
Towards Energy-E�cient Mobile Sensing:
Architectures and Frameworks for Heterogeneous

Sensing and Computing
by

Songchun Fan

Department of Computer Science
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Landon P. Cox

Alvin R. Lebeck

Bruce M. Maggs

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2016

A�������

Towards Energy-E�cient Mobile Sensing: Architectures and
Frameworks for Heterogeneous Sensing and Computing

by

Songchun Fan

Department of Computer Science
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Landon P. Cox

Alvin R. Lebeck

Bruce M. Maggs

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2016

Copyright © 2016 by Songchun Fan
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Modern sensing apps require continuous and intense computation on data streams. Unfortu-

nately, mobile devices are failing to keep pace despite advances in hardware capability. In

contrast to powerful system-on-chips that rapidly evolve, battery capacities merely grow.

This hinders the potential of long-running, compute-intensive sensing services such as im-

age/audio processing, motion tracking and health monitoring, especially on small, wearable

devices.

In this thesis, we present three pieces of work that target at improving the energy

e�ciency for mobile sensing.

1. In the first work, we study heterogeneous mobile processors that dynamically switch

between high-performance and low-power cores according to tasks’ performance require-

ments. We benchmark interactive mobile workloads and quantify the energy improvement

of di�erent microarchitectures.

2. Realizing that today’s users often carry more than one mobile devices, in the second

work, we extend the resource boundary of individual devices by prototyping a distributed

framework that coordinates multiple devices. When devices share common sensing goals,

the framework schedules sensing and computing tasks according to devices’ heterogeneity,

improving the performance and latency for compute-intensive sensing apps.

3. In the third work, we study the power breakdown of motion sensing apps on wearable

devices and show that traditional o�oading schemes cannot mitigate sensing’s high energy

iv

costs. We design a framework that allows the phone to take over sensing and computation

by predicting the wearable’s sensory data, when motions of the two devices are highly

correlated. This allows the wearable to o�oad without communicating raw sensing data,

resulting in little performance loss but significant energy savings.

v

To my teachers.

vi

Contents

Abstract iv

List of Tables xi

List of Figures xii

Acknowledgements xv

1 Introduction 1

2 Evaluating Asymmetric Multiprocessing for Mobile Applications 5

2.1 Mobile Benchmarking . 8

2.1.1 Application and User Actions 9

2.1.2 Microbenchmarks . 10

2.1.3 Macrobenchmarks . 11

2.2 Asymmetric Mobile Processors . 12

2.2.1 Shared Memory . 12

2.2.2 Shared Last-Level Cache . 13

2.2.3 Shared First-Level Cache . 14

2.3 Methodology . 16

2.3.1 Oracular Switching . 17

2.3.2 Simulation . 19

2.4 Evaluation . 21

2.4.1 Case Study with Scrolling . 23

vii

2.4.2 Generalizations with Benchmark Suite 25

2.4.3 Sensitivity to Management Parameters 26

2.4.4 Sensitivity to Design Parameters 29

2.5 Related Work . 32

2.6 Conclusion . 33

3 Swarm Computing for Mobile Sensing 34

3.1 The Case for Swing . 36

3.2 Related Work . 37

3.3 Challenges . 40

3.4 System Overview . 43

3.4.1 Programming Model . 44

3.4.2 Workflow . 46

3.4.3 Implementation . 47

3.5 Managing Swarm . 49

3.5.1 Function Activation . 50

3.5.2 Worker Selection . 51

3.5.3 Data Routing . 53

3.6 Evaluation . 56

3.6.1 Experiment Setup . 56

3.6.2 Comparison of Data Routing Methods 57

3.6.3 Handling Mobility . 60

3.6.4 Mobile Hotspot . 62

3.6.5 Cloudlet Mode . 63

3.7 Conclusion . 64

viii

4 Sensory O�oading for Wearable Devices 65

4.1 Motivation . 67

4.1.1 Activity Recognition on Wearables 67

4.1.2 Energy Consumption . 68

4.2 Telepath Overview . 71

4.3 Predictor Design . 74

4.3.1 O�ine Training . 75

4.3.2 Online Prediction . 79

4.4 Implementation . 81

4.4.1 Predictor Implementation . 81

4.4.2 Runtime Implementation . 81

4.5 Experimental Methods . 83

4.6 Evaluation . 84

4.6.1 Prediction Accuracy . 84

4.6.2 Classification Accuracy . 85

4.6.3 Step Counting Accuracy . 87

4.6.4 Verification Accuracy . 88

4.6.5 Energy E�ciency . 90

4.6.6 Costs and Overheads . 91

4.6.7 Sensitivity to Device Placement 92

4.6.8 Sensitivity to Users . 93

4.7 Related Work & Discussion . 94

4.8 Conclusions . 95

5 Conclusion and Lessons Learned 96

A Mobile Trend Survey 98

ix

Bibliography 99

Biography 110

x

List of Tables

2.1 Specs of Mobile Processors . 8

2.2 Choices of Benchmarks . 11

2.3 Big/Little Specs . 19

3.1 Performance Heterogeneity . 41

3.2 Lines of code changes . 56

4.1 Hardware specifications for typical watch, phone. 68

4.2 Power consumption and battery life time comparison between watch and
phone. 70

4.3 Selected features for clustering. 79

4.4 Popular tracking apps on Android Wear. 83

4.5 Benchmark classifiers . 83

4.6 Confusion matrix of using knn to classify Telepath’s prediction. 85

A.1 Hardware specifications of mobile devices from 2012 to 2016. Data col-
lected from Wikipedia. Observe series like Samsung Note*, LG G* and
Galaxy S* that upgrade every year. 98

xi

List of Figures

1.1 A survey of the number of cores, memory capacity and battery capacity in
mobile phones released in recent years. From 2012 to 2015, the average
number of cores in mobile devices increases by 107%, the memory capacity
increases by 120%, while the battery capacity increases by only 25%. . . 2

2.1 Types of actions in one Twitter session 7

2.2 Asymmetric multiprocessor organizations, each with di�erent big/little
transition latency: (a) shared memory requires 10,000 cycles, (b) shared
last-level cache requires 500 cycles, (c) shared first-level cache with adaptive
datapath requires 30 cycles. 14

2.3 Switching based on oracle knowledge 18

2.4 Power Breakdown . 20

2.5 Impact of branch misprediction . 22

2.6 Utilization of the little core for scrolling 23

2.7 Total energy saved, relative to big core energy 24

2.8 Little core utilization across apps . 26

2.9 Total slowdown across apps . 26

2.10 Energy savings across apps . 27

2.11 Impact of switching cost, interval length on energy savings 28

2.12 Impact of prediction errors on little core utilization 29

2.13 Little core utilization with 1-wide little core 30

2.14 Energy savings with 1-wide little core 30

2.15 Little core utilization with 800MHz little core 31

xii

2.16 Energy savings with 800MHz little core 32

3.1 Delay per frame when processed on di�erent phones at 24 FPS load. Delays
build up rapidly, and di�erent phones have di�erent reactions to the same
load. 37

3.2 Decomposition of delays in remote face-recognition processing. Transmis-
sion delay changes with WiFi signal strength. Processing delay changes
with CPU usage. Queuing delay changes with input data rate. 42

3.3 CPU usage on each phone increases, by varying degrees, as frame rate
increases in a face recognition app. 43

3.4 Workflow of Swing: Installing, Joining, Deploying and Running 43

3.5 Topology after Function Activation: An Example 52

3.6 Throughput and delay of four routing schemes in two applications. 56

3.7 Resource usage and data rate of each device in two applications. 57

3.8 Energy consumption each device . 59

3.9 Ordering of frames: gray dots represent frames’ arrival timings; solid line
represents the reordering using a bu�er. 60

3.10 Throughput changes when device joins, leaves 61

3.11 Throughput, load changes when device moves 62

3.12 comparison between Router and Mobile AP 62

3.13 Comparison between cloud and mobile 63

4.1 Battery capacity comparison. The average watch battery holds 330mAh,
only 11% of a phone’s 2924mAh.1 . 69

4.2 Sensory correlation between two devices 72

4.3 Telepath Workflow. The blue arrows show data flow in local execution. The
red arrows show data flow in remote execution. 73

4.4 Code snippet for example wearable app, before and after integrating with
Telepath. 75

4.5 Data prediction accuracy, measured by DTW distance between predicted
time series and groundtruth (smaller is better). Telepath has smaller distance
than alternatives. 86

xiii

4.6 Activity classification accuracy, measured by F1 scores, for representative
activities and classifiers. 86

4.7 Activity classification accuracy, measured by F1 scores normalized to those
when using groundtruth sensing data. Telepath classifies more accurately
than alternatives. 87

4.8 Step counting accuracy, measured by the number of steps, which decreases
as the detection threshold increases. Blue bar shows groundtruth with
wearable data. Gold bar shows Telepath estimates, which are closest to the
watch’s. 88

4.9 Verification accuracy, measured by the correlation between devices’ data
streams. A high score on recall for independence means Telepath abandons
o�oading when two devices’ data are uncorrelated. 89

4.10 (a) Power and (b) battery life under local and remote (Telepath) execution.
(c) Battery life under variants of remote execution that transmit raw data,
transmit extracted features, or transmit nothing by relying on Telepath
prediction. 90

4.11 Impact of training data size and the number of clusters on the training time
and app accuracy. 92

4.12 Activity classification accuracy when using datasets that di�er in device
placement. 93

4.13 Activity classification accuracy using a homogeneous dataset with user 1
and a heterogeneous dataset with user 1 and 2. Shared training data does
little to improve prediction accuracy for any one user. 94

xiv

Acknowledgements

I would like to take this opportunity to express my gratitude to everyone who has helped

me reach this point. First of all, I thank my advisor, Dr. Benjamin Lee. During these years

we worked together, he has guided me through the mist of system research, with his broad

knowledge from computer architecture, to statistics, to game theory, to various areas that I

would have never experienced without him. Till today, I am still amazed by his devotion

to work, his expertise in research, and most importantly, his inquisitiveness towards new

research fields. Especially, I appreciate that Ben truly cares about his students. As an

advisor, he concerns about my career development and spares no e�ort in helping me grow

strengths in both system and theory. From him, I learned how to approach problems, to

develop ideas and to be professional. I very much hope I can continue receiving his advise

in the future.

I would also like to thank professors at Duke, especially Dr. Landon Cox, Dr. Alvin

Lebeck and Dr. Bruce Maggs. It is my great honor to have them as my committee members.

They were there for each of my milestones — RIP proposal, RIP final, prelim, and finally

defense. Throughout my time in grad school, they and the classes they taught have given

me countless inspirations in mobile systems, networking and energy e�ciency. I’ve also

benefited greatly from conversations with Dr. Daniel Sorin and Dr. Andrew Hilton in the

weekly computer-architecture reading group.

I want to thank my undergraduate supervisor Dr. Guihai Chen, who lead me into system

research, master supervisor Dr. Romit Roy Choudhury, who introduced me to mobile

xv

computing, and Dr. Erran Li and Dr. Theodoros Salonidis who mentored me during my

internships. I thank my co-authors Dr. Xuan Bao, Mahanth Gowda, Dr. Hyojeong Shin,

Seyed Majid Zahedi and Qiuyun Wang — I learned so much from each of them.

Finally, I would like to thank all my friends who have accompanied me on this five-year

long journey. Friends from the lab, from the compter science department, from Duke and

from my family — the list of their names will be too long. But I know from the bottom of

my heart that without their love and support I would not be able to come this far.

xvi

1

Introduction

The mobile ecosystem is blooming. First, hardware manufacturers such as Apple, Samsung

and Qualcomm regularly release new generations of devices and system-on-chips. Then,

thousands of software developers explore these devices to create services and entertainments.

Meanwhile, the hardware manufactures improve the performance of popular services, such

as graphics and video streaming, in the next generation of their hardware. This cycle of

development stimulates the users to upgrade their devices, generating revenue in economics

and advancements in technology.

The mobile workloads have diverse performance requirements. Some involve frequent

user inputs and are computationally intensive, while others are background services that

minimally uses system resources. Some involve short, bursty interactions, while some

others require long-running, continuous sensing. Mobile hardware advances as mobile

workloads evolve. For example, to enable computational intensive tasks, mobile devices are

supplied with an increasing number of CPU cores, GPU, DSP and various accelerators. For

background services and non-intensive tasks, mobile devices integrate asymmetric multi-

processing (AMP), which achieves both performance and energy e�ciency by dynamically

switching between high-performance and low-power cores. For ubiquitous sensing, mobile

1

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●●

●

●●

●●●●

●●

●●

0
2

4
6

8
N

um
be

r o
f C

or
es

2012 2013 2014 2015

●

●
●

●

●●●●●

●●

●

●

●

●●●●●●●

●

●●●

●●

●

●●

●

●●

●●●

●●●

●

●●●●

1
2

3
4

M
em

or
y

C
ap

ac
ity

 (G
B)

2012 2013 2014 2015

●

●
●

●

●

●

●

●

●

2012
2013
2014

2015
Average

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●●●

●

●

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Ba
tte

ry
 C

ap
ac

ity
 (A

h)

●

●
●

●

2012 2013 2014 2015

F����� �.�: A survey of the number of cores, memory capacity and battery capacity in mobile
phones released in recent years. From 2012 to 2015, the average number of cores in mobile devices
increases by 107%, the memory capacity increases by 120%, while the battery capacity increases by
only 25%.

devices install sensors such as accelerometer, gyroscope, compass, heart rate monitor and

many more, giving rise to prevalent sensing and context learning algorithms.

