability
calculation.

Compared with a purely processing delay based routing, latency based routing aims to
minimize overall latency and might rely heavily upon threads that are computationally less
capable.

Putting everything together — For latency based routing to work better, the Worker
Selection procedure needs to ensure that the selected devices perform better than unselected
ones with respect to latency. Therefore, in Algorithm 2 line 3, instead of sorting threads
based on the processing delay I/, Swing sorts downstreams based on latency. The algorithm
then selects a set of devices that are capable to provide a throughput of A. The upstream
then routes data with probabilities that are inversely proportional to the latency numbers
of the selected downstreams. Collectively, this routing method considers both throughput
and latency, while the efficiency is achieved by the worker selection procedure. In the next
section, we will evaluate this routing scheme by comparing it against different strategies.

Notice that Swing requires the downstream threads to upload either its processing delay
(integer, 4 bytes) or a time-stamp (long integer, 8 bytes) back to the upstream periodically

(e.g. every second). Since the packet sizes are small, the extra network traffic is negligible.

3.6 Evaluation

We evaluate Swing, assessing its ability to address key challenges in mobile swarm-based
computing. We first explain the experiment applications, followed by the evaluations of
comparing swarm management strategies. We then show how the system adapts to user

mobility. Finally, we compare the performance of a swarm based solution with a cloudlet-like
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Table 3.2: Lines of code changes

Same Modified Added Removed
Face Recognition 355 4 604 525
Voice Translation 466 47 375 430

solution.
3.6.1 Experiment Setup

Programmability. We use two open-source sensing applications to evaluate Swing. Ta-

ble 3.2 shows the lines of code changes for porting the two applications onto Swing.
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FiGurE 3.6: Throughput and delay of four routing schemes in two applications.

The first app is face recognition Robotic Apps (2013), which uses the OpenCV Cas-
cadeClassifier to detect faces in a video frame and the FaceRecognizer class to recognize
faces. We modified its source code with Swing API to create four function units: reading
video frames from files (source); detecting faces from frames (detector); matching faces

with databases and return results (recognizer); and displaying results (sink). The size of
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Ficure 3.7: Resource usage and data rate of each device in two applications.
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each image frame is 400 x 226 pixels (6.0kB).

The second app is voice translation. It contains four function units: reading audio
frames from files (source); recognizing audio streams into English words (based on CMU
Pocketsphinx Huggins-Daines et al. (2006)); translating those words into Spanish (based on
Apertium Forcada et al. (2011)); and displaying results (sink). The size of each audio frame

is 72.0kB.
3.6.2 Comparison of Data Routing Methods

To evaluate the swarm management strategy, we compare it with four different strategies:

(1) round robin (RR) — the baseline of baseline;

(2) processing-delay based routing w/o selection (PR);

(3) latency based routing w/o selection (LR);

(4) processing-delay based routing with selection (PRS);

(5) latency based routing with selection (LRS);

We deploy eight phones (A - - - I in 3.3) as worker phones and one phone as the source
and sink. To account for network heterogeneity, we placed devices B, C, D at locations of
poor WiFi signals, which forces them to user lower data rates and doubles their transmission

delay. We compare the performance of the five data routing methods.
Performance

Figure 3.6 shows the average throughput of the system and the min, max, average and
variance of end-to-end delay per frame. Observe that latency based routing methods provide
better delay per frame (smaller mean and variance). Processing-delay based methods fail to
provide the desired performance, because they schedule data purely based on the capabilities
of downstream threads, regardless of their locations in the network. Specifically in this
experiment, PR and PRS often route data to threads on device B and C' which are located

in regions of weak signals. As a result, the TCP protocol requires the sender to lower data
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transmission rates for these devices, which directly reduces the number of tuples transmitted
per unit time.

The results also demonstrate that the worker selection procedure provides a smaller
variance in delay compared with routing without selection. This is intuitive because with
worker selection, Swing essentially utilizes fewer devices and avoid “’stragglers”. LRS
indeed performs best, providing throughput that is 2.7x higher and end-to-end delay per

frame that is 6.7x lower than RR’s.
Overheads

We measure overheads in terms of processor and network utilization. Furthermore, we
estimate energy, which is correlated with activity.

Processor Usage: Figure 3.7’s left two graphs show processor utilization for each device
from running top, which reports usage as a percentage of total processor time across
all cores. In addition to data tuple assignment, the processor usage depends greatly on
hardware capability. Swing computation consumes a larger share of processor time when
the processor is weak (e.g., ) and a smaller share when the processor is strong (e.g., ). In
general, for a range of routing methods, Top reports average CPU usage below 20% across
devices. This level of overhead has no impact on user experience. Furthermore, Swing runs
as a non-blocking, background thread, which can be swapped to give priority to front-end
apps that receive user interaction.

Data Transmission: Figure 3.7’s right two graphs show the amount of data transmitted
from the source to each worker devices. The base-line RR sends an equal amount of data to
each device; PR and LR send data to most of the devices. In contrast, PRS and LRS send
data only to certain devices, such as H and I, and avoid “straggler” devices such as £ and
F.

Energy: We estimate the processor power consumption of each worker device using a

linear model Xu et al. (2013); Mittal et al. (2012); Cuervo et al. (2010). First, we measure
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FiGure 3.8: Energy consumption each device

idle power. Then, we measure peak power by stressing the processor with 100% utilization
for 30 minutes, recording the change in battery level during this time, and estimating the
corresponding change in energy given the device’s battery capacity. Finally, we estimate
processor power as a percentage of peak based on the measured processor usage. We
estimate the WiFi power consumption in a similar way. We first measure idle power. We
then measure peak WiFi power by sending data at maximum bandwidth with iperf for
30 minutes and recording the change in battery level. We then estimate WiFi power as a
percentage of peak based on the measured data rate.