Performance is not the only demand from users. An extended battery life is a prerequisite

for the execution of the diverse workloads. Sadly, mobile devices’ battery capacities do

not grow as fast as their processing capabilities. In Figure 1.1, we survey 40 mobile

phones released between 2012 and 2015 (the full list is in Appendix A). These devices

have increasing numbers of cores, memory capacity in gigabytes and battery capacity in

Amp-hour. From 2012 to 2015, the number of cores increased by 107%. This, together

with the implementation of 14nm technology (was 32nm in 2015), the increasing clock

rate, and the big.Little microarchitecture, demonstrates the large improvements in mobile

processors. Similarly, the memory has doubled capacities and data rates (upgraded from

LPDDR2 to LPDDR4). However, the battery capacity has only improved by 25% in three

years. Consequently, many works from all system stacks have been done, in an attempt to

achieve better performance for various workloads without consuming more energy.

In this thesis, we present three pieces of works that target at improving the energy

e�ciency of mobile devices. They investigate di�erent aspects of mobile systems, from the

heterogeneous architectures in mobile processors, to distributed networking frameworks on

2

mobile phones, to e�cient sensing on wearable devices, and discover the sources of energy

ine�ciency. Although these problems are in di�erent system domains, the key solution

is always to manage hardware resources such that energy goes to services that use it most

e�ciently.

In the first work, we find that existing AMP architectures can exploit inter-application

diversity but fail to exploit intra-application diversity—an opportunity for significant energy

savings. Exploiting the latter requires emerging AMP architectures that share the cache

hierarchy and reduce switch latency by orders of magnitude. To explore the AMP design

space, we propose a set of realistic mobile benchmarks on Android that consider user actions

and inputs. We simulate the benchmarks and show that mobile apps benefit substantially

from responsive AMPs that switch quickly to exploit fine-grained microphases. We find

that adaptive AMPs are responsive and use the little core for up to 47% of the instructions in

mobile apps. Fine-grained switching produces 19-42% energy savings. The largest savings

are seen for user actions, such as scrolling and reading, and for background services, such

as a music service. (Chapter 2)

In the second work, we consider a particular class of apps, in which the computation

is overly intensive for a single device, but multiple devies can collaborate toward aligned

sensing and computing objectives. The sharing of the sensing and computing resources

can largely improve the throughput and latency, while extending individual devices’ battery

lives. We present Swing, a framework that aggregates a swarm of mobile devices for the

new generation of mobile sensing apps. We design and implement Swing to manage (i)

parallelism in stream processing, (ii) dynamism from mobile users, and (iii) heterogeneity

from the swarm devices. We build an Android-based prototype and deploy sensing apps

– face recognition and language translation – on a wireless testbed. We show that Swing

manages multiple devices to meet the real-time performance goals of modern sensing apps,

with negligible overhead on each device. (Chapter 3)

Given that users often carry a wearable device and a phone simultaneously, in the third

3

work, we manage the ensemble of the two devices to improve the energy e�ciency for

continuous sensing apps on wearables. We design Telepath, a framework that supports

communication-free o�oading for wearable devices. With o�ine training, computational

tasks can be o�oaded from the wearable to the user’s phone, without transferring raw

sensing data. The key observation is that when the user is carrying both devices, the sensing

streams on the two devices are highly correlated. By exploiting the correlation, the phone

can estimate the watch’s sensing data and emulate the watch. Our evaluations shows that

with Telepath, the phone performs accurately on activity recognition tasks that are designed

for watches, achieving on average 85% of the watch’s accuracy and 2.5x improvement

relative to using the phone’s raw sensing data, while extending the watch’s battery life by

2.1x. (Chapter 4)

In summary, this thesis presents the following contributions.

• Analysis on the development and trend of mobile processors, their microarchitectures

and detailed power breakdown.

• Realistic mobile benchmarks that consider user interactions and background services.

• Analysis on continuous sensing apps and their power and computational bottlenecks.

• Prototyping of a distributed dataflow system that schedules multiple mobile devices

to assist compute-intensive sensing services.

• Analysis on the energy constraints in wearable devices and power consumption of

activity tracking apps.

• Prototyping a framework that minimizes sensing and computing using sensory of-

floading with a systematic signal processing approach.

4

2

Evaluating Asymmetric Multiprocessing for Mobile
Applications

Today’s mobile processors attempt to achieve two competing goals at the same time: high

performance and low energy consumption. Traditional symmetric multiprocessing (SMP)

might attain the first goal, but fails the second one – identical cores are not e�cient for the

diverse performance requirements of mobile applications. As the number of cores grows,

new organizations of multiprocessing systems are needed.

Table 2.1 details mobile processor evolution in three major mobile system-on-chip

families. Observe that in addition to increasing the number of cores and the clock frequency,

the industry has taken two approaches to address SMP limitations. The first approach,

proposed by Qualcomm, provides independent power rails to each of the four cores, so

that each core can adapt its voltage and frequency according to its workload. The second

approach, taken by Samsung (ARM Big.LITTLE) and Nvidia, uses additional low-power

core(s) to handle less intensive tasks and allow the big cores to be turned o�.

This second approach, namely, asymmetric multiprocessing (AMP), provides high

performance with a “big” core and energy e�ciency with a “little” one. The system

5

dynamically switches between big and little execution modes according to workload levels.

However, AMP performance and e�ciency greatly depends on the physical organization

of its asymmetric functionalities. Today’s designs loosely couple big and little cores via

shared memory with private L2 caches. When switching, the L2 of the current core must

first flush its dirty cache lines to DRAM. As a result, the responsiveness of switching is

inherently limited by data movement and DRAM latencies. Although they are su�ciently

responsive to coarse-grained system phases, they are incapable for exploring finer-grained

software dynamism.

Mobile app diversity provides AMPs many opportunities to switch. The first type of

diversity is inter-application diversity. Some apps, such as video and web browsers, are

compute-intensive and requires big cores; some apps, such as weather and calendar, require

minimal computation and can be performed on little cores. Loosely coupled big and little

cores that share memory are su�ciently responsive to inter-application diversity.

The second type of diversity exists inside individual apps, intra-application diversity. A

mobile app normally contains more than one “activity window,” allowing users to perform

distinct types of actions such as scrolling, reading and typing. Di�erent actions correspond

to di�erent patterns of computation. We observe that user input often triggers a short burst

of processor activity, executing a few billion instructions in a few seconds. Input-triggered

computation exhibits irregular control flow for which speculative and out-of-order execution

perform poorly. For this type of computation, big cores perform no better, and sometimes

worse, than little cores. Therefore, intra-app diversity provides opportunities for tightly

coupled AMPs that share a cache hierarchy and switch quickly between execution modes.

Designing new microarchitectures for mobile AMP requires a comprehensive analysis

of mobile workloads. Existing mobile benchmarks contain inter-app diversity but neglect

intra-app diversity that arise from user actions and inputs. In this chapter, we propose a

set of mobile benchmarks that specifically include typical user activities and a systematic

method to evaluate performance under di�erent AMP designs. Specifically, we make three

6

0 1 2 3 4

0.0
0.5

1.0
1.5

Time (S)

IP
C

0 1 2 3 4

0.0
0.5

1.0
1.5

Time (S)
0 1 2 3 4

0.0
0.5

1.0
1.5

Time (S)
0 1 2 3 4

0.0
0.5

1.0
1.5

Time (S)

IP
C

IP
C

IP
C

Launching Scrolling Reading Typing

F����� �.�: Types of actions in one Twitter session

contributions:

Realistic Mobile Apps. In this chapter, we design and implement a set of realistic

mobile benchmarks that are composed of Android apps. They include typical user actions,

such as launching apps, scrolling down lists, reading contents and typing words. They also

include foreground and background apps, such as games and music players. We integrate our

benchmark apps with gem5 Binkert et al. (2011), a cycle-accurate simulator. To assist future

work on mobile architecture design, we open-source the Android code and the simulator’s

disk images, checkpoints and configurations Fan (2015).

Responsive Asymmetric Multiprocessing. With our mobile benchmarks, we evaluate

three AMP designs: 1) loosely coupled big and little cores with shared memory, 2) tightly

integrated physical cores with a shared last-level cache, and 3) a single physical core with

an adaptive datapath and shared cache hierarchy.

E�cient Big-Little Computation. We find that adaptive AMPs are responsive and use

the little core for up to 47% of the instructions in mobile apps. Fine-grained switching

produces 19-42% energy savings. The largest savings are seen for user actions, such as

scrolling and reading, and for background services, such as a music service.

Collectively, we study realistic benchmarks that reflect intra-application diversity to

show that emerging AMP architectures can save substantial energy without harming the

performance of mobile applications.

7

Table 2.1: Specs of Mobile Processors
SoC Model CPU Freq L1 Cache L2

Cache
Semi-
conductor

Launch

Nvidia Tegra 2 Dual-Core ARM Cortex-A9 1.2GHz 32KB/32KB 1MB 40nm 2011
Nvidia Tegra 3 Quad-Core ARM Cortex-A9

(4-Plus-1)
1.6GHz 32KB/32KB 1MB 40nm 2012

Nvidia Tegra 4 Quad-Core ARM Cortex-A15
(4-Plus-1)

1.9GHz 32KB/32KB 2MB 28nm 2013

Nvidia Tegra K1 Quad-Core ARM Cortex-A15
(4-Plus-1)

2.3GHz 32KB/32KB 2MB 28nm 2014

Qualcomm Snapdragon S3 Dual-Core Scorpion 1.7GHz 32K/32KB 512KB 45nm 2010
Qualcomm Snapdragon S4 Quad-Core Krait 1.7GHz 4KB/4KB L0

+ 16KB/16KB L1
2MB 28nm 2012

Qualcomm Snapdragon 800 Quad-Core Krait 2.26GHz 4KB/4KB L0
+ 16KB/16KB L1

2MB 28nm 2013

Qualcomm Snapdragon 805 Quad-Core Krait 2.7GHz 4KB/4KB L0 +
16KB/16KB L1

2MB 28nm 2014

Samsung Exynos 4 Dual-Core ARM Cortex-A9 1.4GHz 32KB/32KB 1MB 45nm 2011
Samsung Exynos 4 Quad-Core ARM Cortex-A9 1.6GHz 32KB/32KB 2MB 32nm 2012
Samsung Exynos 5 Qual-Core ARM Cortex-A15

+ Quad-Core ARM Cortex-A7
1.9GHz/
1.3GHz

32KB/32KB 2MB/
512KB

28nm 2013

Samsung Exynos 5 Qual-Core ARM Cortex-A15
+ Quad-Core ARM Cortex-A7

2.1GHz/
1.5GHz

32KB/32KB 2MB/
512KB

28nm 2013

2.1 Mobile Benchmarking

Mobile apps are generally less computationally intensive; bursts of processor activity are

often triggered by user inputs. Moreover, mobile apps often contain more than one activity

window in order to provide multiple functionalities and let users perform distinct types of

actions. Thus, an ideal benchmark set should capture not only the di�erent performance

requirements between apps, but also various user actions inside each app.

Existing mobile benchmarks neglect intra-app diversity, considering only end-to-end

app execution. For example, BBench Gutierrez et al. (2011) provides a set of webpages,

automatically loaded to test mobile web browsing behaviors. It also includes an interactive

game which runs only on testbeds and requires manual inputs to execute, preventing the

usage of cycle-accurate simulators.

MobileBench Pandiyan et al. (2013) includes photo viewing and video playback which

are not interactive. Moby Huang et al. (2014) provides popular mobile apps such as email,

word processing, maps and social network. Typical operations in such apps, such as loading

webpages and opening files, were simulated and do not include user inputs (click, scroll,

type) that interact with apps. In contrast, we create a set of benchmarks for mobile apps that

8

focus on typical user actions.

2.1.1 Application and User Actions

Consider the apps inside our phones. Some are simple (e.g., weather, photo viewer, or

reader) and require only one type of user action, if any. Other apps, however, provide more

functionality and allow users to perform multiple types of actions frequently. For example,

users of a social app, such as Twitter, may frequently switch between multiple actions.

These actions may include scrolling through a list of tweets, reading the details of a tweet,

and typing a tweet. Reading does not require the mobile processor to do anything other

than display content, but scrolling or launching new activities may trigger a sequence of

computation. We expect di�erent performance requirements for di�erent actions.

To demonstrate this intuition, we conduct an empirical study. We use a hardware

performance monitoring unit to record, in real time, the number of instructions committed

per cycle (IPC) when a human user launches and uses Twitter (version 5.8.1 on Android

JellyBean 4.3) on an ARM Versatile Express development board with one Cortex-A15

core activated ARM (2012). During a 60-second session, the user performs several actions

– launching new activity windows to open tabs or settings, scrolling to see more tweets,

reading, and typing. We record user inputs and corresponding timestamps by reading the

kernel input driver file and tracing click events.

Figure 2.1 presents selected user actions and the corresponding IPC time series. IPC

shows distinct patterns for each action. Launching an activity window introduces a burst

with a maximum IPC of 1.7. Scrolling produces a smaller burst with a maximum IPC of 1.5.

Reading exhibits no computation except for the activity due to background sync tasks, which

produce an average IPC of 0.2. Typing causes sustained IPC fluctuation. Di�erentiating

such actions is important. If we were to view the Twitter session as a monolithic benchmark,

end-to-end measurement would lose the rich information contained in various user actions.

In our setting, the mobile device is running the full system, with regular background

9

tasks. For example, the IPC spikes when reading are caused by background network threads

from the stock email client. This setting represents realistic mobile device usage and we

will reproduce the same setting in our simulations.

2.1.2 Microbenchmarks

We create a set of microbenchmarks to represent typical user actions in a social app. In

particular, the microbenchmarks correspond to the four actions in Figure 2.1.

• Launching. We create a set of activities and inject touch screen events that switch

between them. A touch event is injected every 1 second to mimic a user launching

di�erent activity windows (e.g., clicking to view tweet details).

• Scrolling. We create a listview that automatically extends itself. Automatic swipes

are injected to scroll down the list. A swipe is injected every 500ms to mimic a user

quickly scrolling down and browsing a list of content.

• Reading. We display an activity with text and pictures (e.g., reading a tweet). No

specific inputs are injected.

• Typing. We create a textview and inject keyboard events to type (e.g., writing a tweet).

Keyboard events are injected at a frequency of two letters per second.

To implement these benchmarks, we create “activities” within Android, loading activity

text and pictures locally. We inject touches, swipes, and keyboard events using Android

Instrumentation, an API that allows app developers to test their activity windows with

emulated user behavior. This method requires access to application source code; our

benchmarks are open-sourced.

Other methods use Android MonkeyRunner or write I/O events to the Linux input driver

file. However, these methods require a time-stamp for each injected event and precisely

specifying the time-stamp to trigger the right event during cycle-accurate, microarchitectural

10

simulation is di�cult. Alternatively, AutoGUI supports record-replay through VNC and

may be useful once it becomes public Sunwoo et al. (2013).

2.1.3 Macrobenchmarks

In addition to microbenchmarks for input-triggered computation, we include two foreground

tasks, a game and a mobile web browser. We benchmark a game in which the user controls a

submarine by touching the screen. The game uses 2D graphics, which exercises the processor

and neglects the GPU. We benchmark the web browser and use a script, BBench Gutierrez

et al. (2011), that automatically loads local webpages.

Table 2.2: Choices of Benchmarks

Name Scope IPC(B) IPC(L) Inputs
Launching

MicroBenchmarks

1.01 0.80 Periodic
Scrolling 0.90 0.70 Periodic
Reading 0.84 0.70 None
Typing 1.05 0.76 Frequent
BBench Web Browsing 0.98 0.76 Periodic
Music Background Task 0.76 0.63 None
Submarine Gaming 1.12 0.80 Periodic
SunSpider Javascript 1.09 0.79
Linpack CPU 1.26 0.95

To compare mobile workloads against compute-intensive ones, we further deploy

0xbench Chang (2013) for testing smartphone performance. This open-source bench-

mark suite includes a Java implementation of Linpack and a Javascript benchmark called

SunSpider.

Table 2.2 lists our benchmark and application suite. We classify benchmarks by the

frequency of user inputs. We deploy the benchmarks on the gem5 simulator – see Sec-

tion 2.3.2 for detail. We provide deployment checkpoints, disk images, and methods in our

open-source project Fan (2015).

11

2.2 Asymmetric Mobile Processors

Based on the level of sharing in the cache hierarchy, AMP organizations can be classified

into three categories: shared memory, shared last-level cache, and shared first-level cache.

In this section, we first explain existing (and emerging) AMP systems, and abstract them

into our evaluation models by quantifying their switching costs.

2.2.1 Shared Memory

Both Samsung and Nvidia have adopted AMP in their SoCs. However, in addition to the

number of cores and their specifications, these two processors have some major di�erences.

Di�erences. The key of AMP is the performance/power gap between the big core and

the little core. To achieve this gap, Samsung and Nvidia chose di�erent methods. In Nvidia

Tegra, the four big cores and one little core are identical ARM Cortex-A9 CPUs, but the cores

are fabricated in di�erent process technologies. The big core uses a general process (G) and

a little core uses a low power one (LP). G transistors are conventional transistors, switching

quickly but leaking more static power. LP transistors leak less but switch slowly nvi (2011,

2013). On the other hand, Samsung Exynos uses di�erent microarchitectures for big and

little cores. The big ones are out-of-order ARM Cortex-A15 CPUs and the little ones are

in-order ARM Cortex-A7 CPUs.

The two SoCs also di�er in their switching management. Nvidia Tegra implements a

hardware switch controller, and thus the switching between big and little is OS transparent.

In contrast, Samsung Exynos rely on the Linux kernel to schedule transitions.

Similarities. Despite all the di�erences, both systems share some common characteristics.

First, big cores are identical and share an L2 cache; little core(s) are identical and share

another L2 cache. Therefore, both systems can be viewed as one big cluster with one little

cluster, each with a private last-level cache (LLC). Second, either the big or little cluster is

active at any given time. Cluster have separate power domains that allow big cores and their

12

caches to power down when small cores are active, and vice versa.

Based on these characteristics, we abstract these two AMP processors into a model with

one out-of-order core and one in-order core, which have private LLCs and shared DRAM.

A big/little switch transfers a thread from one core to another. Because the LLCs of the

big and little clusters are not shared, in order to ensure coherence, the dirty cache lines of

the currently active LLC are flushed to DRAM before switching. This delay dominates the

switching latency.

Switching Cost. The switching delay can be computed by the size of dirty LLC lines

divided by the DRAM bandwidth. That is, if the LLC capacity is 512KB and memory

bandwidth is 12.8GB/s, assuming on average 25% of cache lines are dirty at any given time,1

a 1GHz core must wait 10K cycles (= 25% ˆ 1GHz ˆ 0.5MB {12.8GBps) for the switching

to complete. Although it optimistically assumes transfers at peak memory bandwidth, 10K

cycles is a useful, order-of-magnitude estimate of switching latency for asymmetric cores

that share main memory. In our evaluations later, we use this number to evaluate this AMP

category.

Summary. Existing systems-on-chips have proved that AMP with shared memory is

cost-e�cient – tuning operating and fabrication parameters for existing core designs would

be su�cient to build such processors. Switching between big and little is responsive to

coarse-grained system phases (e.g., standby/active mode of the phone), but further flexibility

is constrained by switching overheads.

2.2.2 Shared Last-Level Cache

Although current asymmetric mobile processors share memory, we envision next-generation

AMP with shared last-level cache (LLC). Compared with shared memory, shared LLCs

improve performance in several ways. First, the active core benefits from more cache lines

since the aggregate size of the shared LLC is larger than that of a statically partitioned one.

1 This number is measured by our mobile workloads

13

L2 L2

DRAM

L2

L1 L1

L1

(a) (b) (c)

F����� �.�: Asymmetric multiprocessor organizations, each with di�erent big/little transition latency:
(a) shared memory requires 10,000 cycles, (b) shared last-level cache requires 500 cycles, (c) shared
first-level cache with adaptive datapath requires 30 cycles.

For example, the ARM Big/Little allots 1MB and 0.5MB of L2 for its big and little cores,

whereas a shared cache would provide 1.5MB to be used by active cores ARM (2012).

Switching Cost. Second, a shared LLC reduces switching latency, because compared

with flushing dirty lines of a large LLC into DRAM, flushing smaller private caches into the

LLC is much faster. If 25% of lines in a 32KB L1 cache are dirty, flushing the L1 into the

L2 requires 500 cycles (= 25% ˆ 32KB { 16B/cy). By allowing switchings to avoid writing

to main memory, the shared LLC reduces switching latency by two orders of magnitude.

Summary. Although one might argue that implementing shared LLC for AMP requires

much design e�ort, previous works have demonstrated that such an architecture requires

only modest design costs, unless it needs to be tailored to a specific workload mix Lee and

Brooks (2007a, 2008b); Guevara et al. (2014a). With reduced switching latencies, such

an AMP processor can respond to coarse-grained application phases, such as periodic

behaviors with distinct resource demands Kumar et al. (2003).

2.2.3 Shared First-Level Cache

If sharing the last-level cache is fast, sharing the entire cache hierarchy is faster. Recently

proposed microarchitectures adapt the datapath between out-of-order (OOO) and in-order

(IO) execution, thus providing big and little virtual cores in a single physical core. The

cache hierarchy and its contents remain useful and valid across datapath transitions. In

e�ect, big and little cores share the cache hierarchy, beginning with the L1.

14

To design an adaptive core, the architect begins with a high-performance datapath that

implements dynamic instruction scheduling. OOO execution requires register renaming,

issue queues with wake-up and selection logic, and a reorder bu�er. For adaptivity, the

architect then adds logic and multiplexors to bypass OOO structures and execute IO. Phys-

ical registers might power o�, or the issue queue might switch between CAM and FIFO

blocks. Two recently proposed adaptive cores for general-purpose computing are noteworthy.

MorphCore adapts from an OOO core into a highly multi-threaded IO one Khubaib et al.

(2012). Composite Cores uses a shared front-end that feeds instructions into one of two

backends, one IO and the other OOO Lukefahr et al. (2012a).

Switching Cost. Transition latency is negligible. Datapath transitions a�ect only ar-

chitected state in registers, not the cache hierarchy. Two implementations are possible. In

the first, a transition flushes the pipeline, powers o� OOO structures such as the physical

register file, and resumes instruction fetch in IO mode. Transition latency is proportional to

instruction window size. If the OOO datapath commits two instructions per cycle, flushing

a pipeline with a half-occupied, 192-entry reorder bu�er requires approximately 50 cycles.

In a second implementation, the datapath explicitly spills and fills architected state to and

from the L1 cache, which requires 30 cycles in MorphCore.

Summary. This emerging class of adaptive microarchitectures motivates a fresh per-

spective on asymmetric processors and their potential for improving e�ciency in mobile

computing. Since a big/little transition can occur every few hundred cycles when each

transition requires only tens of cycles, the adaptive datapath gives an asymmetric proces-

sor agility with which it can respond to an application’s fine-grained microphases, e.g.,

instruction throughput fluctuationsLukefahr et al. (2012a).

Figure 2.2 summaries the three AMP organizations above. The lower the switching

cost, the more responsive the AMP can be to dynamism in mobile workloads. With greater

little core utilization, energy savings are expected to be larger. In the rest of this paper,

we evaluate the benefit of these three AMP designs according to their distinct switching

15

latencies.

2.3 Methodology

We simulate, with gem5, varied AMP architectures to understand the impact of intra-app

diversity on energy e�ciency. We assume that only one core, either big or little, is active at

any given time. We quantify the maximum percentage of instructions that can be executed on

the little core that safeguards performance (i.e., instructions per cycle) yet improves energy

e�ciency. We consider an oracle that collects processor activity during app execution and,

o�ine, evaluates big-little transitions with varying specifications and costs, as well as with

perfect knowledge of the future.

First, we divide time into intervals. At the beginning of every interval, the oracle

determines whether the other core would o�er better performance or e�ciency. For example,

if the big core is currently active, the oracle switches to the little core in the next interval, if

IPC(little) is similar to IPC(big). Three parameters a�ect the calculation of IPC.

Switching interval, measured in instructions, determines how frequently the oracle

makes a switching decision. For example, suppose the interval is 1000 instructions and

the oracle knows that, for the next 1000 instructions, IPC(little) “ IPC(big) “ 1. The

little core executes instructions more e�ciently with no performance penalty and the oracle

considers a switch. Yet this switching decision is not final because, even if the little core

seems capable, switching requires data migration and an additional delay that may cause

performance to be lower than expected.

Switching cost, measured in cycles, quantifies the additional delays. Following the

previous example, suppose that a big-little switch requires 500 cycles. To complete the next

1000 instructions, the little core requires 1500 cycles after accounting for switching cost

whereas the big core requires only 1000. We define

IPCnew “ [Interval Insns]
[Interval Insns]{IPCold ` Cost

,

16

which is the IPC after accounting for switching cost. In the previous example, performance

clearly su�ers since IPCnew “ 0.7 and IPCold “ 1.0. Therefore, the oracle might not

consider a switch. However, this is still not the final decision because a switching scheme

might trade performance losses for e�ciency gains.

Performance penalty specifies the performance loss that can be tolerated after switch-

ing. The oracle switches from big to little as long as IPC(little) is greater than or equal

to penalized performance IPC(big){Penalty. In our recurring example, the oracle would

switch only if the penalty tolerance is at least 1.5ˆ. Altogether, the switching interval,

switching cost, and performance penalty define a space of control parameters for switching

between big and little cores.