Figure 3.8 shows the estimated power consumption (processor + WiFi) on each device.
Observe that latency-based routing methods consume more energy as they provide better
performance. Also, PR and LR achieve better balance in power consumption compared
with methods with worker selection. On the other hand, worker selection greatly improves
efficiency in terms of throughput-per-watt. For both applications, PRS is 40%~48% more
efficient than PR, and LRS is 14%~35% more efficient than LR.

Tuple Order: Figure 3.9 illustrates this loss of order by showing the time at which the
result for each tuple arrives at the sink (see the gray dots) for the face recognition app.

The solid lines in Figure 3.9 illustrate the playback times for re-ordered tuples when
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the reordering using a buffer.

the reorder buffer length is 24 (i.e., one second). Routing methods with worker selection
have smoother curves than others because they produce smaller variances in end-to-end
delay, which corresponds to our previous observation. In contrast, methods without worker

selection would require larger buffers for smooth playback.
3.6.3 Handling Mobility

In this subsection, we demonstrate Swing’s ability to adapt to mobile users, who join the
system during computation, move in ways that affect network connectivity, and leave the
system abruptly.

Joining: Initially, we use phones B, D for computation. As these phones compute, we
launch a new Swing worker thread on (=, which then joins the computation automatically.
Upon detecting an incoming connection, the upstream adds the corresponding downstream
worker IDs to the routing table and re-calculate all the probabilities using LRS. Figure 3.10
(left) shows that, within a second of GG’s arrival, throughput rises to its maximum level of
24 FPS in the face recognition app. The system preserves links during the transition and no
data tuple is lost.

Moving: The system deploys phones B, G, H with the LRS routing method, which
copes with variations in network delay. Initially, phones are placed at a location with good
WiFi signals (RSSI;-30dBm). After one minute, G’s user walks to a location with slightly

weaker signals (between -70dBm and -60dBm), stays there for one minute, and then walks
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Ficure 3.11: Throughput, load changes when device moves

to a third location with poor signals (-80 -70dBm). Figure 3.11 shows the effect of mobility
on signal strength, which affects overall throughput (top graph) and per-device throughput
(bottom graph). Overall throughput recovers quickly after G moves to a region with weak
signals as Swing re-routes data to the other two phones.

Leaving: Finally, consider the scenario in which three phones participate in Swing and

one phone leaves abruptly. The system deploys phones B, G, H with the LRS data routing
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scheme. In the midst of computation, we manually terminate the Swing thread on G. Upon
detecting the lost connection, the upstream traces the connection’s downstream 1D, removes
the ID from the routing table, and re-calculates data routing probabilities for the remaining
downstreams. Figure 3.10 indicates that real-time throughput drops drastically after the
device leaves and before the system updates the routing table. The upstream attempts to
route data to the disconnected device and, during the recovery phase, 13 frames are lost.
Yet, within one second, throughput recovers to 16 FPS, which is the best that the remaining

devices can achieve.
3.6.4 Mobile Hotspot

Suppose all users move and increase their distance from the WiFI access point. The
transmission rate would be low even if the devices could communicate with each other. In
this setting, a mobile hotspot would perform better. We measure its performance advantage
by placing a master, which serves as a mobile hotspot, and three worker devices in a location
with weak WiFi signal. Figure 3.12 indicates that devices communicating via the distant
router perform much worse than when they communicate via the hotspot. Thus, Swing can

improve performance with a hotspot when public WiFi is insufficient.
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3.6.5 Cloudlet Mode

Although Swing targets at application scenarios where the cloud or cloudlet is not accessible,
Swing also supports offloading computation from mobile devices to server machines, with
the help of an Android virtual machine, Here we compare the performance of mobile
distributed computing against a cloudlet-like solution. We use Genymotion Android-x86
emulator as a virtual machine running on a desktop located in the campus network. The
virtual machine is configured with two cores and 512MB of memory and is connected to the
Internet through bridged Ethernet. The master phone connects to this virtual phone through
a campus WiFi router and then the campus LAN. The virtual phone can easily process the
input data sent from the master phone at 24 FPS. The processing delay, 30ms, is several
times smaller than the processing delay on the phone. However, Figure 3.13 shows that the
average end-to-end delays of processing on the desktop and the phones (eight devices, LRS)
are comparable. For this application, even though the processing delay on the desktop is
much smaller, the transmission delay fills up the gap, and the overall difference is negligible

and less than 100ms on average.

3.7 Conclusion

We propose Swing, a framework that enables compute-intensive and delay-sensitive mobile
sensing applications, by collaboratively using multiple mobile devices. The framework uses

a stream computing model, allowing devices to perform computations based on a dataflow
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graph. We identified the major challenges for achieving the performance potential and
propose resource management and routing techniques for coping with device heterogeneity
and dynamics. We built a system prototype using Android devices and a Java-based stream
processing platform. We demonstrated the programmability of the framework API by
porting two sensing applications onto Swing. By evaluating with multiple mobile devices
on a wireless testbed, we show that performance requirements and efficiency can be satisfied

through device management with minimal computational overhead.
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4

Sensory Offloading for Wearable Devices

New generations of wearable devices enable comprehensive sensing and computing, with
capabilities from simple step detection to complex gesture recognition. However, limita-
tions in the devices’ battery capacities constrain these applications’ future. We find that
continuously executing activity detection on a smart watch (e.g., Samsung Gear Live) drains
the battery in less than six hours. This leads to “range anxiety” — users are reluctant to use
continuous sensing apps for fear that the watch runs out of battery during the day. These
apps include long-running activity recognition services such as fitness tracking, sports
training, and health monitoring.