2.3.1 Oracular Switching

With the parameters defined, the oracle identifies all switch points within the app with the

following procedure. It first compares big and little IPC for each instruction interval to

find those that satisfy conditions for a switch with respect to the penalty tolerance. For the

original IPC time series in Figure 2.3(1), the oracle marks the time serials with “big” and

“little” flags which suggest the most beneficial executing mode for each interval. If adjacent

intervals are marked di�erently, they define an initial switch point. See points A and B in

Figure 2.3(2).

The oracle then examine each big-to-little switch point based on the switching cost.

Consider switch point A. Suppose that immediately after the switch, interval ik reports

IPC(big) “ 1.0 and IPC(little) “ 0.8. After applying a 500-cycle switching cost, IPC(little) “
0.57, which exceeds the tolerated performance penalty such that the little core is no longer

good for interval ik. The oracle revises its decision, marks interval ik big, and moves on to

consider whether ik`1 should use the little core.

Similarly, the oracle examines little-to-big switch points. Consider point B. After

applying a 500-cycle switching cost to interval ij , IPC(big) † IPC(little) ˆ 1.25 and the big

17

Big

Little
A B

i1 i2 ...

ik

ij

Big

Little

1.2 1.2 1.1 1.0

0.90.9 0.9 0.8 1.0 0.8 0.8 0.8

0.8 0.9 1.0 1.1 1.2 1.3

0.7 0.6

oracle
0.

penalty(1.25x)

1

2

Big

Little
C D

i1 i2

ik+1

ij+2

cost(500)

3

...

...

...

...

...

F����� �.�: Switching based on oracle knowledge

core is no longer suitable for interval ij . The oracle revises its decision, marks interval ij little,

and moves on to subsequent intervals. After applying switching costs, the oracle obtains

final switch points that di�er from the initial ones – see points C and D in Figure 2.3(3).

The final marks and switch points dictate total performance loss and energy savings.

The final analysis marks more intervals as little because switching to big is costly; the

big core’s performance advantage must be large enough to o�set switching delays. Often, an

initial little-to-big switch is discarded in the final analysis and the little core is used instead.

Even though the little core’s performance is low, the big core’s performance is even lower

after accounting for switching costs (e.g., interval ij`1 in Figure 2.3(3)). As costs increase,

an AMP might use the little core more often because once a little core is used, high costs

make a transition back to the big core hard to justify.

18

Table 2.3: Big/Little Specs
Freq. Width #ALU ROB PRF L1 I/D L2 Cache

Big 1GHz 3 2 192 256 32KB 512KB
Small 1GHz 3 1 32 96 32KB 512KB

2.3.2 Simulation

Each mobile benchmark is installed in an Android (version 4.0.2) system image that is

checkpointed immediately before the launching of a benchmark app. To study opportunities

for fine-grained transitions, we collect performance statistics for intervals of 1000 instruc-

tions. The oracle uses IPC reported from big and little executions to determine the optimal

execution mode for each interval.

Because the hardware register counters on the ARM development board cannot sup-

port nanosecond-level measurements, we use gem5 Binkert et al. (2011), a cycle-accurate

simulator for evaluation. Gem5 supports full-system Android simulation for our mobile

benchmarks. In Table 2.3, we specify out-of-order and in-order cores for big-little asymme-

try.

We model an in-order core with issue logic that enforces first-in, first-out order. Without

dynamic instruction scheduling, the datapath has fewer instructions in flight. Our datapath

shrinks the physical register file and the reorder bu�er to reflect less demand for these

structures, but a more e�cient in-order design would bypass them entirely. Our big and little

configurations capture the out-of-order performance advantage and the in-order e�ciency

advantage.

Power. We use McPAT Li et al. (2009) to estimate dynamic power for big and little

cores. Figure 2.4 shows the power breakdown for big and little cores when running BBench.

Our in-order core saves much of its power in the rename because it reduces the size of

the physical register file and the reorder bu�er. However, because the rename was not

completely removed, a small amount of power continues to be dissipated by this unit. Thus,

19

Bi
g

Li
ttl

e

Dynamic Power (W)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fetch Unit
Rename Unit
Load/Store Unit
Memory Management
Execution Unit

F����� �.�: Power Breakdown

power and energy savings that we report are conservative; an in-order core designed from

first principles forgoes a rename unit and would dissipate even less power.

We compare power numbers from McPAT against power measurements collected, using

on-board power meters, from an asymmetric ARM processor comprised of Cortex A15’s

and A7’s ARM (2012). When one big core is active and running BBench, voltage varies

from 0.9 to 1.05V and average power is 1.10W. When one little core is active, voltage is

0.9V and average power is 0.36W. The big-little power ratio is approximately 2.5ˆ.

McPAT reports a lower ratio of 1.7ˆ. The simulated little core di�ers from the ARM

Cortex A7 in two regards – rename and superscalar width. If the simulated little core were

to bypass rename, McPAT would report a big-little power ratio of 2.6ˆ, which is more

consistent with our ARM measurements. Without rename, our little core dissipates more

power due to its wider datapath; it issues up to three instructions per cycle whereas the A7

issues only one. We evaluate sensitivity to superscalar width in later sections.

Finally, static power plays a large role in asymmetric processor e�ciency. When the

big core is active, the little core is idle and dissipates static power (and vice versa). The

processor cannot use C-states to eliminate static power since that would require separate

power supplies and milliseconds for wake-up. Instead, an asymmetric processor reduces

dynamic power with idleness and reduces static power by power-gating with low-leakage

20

PMOS headers, which wake in a few cycles.

We estimate static power as 30% of dynamic power or, equivalently, as 23% of the total.

This estimate is consistent with recent processor implementations: IBM Power 7 static

power is 25% of the total in a 45nm technology Zyuban et al. (2011). Circuit designers and

CAD optimizers tune supply and threshold voltages to balance static and dynamic power.

If static power were too large a fraction of the total, designers would increase Vth at the

expense of circuit speed Horowitz et al. (2005); Nose and Skurai (2000).

2.4 Evaluation

We evaluate three asymmetric processor organizations: shared memory, shared last-level

cache, and shared first-level cache with an adaptive datapath. By abstracting these designs

into switching costs, we compare their energy savings for our suite of mobile benchmarks.

We also assess sensitivity to other parameters such as interval length, IPC prediction

accuracy, superscalar width, and voltage/frequency.

Parameters. Initially, we set the interval length to be 1000 instructions, which illustrates

microphase behavior Lukefahr et al. (2012a) and exercises the adaptive processor with a

shared first-level cache. Later, we explore little core utilization and its sensitivity to this

parameter.

Switching costs are dictated by data movement costs in each asymmetric processor

design strategy: (a) 10K cycles for shared memory, (b) 500 cycles for shared last-level cache,

and (c) 30 cycles for shared first-level cache. Although switching cost normally includes

delays from data movement and wake-up, we assume data movement delay hides wake-up

delay as is the case when power-gating.

We consider a range of tolerable performance penalties, measured in terms of the

performance ratio between big and little cores. If the performance penalty were to exceed

this ratio, little core utilization would reach 100%. Our evaluation sets the penalty below

21

0.
0

1.
0

2.
0

● ●

Big Little
0

10
0

20
0

30
0

Index

#conditional branches incorrect

0 20 40 60 80 100

0
10

00
30

00 #cycles IEW is squashing

Instruction Intervals (10K Instructions)
F����� �.�: Impact of branch misprediction

this ratio, ranging from 1.00 to 1.45.

Questions and Metrics. Our evaluation answers three questions about asymmetric

multiprocessors for mobile workloads. First, is it necessary to have a little core? To quantify

little core utilization, we use the method described in the previous section to find all the

intervals that are marked little and compute the percentage. Second, is the little core too

slow? We calculate total slowdown to quantify the end-to-end app delay when permitting

little core execution. Third, what can we gain from the little core? We calculate total energy

savings, which measures the ratio of energy consumed by big-little cores to the ratio of

energy consumed by a big core alone.

22

1.0 1.1 1.2 1.3 1.4
Performance Penalty (x)

U
til

iz
at

io
n

of
 L

itt
le

 c
or

e
0%

10
%

20
%

30
%

40
%

50
%

●
●

● ●
● ●

●

●

●

●

●

30 Cycles
500 Cycles
10K Cycles

F����� �.�: Utilization of the little core for scrolling

2.4.1 Case Study with Scrolling

Scrolling is a fundamental microbenchmark for mobile phones. It is characterized by

periodic user inputs that trigger bursts of computation. Once the user touches the screen,

the processor is active for only two to three seconds to execute a few billion instructions. In

many instruction intervals, the little core performs as well as, if not better than, the big core.

For example, Figure 2.5 illustrates the impact of branch mis-prediction. Bursty compu-

tation when scrolling means that branch predictor training is less e�ective and speculative

execution is often wasted in the big core. Such short and bursty computation, also ob-

served in game and web browser benchmarks, has a direct impact on how an asymmetric

multiprocessor is exploited.

Lower switching costs increase little core utilization, as illustrated by Figure 2.6. The

adaptive core (30-cy) and shared-LLC (500-cy) strategies use the little core for 20-25% of

23

1.0 1.1 1.2 1.3 1.4
Performance Penalty (x)

En
er

gy
 S

av
in

gs
0%

10
%

20
%

30
%

40
%

● ● ● ● ● ●
●

●
●

●

●

30 Cycles
500 Cycles
10K Cycles

F����� �.�: Total energy saved, relative to big core energy

instruction intervals, even under stringent constraints on performance penalties. For short

intervals, today’s shared-memory (10K-cy) strategy is ine�ective and utilizes the little core

for only 5% of intervals.

The cross-over point between 30-cy and 500-cy strategies highlights a counter-intuitive

observation. Sometimes, the 500-cy strategy uses the little core more often. This is because

switching back to the big core is di�cult when switching costs are high and performance

penalties cannot be tolerated – see Section 2.3.1.

Figure 2.7 shows energy savings of up to 30% from responsive AMPs. Recall that our

power analysis for the little core is conservative, which makes the reported energy savings

conservative as well. Big and little energy is calculated by multiplying core power and

the number of active cycles in each mode. In addition, switching energy is calculated by

multiplying big core power and the number of cycles spent switching.

For short intervals, there is no case in which today’s AMPs are e�ective. The 10K-cy

24

strategy performs worst for all three metrics, showing low utilization and low energy saving.

Containing only 1,000 instructions, each interval is too short when compared to the switch

cost and opportunities to switch are limited.

2.4.2 Generalizations with Benchmark Suite

For scrolling, the little core can be well utilized and save energy without harming perfor-

mance. To generalize this conclusion, we present results for little core utilization and energy

savings across all the benchmark apps. To simplify the illustration, we fix the performance

penalty to be 1.15x. In practice, the value of the performance penalty can be tuned to achieve

certain requirements (e.g., an energy budget).

Figure 2.8 shows utilization of the little core. Mobile apps are more little-core friendly

than computationally intensive benchmarks such as Javascript and Linpack. Apps that do

not process user input, such as Read and Music, require little processor activity and utilize

the little core most. Other apps receive periodic user input that demands computation,

such as Launch and Scrolling, but still use the little core 15-24% of the time. Typing is a

notable exception and uses the big core to process frequent user inputs. The 30- and 500-cy

strategies use the little core often (24% and 22%) while the 10K-cy strategy uses it less

(9%).

Figure 2.9 shows total slowdown when the tolerable performance penalty is set to 1.15x.

Fast, fine-grained switches between execution modes can produce negative slowdowns (i.e.,

speedups) because the little core can out-perform the big one (e.g., due to branch mis-

prediction penalties). Slow, coarse-grained switches may harm performance but slowdowns

are capped by the penalty tolerance of 1.15x.

Figure 2.10 shows energy savings. Both the 30- and 500-cy strategies reduce energy

by as much as 38%. Reading and Music are much less computationally intensive than

other tasks, providing the most opportunities for the little core. The three strategies o�er

energy savings of 24%, 22% and 6%, on average, when the penalty tolerance is stringent.

25

Read Music Launch Scroll BBench Game Type Jscript Linpack

Ut
iliz

at
io

n
of

 L
itt

le
 C

or
e

0%
10

%
20

%
30

%
40

%

30 Cycles 500 Cycles 10K CyclesNo Input
Periodic Input

Frequent
Input

F����� �.�: Little core utilization across apps

0.
0

0.
5

1.
0

1.
5

Read Music Launch Scroll BBench Game Type Jscript Linpack

To
ta

l S
lo

wd
ow

n

30 Cycles 500 Cycles 10K Cycles

F����� �.�: Total slowdown across apps

When performance targets are relaxed and permit up to a 1.45x penalty, the 30- and 500-cy

strategies o�er energy savings of 31% and 25% (average), and 42% and 39% (best case).