An opportunity lies in typical mobile device usage patterns — a user often carries both a
wearable device and a phone simultaneously (e.g., during commute). For example, a watch’s
activity tracking app continuously records users’ daily activities (e.g., walking, cycling and
running) and displays the number of calories burned. For this app, the phone can act as
a “range extender” by taking over app execution and preserving the watch’s energy. Our
key observation is that when the user is carrying both devices, their sensory data are highly
correlated and permits sensory offloading, the idea of offloading not only computation but
also sensing.
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Traditionally, offloading architectures shift computation from less capable devices (e.g.,
mobile) to more capable ones (e.g., server) that clone code and receive input data Cuervo
et al. (2010). Unfortunately, continuous sensing apps cannot offload in this manner as they
process high volumes of sensory data that would require prohibitively high transmission
costs. To reduce data movement, wearable devices could pre-process or compress data but
doing so would consume power and offset gains from offloading.

In this chapter, we present Telepath, a framework for sensory offloading that transfers app
processing from a wearable device to a phone without communicating raw data. Telepath
allows the phone to take over sensing and computation by predicting the wearable’s sensory
data. The phone deploys an app clone that reads predicted sensory data, computes activity
recognition results, and sends them to the wearable. The wearable uses them as if they had
been sensed and computed locally. Telepath decides whether to offload dynamically based
on real-time correlation between device data. From the user’s perspective, an app employs
both wearable and phone’s resources transparently.

Telepath estimates data with transfer function models that statistically capture the rela-
tionship between two devices’ motions. With accurate models, the wearable can offload
sensing and computing to the phone with little performance loss but significant energy
savings. Yet Telepath encounters challenges. One model cannot capture all the dynamics
between wearable devices and phones. Raw sensory data may vary, even for the same
activity, due to device placement. We address these challenges with a modeling pipeline that
segments sensing data and tailors models for different user activities and device placements.

The following summarizes our contributions:

* Motivation (Section 4.1). We study the power breakdown of continuous sensing apps
on wearable devices and show that traditional offloading schemes cannot mitigate sensing’s

high energy costs.

* Abstractions (Section 4.1). Telepath defines an application-layer shim that automatically
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offloads sensing and computing tasks from wearables to a more capable device. We provide

programmable abstractions that support cross-device apps without explicit management.

* Design and Implementation (Section 4.3 - Section 4.4). Telepath contains offline and
online components. Offline, we build hierarchical transfer functions with sensing traces
collected from both the phone and the wearable. Online, the phone uses these transfer

functions to predict sensory data and classify activities.

* Evaluation (Section 4.5 - Section 4.6). We prototype Telepath in Android Wear and
evaluate it on a Samsung Gear Live watch, with popular activities and a broad spectrum of
recognition algorithms. We show Telepath achieves real-time performance, with 85% of

the watch’s accuracy on average while extending the watch’s battery life by 2.1 x.

4.1 Motivation

4.1.1 Activity Recognition on Wearables

Activity recognition applications (apps” for short) capture human behavior with motion
sensors such as accelerometers, gyroscopes, magnetic position sensors. Before phones were
equipped with these sensors, researchers strapped sensors to specific body parts (e.g., arm
and legs) to track motions online and recognize activities offline Mantyjarvi et al. (2001);
Lukowicz et al. (2004); Laerhoven and Cakmakci (2000); Karantonis et al. (2006); Ravi
et al. (2005); Intille et al. (2005). These “wearable” sensors were uncomfortable, which
prevented broader adoption in practice Zhang and Sawchuk (2012).

The recent proliferation of smart phones led researchers to activity recognition algo-
rithms that used phones’ sensors Kwapisz et al. (2011); Brezmes et al. (2009); Khan et al.
(2013); Fan et al. (2014); Shoaib et al. (2014); Brush et al. (2010). A typical approach
extracted features from accelerometer or gyroscope signals and trained classifiers, such as
support vector machines, for a set of activities Anguita et al. (2012b, 2013, 2012a). With

continuous sensing and computing, phones classified activities and supplied feedback on
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Table 4.1: Hardware specifications for typical watch, phone.

Samsung Gear Samsung Galaxy
Live Watch Nexus Phone

Processor Quad-core 1.2 GHz Dual-core 1.2GHz
(Snapdragon 400) (ARM Cortex-A9)

Specs

Battery 300 mAh 1750 mAh

DRAM 512MB 1GB

Flash 4GB 16GB

Sensors Accelerometer Accelerometer
Gyroscope Gyroscope
Compass Compass

Heart-rate Monitor

sporting progress or health status.

Today, a new generation of technology brings activity recognition apps back to wearable
devices such as sports trackers, watches, and armbands Weiss et al. (2016); Bieber et al.
(2013); Bhattacharya and Lane (2016); Shoaib et al. (2015). Unlike phones that might be
placed or oriented in varied and obscure locations, such as pockets or purses, wearables
are typically placed in a fixed location on the user, such as the left wrist. This unique
property of wearables makes them better candidates for activity recognition, especially for
special-purpose activities involving hands Ghasemzadeh et al. (2009); Asselin et al. (2005);
Béchlin and Troster (2012); Mortazavi et al. (2014). Recent smart watches provide attractive
platforms for app developers, providing rich sets of sensors, capable systems-on-chip, and

(most importantly) APIs that are compatible with those on phones.
4.1.2 Energy Consumption

Today’s wearable devices are equipped with capabilities like those in phones. Indeed,
Table 4.1 shows that a watch may have more processor cores than a phone. However, the
watch has limited battery capacity due to its size. Figure 4.1 lists 34 mobile and wearable
devices from the past three years and shows a 5-17 x difference in watches and phones’

battery capacities. Watches’ short battery lives hinder long-running activity recognition
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FIGURE 4.1: Battery capacity comparison. The average watch battery holds 330mAh, only 11% of a
phone’s 2924mAh.!

apps. Empirically, we show that sensing and computation rapidly consume battery charge in
wearable devices. Moreover, we find that traditional offloading strategies are as expensive
as the original computation.