2.4.3 Sensitivity to Management Parameters

Interval Length. The interval length determines the switching granularity. Figure 2.11

shows the energy savings for varied interval lengths. The brighter the color, the greater the

energy savings. The 30- and 500-cy strategies enable the shortest intervals and provide the

26

Read Music Launch Scroll BBench Game Type Jscript Linpack

En
er

gy
 S

av
in

gs
 (N

or
m

al
ize

d)
0%

10
%

20
%

30
%

40
%

50
%

30 Cycles 500 Cycles 10K Cycles

F����� �.��: Energy savings across apps

greatest savings; the top-left corner is brighter. The longest intervals do not reduce energy

costs; the right-most columns are darker. The 30- and 500-cy strategies are insensitive to

interval length, but the 10K-cy strategy saves energy only when interval length is greater

than 10K instructions.

Apps that process periodic user input, such as Launching, Scrolling, and Submarine, are

sensitive to switching interval and cost. As the interval length increases, the performance

ratio between big and little cores in each interval approaches the average ratio across all

intervals (1.0 to 0.7) and reduces switching opportunities. When the interval includes 10M

or 100M instructions, the little core is rarely used and energy savings are low as indicated by

the dark columns on the right. Finally, compute-intensive apps, such as Linpack, Javascript

and Typing, are insensitive to interval and cost – they rarely use the little core and save little

energy.

Performance Prediction Error. Thus far, our oracle-based evaluations have demon-

strated little core utilization and its energy e�ciency. In reality, perfectly knowing processor

performance ahead of execution is impossible. It is possible, however, to build a model that

predicts the performance of the big/little core with historical statistics obtained from hard-

ware performance counters. The predicted IPCs can then be used to determine if a switch

27

Length of Switching Interval (Instructions)

Sw
itc

hi
ng

 C
os

t (
Cy

cle
s)

10K

500

30
Read Music Launch

Scroll BBench Game

10K

500

30

1K 10K 100
K 1M 10M 100

M

Type Jscript

1K 10K 100
K 1M 10M 100

M

Linpack

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F����� �.��: Impact of switching cost, interval length on energy savings

should happen for the next instruction interval. Such prediction models introduce error, and

in this subsection, we discuss the impact of misprediction to the little core utilization.

To model the relationship between inputs from various hardware performance counters,

linear regression models are often used. In such models, error terms are independent and

identically distributed, following a normal distribution with mean of zero and variance of

�2, To capture this e�ect in our oracle, we add Gaussian white noise (mean = 0, sd = 0.06) to

the oracle’s IPCs, mimicking predicted IPCs with errors with a distribution that is carefully

tuned to correspond with related work Lukefahr et al. (2012a). We repeat this process ten

times and, each time, recalculate little core utilization.

Figure 2.12 shows the impact of prediction error on little core utilization. Each bar

shows oracle-based utilization while each circle shows prediction-based utilization. Most

of the time, the impact of misprediction is negligible. An outlier exists in the 10K-cycle

28

Read Music Launch Scroll BBench Game Type Jscript Linpack

Ut
iliz

at
io

n
of

 L
itt

le
 C

or
e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

0%
10

%
20

%
30

%
40

%

30 Cycles 500 Cycles 10K Cycles Prediction

F����� �.��: Impact of prediction errors on little core utilization

strategy running Submarine Game. Utilization with predicted IPCs tend to be much lower

than that of the oracle-based result.

We explain the outlier as follows. The 10K-cy strategy with 1K switching interval

normally leads to modest utilization of the little core. Utilization that is larger than expected

(e.g., nearly 20% for Game) is explained by rare cases in which the oracle switches from

big to little and then stays in little mode for long periods due to high switching overheads.

Prediction errors avoid becoming stuck on the little core by removing the rare big-to-little

switches.

Other than this outlier, the predicted little core utilizations for 30- and 500-cycle strategies

deviate from the oracle by a maximum of 10.4%. This means that our oracle-based evaluation

represents a realistic estimation of little core utilization. Based on existing prediction

methods, the energy savings in our results are achievable.

2.4.4 Sensitivity to Design Parameters

Superscalar Width. By reducing the width of the little core, the performance gap between

big and little will grow and little core’s utilization will decrease. On the other hand, energy

savings might increase because the little core now dissipates much less power. Figure 2.13

29

Read Music Launch Scroll BBench Game Type Jscript Linpack

Ut
iliz

at
io

n
of

 L
itt

le
 C

or
e

0%
10

%
20

%
30

%
40

%

30 Cycles 500 Cycles 10K Cycles

F����� �.��: Little core utilization with 1-wide little core

Read Music Launch Scroll BBench Game Type Jscript Linpack

En
er

gy
 S

av
in

gs
 (N

or
m

al
ize

d)
0%

10
%

20
%

30
%

40
%

50
%

30 Cycles 500 Cycles 10K Cycles

F����� �.��: Energy savings with 1-wide little core

shows utilization of a 1-wide little core when the tolerable performance penalty is 1.15x.

Compared with Figure 2.8, little core utilization decreases across all AMP design strategies

and mobile benchmarks due to the larger performance gap. Figure 2.14 shows that, although

reducing the width reduces the little core’s dynamic power from 1.85W to 0.96W, the little

core is rarely used and power savings are modest. Thus, the little core must be designed to

balance performance and energy savings.

Voltage and Frequency. Existing AMPs provide individual power supplies for big

30

Read Music Launch Scroll BBench Game Type Jscript Linpack

Ut
iliz

at
io

n
of

 L
itt

le
 C

or
e

0%
10

%
20

%
30

%
40

%

30 Cycles 500 Cycles 10K Cycles

F����� �.��: Little core utilization with 800MHz little core

and little cores, which are organized into clusters, allowing the little and big cores to use

di�erent clock frequencies. We evaluate the case when the little core’s frequency is 800MHz

instead of the big’s 1GHz.2 Since frequency di�ers, we no longer use IPC to determine

switch points. Rather, we scale IPC by the frequency di�erence and measure instructions

per second (IPS) such that IPS(big) = IPC(big)/1 and IPS(little) = IPC(little)/1.25, where

1.25 is the slowdown at 800 MHz.

Figure 2.15 shows little core utilization if 1.15x performance penalty can be tolerated.

Reducing little core performance harms its utilization. Although dynamic power falls by

half, since voltage can be reduced linearly with frequency, Figure 2.16 shows that most

mobile apps do not benefit from reduced frequency.

In summary, reducing little core performance in return for power savings, either through

smaller superscalar width or slower clock frequency, would harm the little core’s energy

e�ciency provided. To maximize energy savings, the little core should provide performance

within some competitive range of the big core’s so that a switching mechanism can exploit

program dynamism at fine granularities.

2 This di�erence corresponds to big-little configuration in the ARM Versatile Express development
board ARM (2012).

31

Read Music Launch Scroll BBench Game Type Jscript Linpack

En
erg

y S
av

ing
s

0%
10

%
20

%
30

%
40

%
50

%

30 Cycles 500 Cycles 10K Cycles

F����� �.��: Energy savings with 800MHz little core

2.5 Related Work

Heterogeneous multicore architectures, due to their exceptional energy e�ciency, have been

studied extensively. Previous works have focused on workload assignment Annavaram et al.

(2005); Kumar et al. (2004); Guevara et al. (2013), scheduling Saez et al. (2010); Li et al.

(2007); Koufaty et al. (2010); Fan et al. (2016), thread performance prediction Shelepov and

Fedorova (2008); Van Craeynest et al. (2012), and design space exploration Van Craeynest

and Eeckhout (2013); Guevara et al. (2014b); Lee and Brooks (2007b). The rise of core

fusion Ipek et al. (2007); Kim et al. (2007) and adaptive out-of-order cores Lee and Brooks

(2008a); Lukefahr et al. (2012a); Khubaib et al. (2012) requires computer architects to

rethink heterogeneity and management.

The scheduler for heterogeneous cores must bypass the operating system and make deci-

sions within short time windows. Predicting the next interval’s performance is challenging

as performance variation increases when the interval length shortens Padmanabha et al.

(2013). Researchers have proposed dynamically estimating app performance on another

core type Lukefahr et al. (2012a); Shelepov and Fedorova (2008); Van Craeynest et al.

(2012). Briefly, the IPC on the other core is estimated with a profiled linear model that

32

takes memory-level parallelism, instruction-level parallelism, and hardware performance

counters (IPC, cache hits and misses, branch mispredictions, etc.) as inputs.

Our work is inspired by previous works in heterogeneous processing for mobile plat-

forms. Little Rock Priyantha et al. (2011) prototypes a sensing platform in which a small

processor is dedicated to always-on sensor stream processing. GreenDroid Goulding-Hotta

et al. (2011) uses specialized, low-power cores to accelerate the Android software stack.

Zhu and Reddi Zhu and Reddi (2013) analyze the loading of webpages on big and little

mobile processors, and they propose to predict and schedule the loading of webpages onto

heterogeneous cores according to webpage complexity.

2.6 Conclusion

We propose a set of interactive mobile benchmarks that captures intra-app diversity, which

arises from frequent user inputs. Deploying these benchmarks on Android systems and the

gem5 simulator, we explore three asymmetric multiprocessing (AMP) strategies. Strategies

with tightly-coupled big and little cores, which share the cache hierarchy, can e�ciently

utilize little cores and reduce energy by up to 42% for interactive apps. Our benchmarks

are open-sourced to help future mobile architecture research Fan (2015). Our evaluation

illustrates the rich design space underlying asymmetric multiprocessing for mobile phones.

Acknowledgements

This work is supported by National Science Foundation grants CCF-1149252 (CAREER),

CCF-1337215 (XPS-CLCCA), SHF-1527610, and AF-1408784. This work is also sup-

ported by STARnet, a Semiconductor Research Corporation program, sponsored by MARCO

and DARPA. Any findings or conclusions expressed in this material are those of the author(s)

and do not necessarily reflect those of sponsors.

33

3

Swarm Computing for Mobile Sensing

In this chapter, we explore the potential of distributed computing on multiple mobile devices

and pursue the performance demanded by next generation apps. We consider a particular

class of apps in which co-located users collaborate toward aligned sensing and computing

objectives.

Specifically, consider the following usage scenarios that illustrate our application domain.

Suppose a group of app users travel to a foreign country in which a di�erent language is

spoken. The users wish to better understand native speakers they encounter on the road, by

performing real-time voice recognition and translation on their mobile devices. Because the

travel companions share these objectives, they collaboratively sense and analyze the audio

streams — one user senses audio signals and distributes them for processing, while some

users compute for recognition and some others for translation. In another example, suppose

multiple users comprise a security team that patrols a route. The users wish to perform

face detection and recognition on their mobile devices. The team collaborates — one user

senses and distributes video frames to others for detection and recognition.

In these usage scenarios and many others, Internet connectivity is sparse and users

prefer to rely on local assets rather than the cloudChun et al. (2011); Cuervo et al. (2010).

34

Moreover, the mobility of the users forbids the usage of stationary infrastructures such as

cloudletSatyanarayanan et al. (2009); Ra et al. (2011). Such circumstances leave users with

no choice but either run the app entirely on their own devices, or collaboratively using the

surrounding devices.

We present Swing (SWarm computing for mobile sensING), a framework that aggregates

a set of mobile devices from multiple users to collaboratively compute a shared answer. We

view such a collection of nearby mobile devices as a swarm, and by utilizing it dynamically,

the framework improves performance, e�ciency, and scalability for mobile sensing applica-

tions that require intense computation on sensed data streams. Specifically, we make the

following contributions:

1. Design and implement the system. We build a distributed computing framework for

compute-intensive mobile sensing applications. We detail Swing’s programming model and

workflows, which implement stream processing for the swarm devices. Our design provides

e�cient APIs for programmability, allowing sophisticated sensing apps to be ported easily.

2. Design swarm management policies. Swing’s mechanisms support a wide spectrum of

management policies for various performance objectives. We illustrate several strategies

that distribute app computation across mobile devices, and manage data flow according to

heterogeneous device capability. Further, the framework dynamically handles mobility of

the devices, as well as their joining and leaving.

3. Evaluate the system with sensing apps. On our Android-based Swing prototype, we

deploy two sensing apps – face recognition and language translation – on a wireless testbed

with up to nine heterogeneous, mobile phones and tablets. Collectively, our results show

that Swing e�ciently manages multiple devices to meet the real-time performance goals of

modern sensing apps with negligible processing overhead.

35

3.1 The Case for Swing

Aligned Incentives – Why should I participate? We target at application scenarios where

each user wants results from the computation. The only question is whether she leverages

the swarm resources or relies on her own device. Our preliminary study shows that an

individual mobile device is insu�cient for apps that require continuous, intense computation

on sensed data streams. Figure 3.1 illustrates this observation as various phones process

video frames for a face recognition app. Each device can process 4„10 frames per second

(FPS), which is far below the minimal 24 required for smooth video playback. Over time,

mismatched arrival and processing rates cause new frames to queue and end-to-end delays

to increase. Observe that even the fastest device (H , a quad-core LG Nexus 5) fails to keep

up — its end-to-end frame delay increases to 1.2s after only 5s of computation.

Even if a user could perform the computation by herself, the energy burden would be

unbearable. We observe that the camera-based face recognition app exhausts a fully charged

phone battery in about two hours, with 40% of the energy consumed by computation. If

several proximate users demand results from the same application, collaborative computing

can reduce the energy costs for any one user. Moreover, it mitigates the limitations of

individual devices and improves service quality for all users.

Thus, Swing leverages endogenous incentives, which arise naturally from self-interested

participants in our application scenarios. Each user shares resources now in return for

reciprocal treatment in future. Although simple, such incentive models are wildly popular

in practice. Examples include P2P file sharing, FON’s WiFi sharing and Open Garden’s

Internet sharing. In contrast, other crowd-based systems such as Amazon Mechanical

Turk and Medusa Ra et al. (2012) rely on exogenous incentives such as physical payments,

implicitly assuming that users will participate in the market.

Privacy & Security – Why should I trust other devices? Swing employs existing and

trusted app distribution models. Users download Swing from an app store, or download

36

0
50

00
10

00
0

15
00

0
To

ta
l D

el
ay

 p
er

 F
ra

m
e

(m
s)

1 2 3 4 5
Time (s)

B
C

D

E

F

G
H

I

B: Nexus Galaxy
C: Insignia
D: NeuTab
E: Nexus S
F: DragonTouch
G: Nexus Galaxy
H: LG Nexus 5
I: Note II

F����� �.�: Delay per frame when processed on di�erent phones at 24 FPS load. Delays build up
rapidly, and di�erent phones have di�erent reactions to the same load.

it from a master device who distributes the app signed by its developer. Based on aligned

incentives, users desire the results from the collaborative computation. Thus, no device

would benefit by deviating from the normal behavior or generating false data.

Swing does not reveal private data, because Swing users only communicate data that is

already freely available from the environment. Neither the sensed data nor its analysis is

private and sensitive – anyone in the vicinity could have sensed or analyzed the data on her

own. It is possible that in some scenarios, sensed data should be shared with restrictions.

For example, users might wish to restrict audio sensing and voice recognition data to devices

inside a conference room. In such scenarios, Swing can benefit from existing WiFi security

protocols, such as WPA, that are external to the system.

3.2 Related Work

Swing inherits the design principles of distributed computing systems. In addition, it is

inspired by many other works on mobile-cloud computing, stream processing and mobile

37

distributed computing. To the best of our knowledge, no prior work has been done in

building a distributed computing framework for continuous mobile sensing applications.

Mobile computation o�oading. The concept of o�oading mobile computation to

more powerful servers was first articulated as cyber foraging in Satyanarayanan (2001).

Since then, it has been applied in the context of mobile cloud computing. Existing mobile

cloud computing frameworks such as CloneCloud and MAUI partition and o�oad mobile

code to the cloud Chun et al. (2011); Cuervo et al. (2010). Cloud o�oading techniques

cannot easily support real-time applications due to high delays between mobile and cloud.

Cloudlets Satyanarayanan et al. (2009) reduce delay by bringing server infrastructure closer

to the mobile devices (e.g. LAN or WLAN level) and have been shown to support real time

applications Verbelen et al. (2012); Ra et al. (2011). Cloudlets do not enjoy the economies

of scale of centralized cloud computing. Thus they may require relatively costly investment

in bringing compute infrastructure close to all mobile devices. They may exist in locations

where a specific real-time application is needed but may not be as widely available as

proximal mobile phones, especially in collaborative ad hoc applications targeted by Swing.

Nevertheless, Swing does support “cloudlet mode” through Android virtual machines if a

cloudlet infrastructure is available.

Odessa Ra et al. (2011) is a cloudlet system that uses a dataflow graph processing model.

Odessa is executed between a mobile and a server and provides mechanisms for adapting

parallelism at server and migrating execution stages between mobile and server. Our system

poses unique challenges because it requires to distribute load and computations among

multiple mobile devices. In our system, we do not do migration of computation stages at

runtime (which incurs additional delays an overhead) but instead pre-install the functional

units and use dynamic data routing for adaptation.

All the above approaches require constant communication with cloud or cloudlet servers,

which may not be easily accessible (sparse Internet, mobile) or required in the collabora-

tive application scenarios targeted by Swing. In contrast, we pursue to enhance mobile

38

application performance by aggregating resources from multiple, proximate mobile devices.

Medusa Ra et al. (2012) is a crowd computing framework for mobile phones. Crowd

computing tasks are defined using a task dataflow graph approach similar to ours. These

tasks are high level specifications of actions that cater to human users and not real-time

computations. Furthermore, Medusa does not allow direct collaborative interactions between

workers as our system. However, our system could use a framework like Medusa for app

distribution.

Data stream processing systems. Swing uses a dataflow graph computation model

similar to data stream processing systems Castro Fernandez et al. (2013); Zaharia et al.

(2012). Such systems typically process a large number of data streams inside compute

clusters or data centers. Sonora Yang et al. (2011) is a stream processing system that can

support processing on mobile phones. However, it is still based on a client-server model

and does not support adaptive o�oading of stream computations between mobile and cloud.

In contrast, we use this model to program, decompose and distribute collaborative mobile

sensing applications on multiple mobile devices. Unlike Sonora which assumes that a

computation task can enjoy infinite compute capacity once it is o�oaded to the server,

our framework utilizes surrounding mobile devices which incur challenges in the resource

management.

Distributed mobile computing. Pocket Switched Networks Hui et al. (2006), Throw-

boxes Banerjee et al. (2007), and ferry-based networks Guo et al. (2006) are distributed

mobile frameworks that focus on e�cient communication in mobile networks with intermit-

tent connectivity as opposed to e�cient collaborative mobile computation on sensed data

streams. Misco Dou et al. (2010), Hyrax Marinelli (2009), CWCArslan et al. (2012) imple-

ment MapReduce-like frameworks for parallel task execution on mobile phones. MapReduce

caters to a batch processing model rather than a real-time computation model targeted by

our work. MobiStreams Wang and Peh (2014) provides a distributed stream processing

runtime for mobile phones and focuses on the orthogonal issue of fault tolerance. It does

39

not provide any mechanisms for e�cient sharing of execution load among the devices and

requires the assistance of a cellular network and a centralized server in the cloud for coordi-

nation. In contrast, our framework relies purely on mobile devices and can utilize mobile

hotspot APs, Wi-Fi Direct, WLAN or cellular, as networking technologies. REPC Dong

et al. (2014), which studies task assignment on mobile devices to achieve performance

objectives. However, it solves a static task assignment problem for a set of tasks, whereas in

our framework tasks arrive online, and the assignment has to cope with dynamic changes in

processing delay, network delay and dynamically handle device joining and leaving.

Distributed Mobile Sensing. When a user carries multiple devices, or when multiple

users face the same ambiance, the devices and sensors can collaborate. CoMon+ Lee

et al. (2016) is a general-purpose sensing framework that focuses on ambience monitoring,

such as dust monitoring, CO2 sensing and GPS localization. The authors demonstrate the

opportunities for collaboration in devices’ daily usages and propose management policies

that maximize energy savings, based on individual device’s sensing qualities at di�erent

times. The work is based on a distributed framework called Orchestrator Kang et al. (2010),

which computes static task-distributing plans for devices to adopt at real time, with respect

to concurrent apps and various sensors. These works improve the energy e�ciency of

continuous sensing and ambiance monitoring on mobile devices. In contrast, our works is a

framework of distributed computing designed for compute-intensive sensing apps, using

dataflow graphs to assign sensing and computing tasks dynamically.

3.3 Challenges

User mobility and device heterogeneity exacerbate the challenges in managing parallelism

in a distributed system. In this section, we conduct preliminary experiments to discover

the sources of dynamism and heterogeneity, as well as the performance objectives of the

system.

40

Table 3.1: Performance Heterogeneity

Phone ID B C D E F G H I
Processing
Delay (ms) 92 121 167 463 166 82 71 78
Throughput
(FPS) 10 8 6 2 5 12 13 12

Experimental setup. Today’s mobile devices include phones and tablets that deploy a

broad spectrum of hardware. First, we characterize this inherent performance heterogeneity

with a simple experiment. We use nine phones – A: Galaxy S3, B: Galaxy Nexus, C:

Insignia7 tablet, D: NeuTab7 tablet, E: Galaxy S, F : DragonTouch tablet, G: Galaxy

Nexus, H: LG Nexus4, I: Galaxy Note2. All devices are connected to a wireless router

(Linksys E1200 802.11n 2.4GHz channel 1) and located in the same o�ce. We let phone A

send video frames containing faces, at a rate of 24 FPS, to another phone i P tB,C, ¨ ¨ ¨ , Iu
to conduct face recognition. The processing delay is measured on each i, and after each

i finishes processing, it sends back an ACK so that A can record the end-to-end delay for

each frame. Experiments are conducted during the night to reduce chances of interference

from other wireless communications. Each experiment runs for 10 minutes (14400 video

frames).

Throughput and performance heterogeneity. Table 3.1 shows the average processing

delay per frame for each phone (and the numbers also correspond to Figure 3.1). Each

throughput number here is the inverse of the processing delay (the largest previous integer),

representing the capability of each device. Intuitively, if the processing delay is 92 millisec-

onds for each frame on device B, it means that device B can process at most 10 frames per

second (assuming frames are being processed one after another). Observe that di�erences

between phones are significant – the fastest phone H reports throughput that is 6 times

higher than that of the slowest phone E. However, even H cannot provide a throughput that

is as high as the input rate of 24 FPS. To achieve the desired overall throughput, Swing must

utilize multiple devices collaboratively, with respect to their performance heterogeneity.

41

Good Fair Bad

RSSI

En
d−

to
−e

nd
 D

el
ay

 (m
s)

0
10

00
20

00
30

00

Transmission
Processing
Queuing

20% 60% 100%

CPU Usage

0
20

0
40

0
60

0

5 10 20

FPS

0
20

00
40

00

F����� �.�: Decomposition of delays in remote face-recognition processing. Transmission delay
changes with WiFi signal strength. Processing delay changes with CPU usage. Queuing delay
changes with input data rate.

End-to-end delay and dynamism. Swing must minimize end-to-end delay, because

for real-time sensing applications, results that arrive late will have no use. Processing delay

is only part of the end-to-end delay. Network transmission delay and queuing delay also

contributes largely to the end-to-end delay. To understand each of the three parts, we let A

send video frames to B for processing, under three di�erent scenarios: (1) B is placed in

regions of di�erent signal strength; (2) B’s processor simultaneously runs another compute

intensive benchmark. (3) A sends frames to B at di�erent rates. As shown in Figure 3.2,

WiFi signal strength, processor utilization, and input data rate a�ect delays in transmission,

processing and queuing. Signal strength varies due to user mobility and thus, the system

should divert more tasks to easily reachable devices. Processor utilization varies as the

user’s private tasks (email, social network, gaming, etc.) demand computation and the

system should steer tasks to accommodate the reduced computing capability when such

changes occur. Lastly, the system should control queuing delay on each device by matching

its input data rates (e.g., FPS) to its capability. Above all, to adapt to all the dynamism, the

scheduling decisions should be computed online.

E�ciency and overhead. Figure 3.3 indicates that a same data input rate would cause

di�erent levels of overhead on di�erent devices – 5 FPS incurs 7% CPU utilization on phone

42

B C D E F G H I

C
PU

 U
sa

ge
0%

40
%

80
%

FPS = 1 FPS = 2 FPS = 3 FPS = 4 FPS = 5

F����� �.�: CPU usage on each phone increases, by varying degrees, as frame rate increases in a
face recognition app.

A" B"
C"D"

APP#

topology"

…#
Install"

1 2

M"
Join"

3

M"

func9on,"
neighbors"

4
A" B"

D"
C"B"

C"

C"B"

C"C"

C"C"

C"
C"

A"
D"

C"B"

C"B"

C"C"

C"C"

F����� �.�: Workflow of Swing: Installing, Joining, Deploying and Running

I , but 85% on phone E. A high CPU utilization directly a�ects users’ experience during

their regular interaction with their phones. Moreover, the CPU utilization is proportionally

correlated to processor energy consumption. Therefore, Swing must carefully and e�ciently

control the input data rate to each device in order to minimize the CPU utilization and

energy cost.

3.4 System Overview

With the challenges in mind, we design and implement Swing, a general-purpose framework

that supports the collaboration between multiple, mobile devices. In this section, we first

present the overview of the system at a high level, including its programming model and

workflow, and then detail its implementation.

43

Each Swing instance can be viewed as a multi-threaded program that runs across multiple

devices. A master thread controls multiple worker threads, assigns software functions to

them, and manages data flows between them. Since masters and workers correspond to

software threads, a single device could contribute multiple workers, or it could act as both

master and worker simultaneously.

3.4.1 Programming Model

Swing uses a stream processing model, which represents a mobile sensing app as a directed

dataflow graph. Graph vertices correspond to computational parts of the app, which we

refer to as function units. In this programming model, app functionality is divided into

several interconnected function units. For example, the face recognition app consists of

four function units that (A) use the camera to capture video frames, (B) detect faces inside

video frames, (C) match faces with names, and (D) display the results.