Costs of Activity Sensing. Activity recognition apps have three components. First,
the app reads data from sensors. Then, the app performs signal processing on raw sensory
data and computes features that combine multiple sensor measurements. Finally, the app
recognizes activities from extracted features using classifiers.

We profile three tasks to understand the power breakdown in an activity recognition app.
In the first, the activity recognition app senses but does not process sensory data.

In the second, the app senses and extracts features such as the standard deviation of
acceleration in each of three dimensions (see Table 3 for complete list). Features are
computed once per second based on a 128-element array of doubles that hold raw sensory

data. Finally, in the third task, the app performs all the computation needed for activity

! Ampere-Hour is often used to describe battery capacity. Actual energy is the product of ampere-hour and
voltage, which is 3.8V in standard mobile li-ion batteries.
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Table 4.2: Power consumption and battery life time comparison between watch and phone.

Task Samsung Gear Samsung Galaxy

Live Watch Nexus Phone
Accelerometer Sensing 200.5 mW 229.7 mW

(5.7 hrs) (29.8 hrs)
Sensing+Feature 217.7 mW 231.8 mW

(5.2 hrs) (29.6 hrs)
Sensing+Feature+Classifier 239.2 mW 267.0 mW

(4.8 hrs) (25.0 hrs)
Offloading Strategies
Sensing + Bluetooth 261.6 mW (4.4 hrs)

Sensing + Feature + Bluetooth 224.3 mW (5.1 hrs)

recognition—sensing, feature extraction, and classification with a support vector machine.

We measure the power consumption of two mobile devices — a Samsung Gear Live
smart watch and a Samsung Galaxy Nexus phone — for a variety of tasks. We turn off the
display and run the task for an hour. For tasks that do not require wireless communication,
we disable Bluetooth and WiFi. We measure average power during task computation using
Android Batterystats.

Table 4.2 shows power consumption and estimated battery life when the device runs only
its assigned task. For example, the watch dissipates 200.5mW when using the accelerometer.
At this discharge rate, a fully charged watch battery is estimated to last 5.7 hours. Although
the accelerometer only consumes 1.6mW InvenSense (2014), transporting data from sensor
to system-on-chip consumes additional power. Moreover, sensing apps often request a
wake lock that prevents the CPU from entering the idle state. Consequently, sensing is
power-intensive.

The 1st-3rd rows present tasks associated with activity recognition. For a given task,
the watch benefits from more energy-efficient hardware and consumes less power than the
phone. However, the large gap in battery capacities — the watch’s 1.1Wh versus the phone’s
6.8Wh — means the watch battery lasts only 4.8 hours during activity recognition (sense +

feature + classifier) whereas the phone battery lasts 5x longer. This analysis is optimistic
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because, in daily use, the watch’s battery is often partially charged and is shared by other
apps. Practical battery scenarios would further constrain long-running apps.

Costs of Offloading. For activity recognition tasks, traditional offloading reduces
modest computational costs but incurs significant communication overheads. To illustrate
this trade-off, we measure power when offloading computation from watch to phone, via
Bluetooth, in one of two ways. First, the watch collects and sends raw sensory data to the
phone. The phone computes features, classifies them, and returns recognition results to the
watch. Alternatively, the watch collects sensory data, computes features, and sends features
to the phone. The phone classifies features and returns results.

According to Table 4.2, the watch cannot benefit from either offloading strategy. Trans-
mitting raw sensory data to the phone increases watch power due to high communication
cost. Transmitting processed features to the phone only marginally reduces watch power
due to high computational costs.

Traditional approaches that offload computation are unhelpful because wearables dissi-
pate most of their power in sensing, not computation. To address this challenge, Telepath
exploits correlated sensory data across multiple devices to “offload” both sensing and com-
putation, eliminating communication between one device’s sensors and another’s system-

on-chip.
4.2 Telepath Overview

The key observation behind Telepath is the correlation between the wearable and the phone’s
sensing streams. Figure 4.2 presents sensory data (with noise filtered) from a walking user
who wears a Samsung Gear Live watch on her left wrist and places a Samsung Galaxy
Nexus phone in her right pocket. When walking, her feet step while her hands swing.
Thus, leg and arm motions are coordinated. In the top figure, a valley in the watch’s x-axis

acceleration always matches a valley in the phone’s, albeit with slight time shifts. The
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Telepath exploits this correlation to leverage the phone’s sensors and avoid the expensive

communication of the watch’s sensory data. In this section, we outline the the framework’s

workflow at runtime. We then show how programmers can use Telepath in their apps.

Workflow. Figure 4.3 shows the workflow of Telepath. In local mode, TelepathWear

interfaces to the wearable’s OS, reading sensory data from local drivers and classifying

features for activity recognition. In remote mode, TelepathWear neither senses nor com-

putes. Instead, TelepathPhone reads sensory data from the phone, predicts sensory data

for the watch, and recognizes activity using cloned computation. The result is sent back to

TelepathWear for the app Ul Periodically, Telepath verifies predictor accuracy and halts

remote execution when accuracy is poor.

Shim. Telepath is an application-layer shim that lies between the app and Android OS.

A Telepath instance has two modules — TelepathWear and TelepathPhone — running on the
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FiGURE 4.3: Telepath Workflow. The blue arrows show data flow in local execution. The red arrows
show data flow in remote execution.

respective devices.

On the wearable’s side, the app interfaces to Telepath Receiver, which receives results
computed either locally on the wearable or remotely on the phone. The local app back-end
includes computing and sensing. It receives data from Telepath Sender, which resides atop
Android and requests offloading from the phone. When an offloading request is accepted,
the Sender deactivates the local sensors. Otherwise, it receives sensing data from the local
sensors and passes it to the upper layer.