Graph edges represent data flow between function units. During app execution, each

function unit receives a data tuple from a previous unit via an edge in the graph. The data

tuple contains a list of serializable data structures, such as a bitmap image, a matrix of

floating-point values, and a text string. The function unit processes the incoming tuple,

computes an intermediate result, and passes it to the next unit in the graph — also in the

form of a tuple. From the perspective of a given function unit, a unit from which data arrives

is called an upstream unit and a unit for which data leaves is called a downstream unit. Each

unit may interface with multiple upstream or downstream units. A unit without an upstream

is a source and a unit without a downstream is a sink. Function units A and D are the source

and sink in our example.

To use the Swing framework, the programmer defines apps as function units with Swing

APIs. Specifically, the programmer constructs the app graph by defining function units,

including a source and sink, and defining edges that create a topology. The code below

shows an example of defining an application graph.

44

/ / The code below d e f i n e s t h e a p p l i c a t i o n graph
p u b l i c AppGraph compose () {

/� Def ine t u p l e s t r u c t u r e � /
A r r a yL i s t<S t r i n g > t u p l e = new Ar r ayL i s t<S t r i n g >;
t u p l e . add (” va l u e1 ”) ; / / f i r s t p a r t : a by t e a r r a y
t u p l e . add (” va l u e2 ”) ; / / s econd p a r t : a s t r i n g
/� Def ine f u n c t i o n u n i t s � /
F u n c t i o n U n i t s r c = FUBui lder (new Source () , s r c I d , t u p l e) ;
F u n c t i o n U n i t f1 = FUBui lder (new Funct ionA () , aId , t u p l e) ;
F u n c t i o n U n i t snk = FUBui lder (new Sink () , snkId , t u p l e) ;
/� Def ine t opo l ogy � /
s r c . connec tTo (f1) ;
f1 . connec tTo (snk) ;

}

Each function unit is programmed to first receive data, and then perform certain tasks.

For example, the code below defines a function unit that transforms a received data tuple

into a graphical object, processes it, and sends the result to the next tuple.

/ / The code below d e f i n e s a f u n c t i o n u n i t
p u b l i c c l a s s Func t ionA implemen t s Func t i onUn i tAPI {

@Override
p u b l i c vo id p r o c e s s D a t a (Tuple d a t a) {

/� g e t a by t e a r r a y from t h e d a t a t u p l e r e c e i v e d � /
/ / u se ” va l u e1 ” as t h e key
by t e [] b y t e s = (by t e []) d a t a . g e tVa lue (” va l u e1 ”) ;
/� t r a n s f o r m a r r a y t o an image o b j e c t � /
Mat mGray = new Mat () ;
mGray . pu t (0 , 0 , b y t e s) ;
matToBitmap (mGray , mBitmap) ;
/� p r o c e s s on t h e o b j e c t � /
S t r i n g name = f a c e R e c o g n i z e r . r e c o g n i z e (mBitmap) ;
/� pa s s t h e r e s u l t d a t a t o t h e nex t f u n c t i o n u n i t � /
Tuple o u t p u t = d a t a . s e t V a l u e s (nu l l , name) ;
send (o u t p u t) ;

}
}

The programmer can define performance requirements that a�ect resource allocation

and task scheduling. We also suggest programmers create a separate function unit for each

computation stage that could be heavy. For example, create separate function units for

45

detect() and recognize(). At runtime, Swing determines their deployment with

respect to devices’ capabilities.

3.4.2 Workflow

Suppose a group of users agree to compute collaboratively for a mobile sensing app. Fig-

ure 3.4 illustrates the Swing workflow in which users install the app, join the system, and

execute the computation.

Step 1: Installing the App. Each participating user downloads and installs the specific

stream processing app in her device. Users could obtain the app from the master device, or

from an online app-store in which programmers submit their apps written with Swing APIs.

Step 2: Launching and Joining. After app installation, one user launches a master

thread and others launch worker threads. The master initiates the app, broadcasts its IP

address (and port number) so that other devices on the local network may discover it, and

launches a socket server to receive incoming connections. Simultaneously, workers discover

the master’s IP by listening to the WLAN and join the system by connecting to the master’s

socket server. The master holds the IP addresses of all participating devices in order to

connect them with each other (see 4.4 for detail).

Step 3: Deploying Functions. The master deploys the application dataflow graph by

assigning functions (vertices) and connecting devices (edges). Since each device already

holds all of the app’s function units, the master simply gives each worker the name of the

functions it must run (see 3.5.1 for detail). Second, the master informs each worker about

the IP addresses of its upstream and downstream function units’ worker threads — the

connections between workers could then be formed.

The master thread is responsible only for control, bootstrapping connections and sending

start/stop commands. Since it neither relays data nor executes functions during run-time,

the master thread can co-locate on the same device with worker threads. By default, the

source and sink function units are deployed on the same device that initiates the master

46

thread (see Figure 3.4ÆØ).

Step 4: Executing the App. After function deployment, the master sends a start

command to the source device, instructing it to sense data and generate tuples. Function

units are data-triggered and begin computation as soon as data starts to flow from the source.

In Figure 3.4Ø, source A distributes data tuples to the two devices running B, which then

pass intermediate results to downstream devices running C. Ideally, when the system is

balanced, sink D receives results at the same rate that A distributes data. The rate at which

results are received at the sink defines the maximum system throughput.

In summary, developers write sensing apps using Swing APIs, and users download

and install these apps on their devices. When a group of users and their devices wish to

run the app collaboratively, one of them initiates a master thread and the others initiate

worker threads. The master connects workers together according to the app’s dataflow graph,

deploys the function units, and manages the data flow during run-time. Swing encapsulates

run-time dynamics and, therefore, the end user needs only touch a button to signal her

participation.

3.4.3 Implementation

We implement Swing atop SEEP Castro Fernandez et al. (2013), a stream processing

platform written in Java. SEEP provides a convenient interface for defining graph topologies

by abstracting away the details of TCP socket connections and inter-thread communications.

In addition to the e�ort of porting the framework (caused by the change of Java runtime

— same code might behave di�erently on JVM and Dalvik), we enhances SEEP with the

following functionalities:

Dynamic Swarm Management. In Swing, instead of sending code to workers threads,

the master “activates” function units of the workers by informing them the classname of

the function unit. Given an application dataflow graph, deciding which function units to

activate on each device in order to maximize performance objectives (latency or throughput)

47

with subject to resource constraints is an NP-hard optimization problem Cuervo et al. (2010).

In our application scenario, assignment decisions must promptly respond to dynamism

(e.g., device joining/leaving). Thus, we propose a heuristic greedy algorithm to solve the

function-to-device mapping problem.

At runtime, Swing manages device usages to achieve performance objectives and energy

e�ciency. Each upstream thread has a routing table with downstream threads’ IDs and

their weights. In order to adapt to real-time changes in network and device usages, we

periodically monitor processing-delay at the downstream and per-frame end-to-end delay at

the sink and update the routing tables accordingly (see 3.5 for the design of dynamic swarm

management strategies).

Discovery. Swing automatically establishes connections between the swarm devices

upon users’ participation. During initialization, the master broadcasts itself by registering a

Network Service on the network, using Android Network Service Discovery (NSD). Each

worker device maintains a background service that listens for the master. Upon discovery,

the background service connects to the master, also using NSD, so that the master knows

the worker device’s IP address.

Handling Joining and Leaving In a mobile environment, users join and leave the sys-

tem during run-time. To quickly involve newly joined devices, the Swing master constantly

listens for incoming connections and activates function units on the new devices as they

join. The routing tables of other workers are updated accordingly.

When a data link is broken, due to departing users or network error, the a�ected upstream

units automatically delete the corresponding downstream threads from their routing tables

and re-route data to other threads.

Serialization. Communicating through socket connections requires the data to be

serialized first. SEEP uses Kryo and default Java serialization methods to serialize the

data tuples transmitted between function units. However, mobile sensing apps may involve

transmitting customized objects, such as an image container, a multi-dimensional sensor

48

vector, or audio files. Swing extends SEEP’s serialization function and transforms such

customized objects into a byte array at the sender, which is serializable, and transform the

array back to the object at the receiver.

Reorder bu�er. Data parallelism and performance heterogeneity cause each tuple’s

end-to-end delay to di�er. Tuples that are dispatched to workers earlier may arrive later, and

vice versa. To solve this problem, we bu�er results as they arrive at the sink and sort them

in-order before playback. A larger size of the bu�er ensures better ordering, but postpones

the display of the results for longer. In our current implementation, the size of the bu�er

equals to the data rate generated at the source, i.e., timespan of 1 second. We will evaluate

the e�ectiveness of this length in our evaluation section.

Background Service. Swing extends Android Service to run in the background without

interrupting other user activities. Swing acquires a CPU wake lock to prevent service

termination due to processor sleep modes. Swing runs on Android version 4.0 or higher,

which includes the majority of Android devices.

3.5 Managing Swarm

The biggest di�erence between Swing’s swarm computing and traditional distributed com-

puting is that mobile devices are heterogeneous. To guide our swarm management design,

we first formalize three objectives that our system desires to achieve.

• Throughput: the rate at which results are produced by the sink. Swing must maximize

throughput, though the upper bound is implicitly determined by the rate at which data is

produced by the source (and that rate is hereafter noted as ⇤).

• Latency: the end-to-end delay from the time a data frame leaves the source till its result

is produced by the sink (hereafter noted as latency). Swing must minimize not only the

average latency per frame, but also the variance — a large variance of latency would require

a larger reorder bu�er which postpones the display of the results.

49

• E�ciency: throughput divided by the sum of energy consumption on each participating

device. Swing must consider not only the performance but also the power consumption of

the whole system.

Given a task graph, finding a task assignment (e.g., determine which device to run

which function and how much data to process) that minimizes the latency with throughput

constraints is proven to be NP-hard Dong et al. (2014). In our system, we also need to

consider the energy e�ciency of such assignment. Moreover, the task assignment must react

fast to dynamism in the system, thus the time it takes to compute the assignment should be

minimized. In order to solve this problem, we propose a heuristic algorithm comprising three

procedures: (1) Function Activation, (2) Worker Selection, and (3) Data Routing. Each

procedure is repeated periodically to handle all the dynamism: joining/leaving, transmission

delay changes, processing capacity changes, etc.

At a high level, Function Activation connects newly joined devices with existing devices

in the execution pool and activates the function units on them. Worker Selection periodically

decides which downstream threads to send data to, for each upstream thread. Data Routing

decides which exact thread, among the selected downstream threads, to send each data

tuple to. In this section, we explain the details and the choices we made in designing each

procedure.

3.5.1 Function Activation

At the bootstrapping stage, the master activates function units on each device. The master

first commands every participating device to launch m worker threads, where m is the

number of function units (except source and sink) in the app graph. As the pseudocode

below shows, each thread in the worker device then activates one function unit. Consequently,

every device can execute any function unit at run-time.

Since the actual execution of worker threads is data triggered, by controlling data flow

at the upstreams, the Data Routing procedure can manage the usage of the threads and thus

50

Algorithm 1 Function Activation Procedure
1: procedure F������� A���������
2: while listen for new connections do
3: receive new device s and add it to device pool S
4: command device s to launch m worker threads
5: Ts = the thread pool of s
6: for j “ t1, ¨ ¨ ¨ ,mu do
7: activate function j on worker thread tsj
8: end for
9: connect thread ts1 to source

10: connect thread tsm to sink
11: for j “ t1, ¨ ¨ ¨ ,m ´ 1u do
12: connect tsj with tsj`1

13: for each other device s1 in S do
14: connect tsj with ts1

j`1

15: connect ts1
j

with tsj`1

16: end for
17: end for
18: end while
19: end procedure

the resource consumption of devices. Function Activation procedure only needs to ensure

that every thread is connected to each other, providing maximum flexibility (see Figure 3.5).

In addition to the bootstrapping stage, this procedure is also called when new devices join.

3.5.2 Worker Selection

After Function Activation, each upstream thread has multiple downstream threads connecting

to it. When data tuples are ready to enter the next function unit, the upstream thread needs to

decide which downstream threads should receive them. The simplest policy for centralized

data scheduling is round robin (RR) – the upstream sends data tuples to each downstream

in turns. Apparently, RR is unlikely to work well in mobile crowds since the devices

rarely have equal or su�cient capability. The existence of “stragglers”, i.e., devices of

low computational capabilities, increases the average end-to-end delay per frame and also

degrades the overall throughput.

In addition to avoid “stragglers”, Swing seeks to maximize energy e�ciency. Because

computation in stream processing is data triggered, a downstream thread that receives

more data performs more processing and thus, worker selection determines each thread’s

51

F����� �.�: Topology after Function Activation: An Example

utilization and the corresponding device’s energy consumption. The Worker Selection

procedure needs to minimize overall energy consumption while maximizing performance.