On the phone’s side, a Telepath Sender sends computed results to the wearable’s Telepath
Receiver. Results are produced by a clone of wearable app’s back-end. A Telepath Predictor
receives sensing data from the phone’s local sensors, predicts corresponding sensor readings
on the watch, and sends them to the cloned app for computation. The Predictor has three
sub-modules — Feature-Extraction, Classification, and Transfer-Function — which we
detail in Section 4.3.

A Verification module communicates with the phone’s Telepath Predictor and the

wearable’s Telepath Sender. It compares predicted data and groundtruth data received from
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the wearable to determine whether an offloading request should be accepted. The phone
declines requests when Verification finds that the phone’s predictions of the wearable’s
sensing data is inaccurate.

APIL. Telepath APIs extend Android’s for interfacing with sensors. Developers can easily
port their apps without changing the original code flow. We demonstrate an example below.

Suppose a developer designs a watch app that recognizes activities in a user’s exercise
routine. The app includes a trained support vector machine (SVM) that classifies activities
based on standard deviation in the accelerometer’s three axis’ readings. The developer
specifies the flow of data from sensors to classifier. First, the app registers the accelerometer’s
listener to receive sensor events (i.e., readings) at the highest frequency. Upon receiving an
event, the app computes the standard deviation o of the current accelerations. SVM then
uses o to label activities.

To port her app to Telepath, the developer modifies the wearable app to include Telepath-
Wear and creates a cloned app for TelepathPhone. The clone shares the same back-end code,
including trained classifiers’ binaries, as the wearable app. An app registers Telepath sensors
like it would invoke the Android SensorManager API. The process is illustrated by Fig-
ure 4.4. Instead of computing on each sensing event, the app now listens to TelepathEvents,
which could be local sensing events or remote result events.

The developer need not worry about offloading decisions or resource management.
Because the phone predicts the watch’s sensory data, recognition classifiers trained for

wearables need not be re-trained for the phone.
4.3 Predictor Design

To predict the wearable’s raw sensing data from the phone’s, the predictor must first be
trained offline. Offline, raw data from both devices are collected, processed, and clustered

to develop phone-to-wearable transfer function models. Online, the phone’s sensing data is
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w/o Telepath

w/ Telepath

public class MainActivity extends WearableActivity
implements SensorEventListener {
SensorManager sensorManager = (SensorManager)
getContext().getSystemService(SENSOR_SERVICE);
Sensor mSensor = sensorManager.getDefaultSensor(
SensorTYPE_ACCELEROMETER);
sensorManager.registerListener(this, mSensor,

public class MainActivity extends WearableActivity
implements TelepathSensorListener{
TelepathWear tp = new TelepathWear(context, this);
tp.getTelepathSensor(Sensor.TYPE_ACCELEROMETER,
SensorManager.SENSOR_DELAY_FASTEST);
public void onTelepathEvent(TelepathEvent event){
int label = tp.getResults(event); //dynamic

SensorManager.SENSOR_DELAY_FASTEST); display(label);
public void onSensorChanged(SensorEvent event){ }
float[] accel = event.values; @override

double feature = getStandardDeviation(accel );
int label = (int) sym.predict(svmModel, feature);

public int compute(TelepathEvent event){
float[] accel = event.values;

display(label); double feature = getStandardDeviation(accel );
} int label = (int) svm.predict(svmModel, feature);
} return label;

}

Ficure 4.4: Code snippet for example wearable app, before and after integrating with Telepath.

fetched, processed, and classified to invoke the models that predict the wearable’s sensing
data. In this section, we introduce transfer function models. We then describe signal

processing techniques that improve prediction accuracy.
4.3.1 Offline Training

Periodically, the phone and the wearable reads and uploads its sensing data to the cloud for
offline training. The key training technique, transfer function modeling, is an autoregressive

model that captures the relationship between two time series (a.k.a. ARMAX model).
Transfer Function Models

Transfer function modeling describes the relationship between two strongly correlated
time series Helmer and Johansson (1977). A classic example of such time series is the
relationship between advertising costs and sales. Let A; and S; be random variables that

denote advertising and sales at time ¢. The general form of a transfer function is:

Sy = vo Ay + V1A + v Ai_9 + - + Ny

A;_q is advertising cost at time £ — 1 and v, is the advertisement’s effect after one time period.

N; is the sum of effects from all factors other than advertising and should be independent
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of A;. The function is often rewritten as
Sy = (vo+vB+vB*+--)A, + N, or

St = U(B)At + Nt,

in which B is a backshift operator defined as

BAt = At,1 or BmAt = At,m.

and v(B) is a transfer function. The target time series S; (i.e., the output) can be predicted
from the current observation of A; as well as the history of A, (i.e., the inputs). Given the
nature of human motion, we can assume that our input and output time series are bounded,
leading to stable transfer functions.

The output can be affected by not only present and past but also future values of the input
such that v; # 0 for j < 0. This effect arises because two devices can experience a time lag
when sensing the same motion (e.g., hand moves first than the leg). It could also be caused
by drifting clocks. To accommodate these data artifacts, prediction is performed periodically
on buffered data to leverage multiple observations from an extended time period.

Training Transfer Function Models. Offline training identifies polynomial v(B) and
noise NV,. First, based on training data A, and S;, the impulse response weights of the
transfer function, vy, v1, - - -, are initialized from the correlation coefficients of the two time
series. Then, V; is checked to determine whether it is white noise.

If V; is not noise and exhibits some relationship with the time series, there is still
information left to be captured by the transfer function. In this case, the coefficients of v(B)
are revised with maximum likelihood estimation. Training proceeds iteratively until the
transfer function captures much of the variance in the time series and /NV; resembles white
noise. Online prediction estimates S; from A; given v(B) and the forecast of IV;.

Segmentation for Stationarity. To train valid transfer function models, the time series

must be stationary, which means their statistical properties (e.g., mean, variance, autocor-
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relation) do not change over time.? Stationarity is essential because it makes time series
easier to predict.

Unfortunately, we observe that when users perform different motions, the sensing data
presents distinct statistical properties. Consider leg motions when jumping and walking.
These two activities are so different that data transformations, such as finite-order differenc-
ing or logarithmic operations, cannot produce a stationary time series that includes both
jumping and walking.

On the other hand, each independent activity consists of regular and repetitive motions
that produce stationary statistical properties. This finding implies that we must segment our

data such that stationarity can be guaranteed within each segment of the time series.
Training Pipeline

In addition to segmenting the data and identifying transfer function models for each segment,
Telepath’s offline training contains additional steps to process the data and improve prediction
accuracy. Fortunately, these steps can be parallelized to reduce the training time.
Interpolation. The phone and the wearable device could be equipped with sensors of
different sampling rates. To match the timestamps from a pair of sensing streams, linear
interpolation is the first data processing step. After interpolating the time series for every 20
millisecond window, the output is two aligned time series, one for the phone and one for the
wearable. This process assumes that clocks in two devices are perfectly synchronized. This
assumption is rather strong, but slightly unsynchronized clocks have little practical impact.
De-noising. Data streams from motion sensors are inherently noisy. In addition, the
devices’ unstable placements (e.g., in the pocket) generate noise. To extract meaningful
motion from noisy data, we use a Butterworth filter on the Fourier domain to remove high
frequency noises. Our heuristic cutoff frequency is based on the observation that meaningful

motions cannot have a frequency higher than SHz.

2 Strictly speaking, this is the definition of weak stationarity but it suffices for our purposes.
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Pre-whitening. Telepath uses the phone’s data as inputs A; into transfer functions and
the wearable’s data as output S;. Each device has multiple data streams from various sensors
and each stream is multi-dimensional (e.g., three-axis acceleration). Instead of predicting
each axis separately, Telepath employs multivariate transfer functions that span dimensions
and sensors.

For instance, to predict the x-axis accelerometer reading in the wearable, all x-, y- and
z-axis accelerometer readings from the phone are used. In addition, all three-axis gyroscope
readings from the phone are used. Since these six variables are highly correlated by nature,
we remove redundant information by calculating the autoregressive function for one variable
and filtering it out from the other variables. The remaining series are then used for the
transfer function modeling. This process is referred to as pre-whitening.

Segmentation - Feature Extraction. We extract features that commonly represent
motion in time and frequency domains (see Table 4.3). Features are extracted on sampling
windows. Each window has a width of 128 data points (i.e., a duration of 2.56 seconds),
and they overlap with each other by 50%. This configuration matches the speed of human
movement Anguita et al. (2013).

Segmentation - Clustering. To segment sensing streams collected from two devices,
we classify data points into clusters. Each cluster presents a set of motions, during which
the two devices share a unique correlation that differs from those in other clusters. However,
the clusters need not have semantic meaning. We use unsupervised clustering, k-means, to
cluster values for extracted features into & = 10 number of clusters. The number of clusters
represents not only different motions, but the same motion with different device placements.
Each cluster produces a stationary time series.

Transfer Function Modeling. Finally, we identify one transfer function for each cluster
using the algorithm explained earlier. The transfer function is re-trained if clusters change.
The training dataset should be large, diverse, and adaptive to capture the most recent
relationships between sensors on two devices. When their batteries permit (e.g., charged
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Table 4.3: Selected features for clustering.

ID Description

1 Standard deviation of z-axis acceleration
2 Standard deviation of y-axis acceleration
3 Standard deviation of z-axis acceleration
4-6 Median of absolute values of i-axis, i € {x,y, z}
7-9 Interquartile Range of i-axis
10-12  Coeflicients of auto-regression of i-axis
13-15 Largest frequency component in the spectrum of ¢
16-18 Weighted frequency average of ¢
19-21 Spectrum skewness of ¢

to more than 80% of capacity), wearables and the phone record paired time series that
contain raw sensory data. When charging, the phone sends this data to servers that train
transfer functions. Periodically, the phone downloads updated functions and organizes them

according to clusters’ centroids.
4.3.2  Online Prediction

Verification of Model Accuracy. The online process predicts the raw sensing data on the
wearable from the raw sensing data on the phone. In practice, the user may not be carrying
both devices at the same time, precluding the use of Telepath. Therefore, the online process
must include a verification stage, assuring that the current placement of the devices are
suitable for data prediction.

Prior to, and in the midst of offloading, a small set of sensing data is periodically collected
and sent from the wearable to the phone. If the data does not correlate with the data on the
phone, Telepath informs the wearable that offloading is canceled and the wearable proceeds
with local execution mode.

To determine if the offloading is suitable, Telepath estimates the correlation between
the pair of sensing series collected from both devices. Traditionally, Pearson’s correlation

coefficient is used to measure the correlation of two variables. However, this metric requires

79



the variables to be approximately normal. Our sensing data series are generated from human
motion and normal distributions on the data cannot be assumed.

Instead, we use Kendall’s rank correlation coefficient to measure the extent that ranks of
the two series match each other. This metric does not have requirements on the distributions
of the two series. To quantify the correlation, the two series are filtered to remove noise and
transformed into rankings. Then, the Kendall Tau-b coeflicient is calculated, which accounts
for concordant, discordant, and tied pairs in two series McLeod and McLeod (2011). A
corresponding p-value is computed on a two-sided test of the null hypothesis, HO: the two
time series are not correlated, and is compared against a 0.01 significance level.

If p > 0.01, we do not reject the null hypothesis and do not have sufficient confidence
that the phone’s data can predict the wearable’s. Perhaps the phone and the wearable are
not carried by the user simultaneously or the phone is vibrating for an incoming phone call.
In such cases, the phone informs the wearable of its limitations and the wearable cancels
the request for offloading.

Prediction Pipeline. When the phone accepts a request for offloading, it predicts the
wearable’s sensing data stream in several steps.

During feature extraction, the phone’s real-time sensing data enters a buffer of width
2.56s and overlap 1.28s. The buffer is configured to match the sampling window during
training. When the buffer is full, its data is processed to produce features (see Table 4.3).
Notice that buffering introduces a delay in predicting the data, which does not affect activity
tracking apps. Moreover, the buffer size can be tuned to match with app requirements.

During classification, because multiple transfer functions are generated for different
clusters of motion, the prediction process must identify the cluster corresponding to the
measured motion. Extracted features are classified and assigned to a cluster based on their
distance to cluster’s centroids. Then, the cluster’s corresponding transfer function model is
fetched.

During prediction, the transfer function estimates the wearable’s raw sensing data from
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the phone’s. Although models are trained with filtered data, in which random noise is
removed, models are evaluated with raw sensing data that includes noise. Noise in model
inputs produce noise in model’s outputs. In practice, because motion recognition apps
remove noise in their first processing step, apps can accommodate noisy sensor data and

noisy predicted data in the same manner. Ultimately, the apps’ results are unaffected.

4.4 Implementation

4.4.1 Predictor Implementation

Offline. We implement the offline training pipeline in R. In particular, we used approx ()
in the stats packages for linear interpolation, butter () and filtefilt () in the
signal package for de-noising, kmeans () in stats and cl_predict () in clue for
clustering and classification, and auto.arima () and forecast () inthe forecast
package for transfer function learning and prediction.

On a 48-core AMD Opteron processor, training on a pair of time series with 65k data
points and 21 extracted features completes in 6.6 minutes. The predictor module exports
trained transfer functions as model coefficients written in json files. The module exports
k-means clusters as their centroids in text files.

Online. On the phone, the Telepath instance downloads from the cloud the files con-
taining transfer functions’ coefficients and cluster centroids and stores them locally, on
a daily basis. When sensing is offloaded, Telepath loads the files with the org. json
library at runtime. Given sensing data features and a set of centroids, the closest cluster is
identified and the appropriate transfer function model is selected. The prediction function

is implemented in Android based on the R forecast library.
4.4.2 Runtime Implementation

A Telepath app has two instances, TelepathWear and TelepathPhone, which run on the

respective devices. They implement separate modules to manage interfaces and offloading
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decisions.

TelepathWear. For sensing apps, TelepathWear sends a 1-second buffer of data to the
phone every 15 minutes to determine if offloading is suitable. If the phone rejects the request
for offloading, TelepathWear executes locally. Otherwise, it starts (or continues) remote
execution.

During local execution, TelepathWear registers local sensors, listens to sensor events,
and receives sensory data. TelepathWear calls the compute() function defined by the
developer and classifies activity before returning results to the UI. When local execution
halts, TelepathWear unregisters sensors and stops sensing.

During remote execution, when an offloading request is accepted, TelepathWear sends a
“start” command, along with sensor IDs, their sampling frequencies and the frequency that
results are sent from the phone. Instead of listening for sensor events, TelepathWear listens
to incoming data events over Bluetooth, receives classification results from the phone, and
returns results to the app UL. When a remote execution halts, TelepathWear sends a “stop”
command, with sensor IDs, instructing the phone to stop sensing and computing.

TelepathPhone. TelepathPhone is a background service that runs continuously, mon-
itoring the data link and listening for commands from TelepathWear. If the command is
“bootstrapping,” it receives and stores app configurations and models. If the command is
“start,” it receives sensor IDs and frequencies that are used to begin sensing and computing.
It sends results to TelepathWear periodically based on the configured result frequency. If
the command is “stop,” TelepathPhone unregisters the sensors and stops both sensing and
computing.

TelepathPhone guards against inaccurate prediction and classification. Upon receiving
an offload request, the phone obtains buffered sensing data from the watch and compares
it against Telepath’s prediction. Kendall’s rank correlation is computed and the p-value is
checked (see Section 4.3). Offloading requests are rejected when the p-value exceeds 0.01,

which indicates that the phone is used in ways that preclude accurate sensing and prediction.
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Table 4.4: Popular tracking apps on Android Wear.

App Running Walking Cycling

C25K

Endomondo

Google Fit

Loseit

Map My Fitness

Map My Hike

Map My Ride

May My Run v

Map My Walk

MevoLife v

Misfit

Runkeeper v
v
v

AN NN

SSENENENEN
A NN

Runtastic
Under Armour Record

Table 4.5: Benchmark classifiers

Classifier Description Category

C5.0 Decision tree boosting Decision Tree
glm Logistic regression Linear Classifiers
knn k-Nearest neighbor Kernel estimation
Ida Linear discriminant analysis  Linear Classifiers
IssvmRadial Least squares SVM SVM
mlpWeightDecay Multi-layer perceptron Neural Networks
nb Naive Bayes Linear Classifiers
nnet Single-layer perceptron Neural Networks
parRF Parallel randomforest Decision Tree
svmRadial SVM with radial basis kernel SVM

4.5 Experimental Methods

Activities and Classifiers. Our evaluation studies the performance and efficiency of
Telepath for sensing applications. To benchmark typical wearable device usage, we survey
the characteristics of the top fourteen, free activity tracking apps on the wearable app market

(see Table 4.4). They constantly check motion sensors, acquiring wake locks and motion
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sensors in their permissions, to record running, walking, or cycling activities during the day.

We evaluate Telepath’s accuracy in recognizing these three activities. Because we cannot
know the algorithms used in these commercial apps, we test Telepath on ten popular machine
learning classifiers (see Table 4.5). The classifiers are diverse and vary in complexity, from
the simple decision tree to more complex neural networks.

Data. During data collection, a user wears a Samsung Gear Live watch on her left
wrist and places a Samsung Galaxy Nexus phone in her right pocket. A user performs each
activity—running, walking, cycling— for 15 minutes to produce approximately 270K raw
sensing data points in total. Both devices record data at the highest sampling rate. The user
labels data with corresponding activity to supply groundtruth. We sample 70% of the data

for training and 30% for testing. We use an equal amount of data from each activity.

4.6 Evaluation

We compare Telepath against four alternatives with less sophisticated data and analysis: (1)
Telepath without using gyroscope, (2) Telepath without using multivariate transfer function
models, (3) Telepath without de-noising and (4) directly using the phone’s raw sensing data

without Telepath’s prediction. Groundtruth is sensing data collected from the watch.
4.6.1 Prediction Accuracy

An error metric is needed to measure the accuracy of prediction. Traditional error metrics,
such as root-mean-square error, measure the distance between the predicted multivariate
time series and the groundtruth, which cannot accurately represent the effectiveness of
Telepath. Human motion is not always coordinated. Take walking as an example, during
which arms and legs have corresponding movements most of the time, but sometimes the
leg moves faster than the arm and vice versa. If leg and arm motions do not match perfectly
during online prediction, estimated watch data can lag groundtruth. If estimates differ from

groundtruth only due to a small time shift, the distance can be large even when the model
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Table 4.6: Confusion matrix of using knn to classify Telepath’s prediction.

Predicted Activities
‘ biking running walking ‘ total recall
biking 149 0 22 171 0.871
running | O 162 6 168 0.964
walking | 52 0 116 168  0.690
total 201 162 144 507

precision | 0.741  1.000 0.806

can be considered accurate and sufficient for motion recognition.

Instead, we use dynamic time warping (DTW), a distance metric, to evaluate prediction
accuracy. DTW pairs two time series, shifts and distorts them slightly in time, and finds the
minimum distance between them across all possible alignments Giorgino et al. (2009). We
allow a maximum shift of one second and calculate the distance between the predicted time
series and groundtruth for the watch’s sensing data. Both time series are de-noised.

The DTW distance is defined as
D(At,Ft> = mdind(f,(At,Ft), (41)

where d,, is the accumulated distortion between time series A, and F} when they are applied
warping functions ¢(k) = (¢a(k), ¢7(k)), for each time step & Giorgino et al. (2009).
Figure 4.5 shows the distance between sensing data predicted by Telepath and groundtruth.
The y-axis is the DTW distance normalized to the length of the time series, and a smaller
value means higher accuracy. Across activities, using Telepath significantly outperforms
not using it. Not surprisingly, raw sensing data from the phone looks very different than that
from the watch. Interestingly, Telepath without multivariate models and Telepath without
de-noising have smaller distances to the groundtruth. However, a smaller distance is only

one measure of fit and does not evaluate activity classification.
4.6.2 Classification Accuracy

We define “app accuracy” to measure the accuracy of activity classification when using
predicted sensing data. Our metric is the F1 score. Given a classifier, for each activity 1,
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FI1GURE 4.5: Data prediction accuracy, measured by DTW distance between predicted time series
and groundtruth (smaller is better). Telepath has smaller distance than alternatives.
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FIGURE 4.6: Activity classification accuracy, measured by F1 scores, for representative activities and
classifiers.

Precision; is the fraction of instances classified as activity ¢ that indeed correspond to %.
Recall; is the fraction of instances of activity ¢ that are recognized as such. A good classifier
has both recall and precision, identifying more instances of an activity with fewer false
positives. The F1 score accounts for recall and precision on a scale of zero (worst) to one

(best):

Precision; x Recall;
Precision; + Recall;

F1_Score; = 2 x

For insight, Table 4.6 presents the confusion matrix for KNN classification for three
activities when using Telepath’s predictions. The bold numbers are correctly recognized
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FIGURE 4.7: Activity classification accuracy, measured by F1 scores normalized to those when using
groundtruth sensing data. Telepath classifies more accurately than alternatives.

activities. The first column shows 201 data points recognized as biking, but groundtruth
says that 52 of them are actually walking and precision for biking is 0.74. Similarly, we
calculate precision and recall for each activity.

In Figure 4.7, we evaluate app accuracy with the motion recognition classifiers in Ta-
ble 4.5. The F1 Scores are averaged across activities and normalized to those when using
groundtruth data, the watch’s sensing data for activity recognition. Telepath outperforms
other variants and achieves, on average, 85% of groundtruth accuracy. Observe that gyro-
scope data has a moderate impact on improving accuracy, while multivariate modeling is
crucial for accurate data prediction and activity classification. Low scores without de-noising

mean that Telepath is sensitive to noise and data pre-processing is required.
4.6.3 Step Counting Accuracy

Some motion tracking apps offer step counting as a service. We evaluate Telepath using
an open source pedometer app Bagi (2011) and test data sampled from walking. The app
detects and computes the lags between peaks and valleys in the sensed signals. If the lag
exceeds a threshold, a step is detected. The threshold determines detection sensitivity—a
low threshold detects more steps.

Figure 4.8 shows that the service produces similar step counts whether using the phone’s
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Ficure 4.8: Step counting accuracy, measured by the number of steps, which decreases as the
detection threshold increases. Blue bar shows groundtruth with wearable data. Gold bar shows
Telepath estimates, which are closest to the watch’s.

predictions of watch data or using the watch’s groundtruth data. Telepath without de-noising
has small step counts as it generates predictions with a much smaller variance. Noise
obscures the correlation between the two devices, hindering the construction of accurate
transfer functions.

On the other hand, not using Telepath but directly using the phone’s sensing data results
in high step counts. The readings on the phone have a much higher variance than those on
the watch. A step counting model tailored for the watch cannot be directly applied to the

phone.
4.6.4 Verification Accuracy

Veritying the feasibility of offloaded sensing and computing is essential to device man-
agement. Telepath permits offloading only when sensing streams on the phone and watch
exhibit strong correlation. Otherwise, Telepath’s phone will decline requests for offload-
ing and Telepat