A solution exists for both performance and e�ciency. Recall that the throughput of

the system has an input rate ⇤ that is determined by the source. E�ciently achieving

performance targets means that mobile sensing apps should meet but not exceed goals for

service quality. For example, the face recognition app should process and replay video at

24 FPS. Throughput that is lower than this target fails to meet requirements for real-time

analysis, but throughput that is higher consumes additional resources without perceptible

benefit. Therefore, Worker Selection procedure can meet performance targets with only a

few of the most capable devices since mobile devices with the newest processors analyze

data streams more quickly and consume less energy doing so.

Identifying the most e�cient subset of threads is a variation of the Knapsack problem

– given many downstream threads, each capable of analyzing tuples at rate �i, choose a

subset of threads that minimize the sum of their rates while meeting the target rate ⇤.

For tractability, we relax the optimization objective and minimize the number of selected

downstream threads rather than the sum of their processing rates. Specifically, we solve the

following:

minimize
Nÿ

i

xi, such that
Nÿ

i

�ixi • ⇤,

52

where x is a binary vector that denotes whether downstream i is selected (xi “ 1) or not

(xi “ 0), and N is the number of downstream threads. � “ 1{W where W is the processing

delay of a downstream thread. Our solution sorts devices in descending order by �i and

chooses the top devices such that their throughput sums to at least ⇤. Algorithm 2 details

each step in Worker Selection.

Algorithm 2 Worker Selection Algorithm
1: procedure W����� S��������
2: for each downstream function unit j P M do
3: Ssorted = sort (i) based on Wij , where i P S

4: while
∞

iPSj

1
Wij

§ ⇤ do
5: add tij to Tj

6: remove i from Ssorted
7: end while
8: select Tj for downstream function unit j
9: end for

10: end procedure

Profiling of Processing Delay: The worker selection procedure requires to the upstream

threads to know the processing delay of each downstream thread on each device (Wij).

Therefore, to adapt to changes of W , the upstream threads periodically operates with round

robin (i.e., sending data to all the downstream threads in turns), so that each downstream

thread processes the data and reports its Wij to the upstream thread. The upstream thread

then repeats the selection procedure.

3.5.3 Data Routing

Given a set of selected downstream threads, the upstream thread needs to distribute data

tuples to them. A natural solution is to route di�erent portions to di�erent threads. We

adopt probabilistic routing — each upstream thread maintains a routing probability table

that holds the probability pi of selecting downstream i. Every time the upstream routes a

data tuple, it generates a weighted random number according to the probability table and

sends the tuple to the specified downstream ID.

One way of computing the probabilities is to ensure that the faster a thread processes data,

53

the more data is sent to it. In other words, this policy computes probabilities in proportion

to the inverse of thread’s processing delay:

for all i,pi “ i{Wi∞
jp1{Wjq

,

The processing delay may change: the user may launch another computationally intensive

app even as Swing runs on the same device; in addition, di�erent frames may have di�erent

processing costs. For this reason, each downstream thread reports its Wi periodically (e.g.,

every second) to the upstream thread which then updates its routing table. Notice that we

directly measure the processing delay, instead of indirectly estimating it from CPU and

memory usage. Although the latter has been widely used in other systems, it does not

provide accurate information about how fast a thread processes data tuples. For instance, a

thread on a fast device with a high CPU usage might still process data faster than a thread

of a slow device with a low CPU usage.

However, as we have stated earlier, processing delay is merely part of the delay. Routing

purely based on processing delay might end up using devices that are located in regions of

weak WiFi signals, resulting in performance degradation. Therefore, another way of routing

is to use probabilities that are inversely proportional to threads’ latencies, so that more data

routes to threads with lower latencies:

pi “ 1{Li∞
jp1{Ljq

,

where Li is measured as follows: the upstream attaches a time-stamp to each tuple before

sending. Each downstream, after finishing processing the tuple, sends back an ACK to

the upstream with its own ID and the tuple’s time-stamp. Upon receiving the ACK, the

upstream calculates the overall latency of the tuple by subtracting the time-stamp from the

current time.

The measured latency Li therefore includes the network delay (dominated by trans-

mission delay) from the upstream thread’s device to the downstream thread’s device, the

54

processing delay and the queuing delay in the downstream thread (and the return trip’s

transmission delay which is negligible due to the small size of an ACK). Notice that since

the subtraction is done on the upstream device only, no clock synchronization is needed. The

upstream then registers the latency to the corresponding worker thread ID for the probability

calculation.

Compared with a purely processing delay based routing, latency based routing aims to

minimize overall latency and might rely heavily upon threads that are computationally less

capable.

Putting everything together — For latency based routing to work better, the Worker

Selection procedure needs to ensure that the selected devices perform better than unselected

ones with respect to latency. Therefore, in Algorithm 2 line 3, instead of sorting threads

based on the processing delay W , Swing sorts downstreams based on latency. The algorithm

then selects a set of devices that are capable to provide a throughput of ⇤. The upstream

then routes data with probabilities that are inversely proportional to the latency numbers

of the selected downstreams. Collectively, this routing method considers both throughput

and latency, while the e�ciency is achieved by the worker selection procedure. In the next

section, we will evaluate this routing scheme by comparing it against di�erent strategies.

Notice that Swing requires the downstream threads to upload either its processing delay

(integer, 4 bytes) or a time-stamp (long integer, 8 bytes) back to the upstream periodically

(e.g. every second). Since the packet sizes are small, the extra network tra�c is negligible.

3.6 Evaluation

We evaluate Swing, assessing its ability to address key challenges in mobile swarm-based

computing. We first explain the experiment applications, followed by the evaluations of

comparing swarm management strategies. We then show how the system adapts to user

mobility. Finally, we compare the performance of a swarm based solution with a cloudlet-like

55

Table 3.2: Lines of code changes
Same Modified Added Removed

Face Recognition 355 4 604 525
Voice Translation 466 47 375 430

solution.

3.6.1 Experiment Setup

Programmability. We use two open-source sensing applications to evaluate Swing. Ta-

ble 3.2 shows the lines of code changes for porting the two applications onto Swing.

RR PR LR PRS LRS

Face Recognition

0
5

10
15

20
25

Th
ro

ug
hp

ut
 (F

PS
)

RR PR LR PRS LRS

Voice Translation

0
5

10
15

20
25

RR PR LR PRS LRS

Face Recognition

0
20

00
40

00
60

00
80

00
La

te
nc

y
pe

r f
ra

m
e

(m
s)

RR PR LR PRS LRS

Voice Translation

0
10

00
30

00
50

00

F����� �.�: Throughput and delay of four routing schemes in two applications.

The first app is face recognition Robotic Apps (2013), which uses the OpenCV Cas-

cadeClassifier to detect faces in a video frame and the FaceRecognizer class to recognize

faces. We modified its source code with Swing API to create four function units: reading

video frames from files (source); detecting faces from frames (detector); matching faces

with databases and return results (recognizer); and displaying results (sink). The size of

RR PR LR PRS LRS

Face Recognition

0%
20

%
40

%
60

%
80

%
C

PU
 U

sa
ge

B
C
D

E
F
G

H
I

RR PR LR PRS LRS

Voice Translation

0%
20

%
40

%
60

%
80

%

RR PR LR PRS LRS

Face Recognition

0
2

4
6

8
10

12
In

pu
t F

ra
m

e
R

at
e

(F
PS

) B
C
D

E
F
G

H
I

RR PR LR PRS LRS

Voice Translation

0
2

4
6

8
10

12

F����� �.�: Resource usage and data rate of each device in two applications.

56

each image frame is 400 ˆ 226 pixels (6.0kB).

The second app is voice translation. It contains four function units: reading audio

frames from files (source); recognizing audio streams into English words (based on CMU

Pocketsphinx Huggins-Daines et al. (2006)); translating those words into Spanish (based on

Apertium Forcada et al. (2011)); and displaying results (sink). The size of each audio frame

is 72.0kB.

3.6.2 Comparison of Data Routing Methods

To evaluate the swarm management strategy, we compare it with four di�erent strategies:

(1) round robin (RR) — the baseline of baseline;

(2) processing-delay based routing w/o selection (PR);

(3) latency based routing w/o selection (LR);

(4) processing-delay based routing with selection (PRS);

(5) latency based routing with selection (LRS);

We deploy eight phones (A ¨ ¨ ¨ I in 3.3) as worker phones and one phone as the source

and sink. To account for network heterogeneity, we placed devices B,C,D at locations of

poor WiFi signals, which forces them to user lower data rates and doubles their transmission

delay. We compare the performance of the five data routing methods.

Performance

Figure 3.6 shows the average throughput of the system and the min, max, average and

variance of end-to-end delay per frame. Observe that latency based routing methods provide

better delay per frame (smaller mean and variance). Processing-delay based methods fail to

provide the desired performance, because they schedule data purely based on the capabilities

of downstream threads, regardless of their locations in the network. Specifically in this

experiment, PR and PRS often route data to threads on device B and C which are located

in regions of weak signals. As a result, the TCP protocol requires the sender to lower data

57

transmission rates for these devices, which directly reduces the number of tuples transmitted

per unit time.

The results also demonstrate that the worker selection procedure provides a smaller

variance in delay compared with routing without selection. This is intuitive because with

worker selection, Swing essentially utilizes fewer devices and avoid ”stragglers”. LRS

indeed performs best, providing throughput that is 2.7x higher and end-to-end delay per

frame that is 6.7x lower than RR’s.

Overheads

We measure overheads in terms of processor and network utilization. Furthermore, we

estimate energy, which is correlated with activity.

Processor Usage: Figure 3.7’s left two graphs show processor utilization for each device

from running top, which reports usage as a percentage of total processor time across

all cores. In addition to data tuple assignment, the processor usage depends greatly on

hardware capability. Swing computation consumes a larger share of processor time when

the processor is weak (e.g., E) and a smaller share when the processor is strong (e.g., I). In

general, for a range of routing methods, Top reports average CPU usage below 20% across

devices. This level of overhead has no impact on user experience. Furthermore, Swing runs

as a non-blocking, background thread, which can be swapped to give priority to front-end

apps that receive user interaction.

Data Transmission: Figure 3.7’s right two graphs show the amount of data transmitted

from the source to each worker devices. The base-line RR sends an equal amount of data to

each device; PR and LR send data to most of the devices. In contrast, PRS and LRS send

data only to certain devices, such as H and I , and avoid “straggler” devices such as E and

F .

Energy: We estimate the processor power consumption of each worker device using a

linear model Xu et al. (2013); Mittal et al. (2012); Cuervo et al. (2010). First, we measure

58

RR PR LR PRS LRS

2.35 2.45 3.44 1.88 3.67

0.0

0.5

1.0

1.5

BCDEFGH I BCDEFGH I BCDEFGH I BCDEFGH I BCDEFGH I

Face Recognition

Po
we

r (
W

at
t)

CPU WiFi

RR PR LR PRS LRS

5.44 4.6 4.35 3.76 5.17

0.0

0.5

1.0

1.5

BCDEFGH I BCDEFGH I BCDEFGH I BCDEFGH I BCDEFGH I

Voice Translation

Po
we

r (
W

at
t)

CPU WiFi

F����� �.�: Energy consumption each device

idle power. Then, we measure peak power by stressing the processor with 100% utilization

for 30 minutes, recording the change in battery level during this time, and estimating the

corresponding change in energy given the device’s battery capacity. Finally, we estimate

processor power as a percentage of peak based on the measured processor usage. We

estimate the WiFi power consumption in a similar way. We first measure idle power. We

then measure peak WiFi power by sending data at maximum bandwidth with iperf for

30 minutes and recording the change in battery level. We then estimate WiFi power as a

percentage of peak based on the measured data rate.

Figure 3.8 shows the estimated power consumption (processor + WiFi) on each device.

Observe that latency-based routing methods consume more energy as they provide better

performance. Also, PR and LR achieve better balance in power consumption compared

with methods with worker selection. On the other hand, worker selection greatly improves

e�ciency in terms of throughput-per-watt. For both applications, PRS is 40%„48% more

e�cient than PR, and LRS is 14%„35% more e�cient than LR.

Tuple Order: Figure 3.9 illustrates this loss of order by showing the time at which the

result for each tuple arrives at the sink (see the gray dots) for the face recognition app.

The solid lines in Figure 3.9 illustrate the playback times for re-ordered tuples when

59

●●●●
●●●

●
●●

●

●
●●
●●

●
●●
●

●

●

●

●

●
●●●

●

●

●

●

●
●
●

●
●●

●
●●

●
●

●

●

●●

●
●
●
●

●

●

●●

●

●●●
●●

●

●●
●
●●
●●
●
●
●

●
●

●●
●●●

●

●

●

●

●

●

●
●●
●

●

●
●
●●●
●●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●

●●

●●

0 5 10 15

0
40

80
12

0

RR

Fr
am

e
ID

●●●●
●●●
●
●●●
●
●
●●●
●●●
●

●●
●●
●●●●
●
●●●●●
●
●

●●
●

●●●
●
●
●
●
●●
●

●●
●●
●
●

●

●●●
●●●
●
●

●
●
●

●

●
●
●
●

●●

●

●
●●●●
●●●
●●
●
●●
●
●
●●
●
●
●

●
●
●●
●

●●●●
●●●

●

●●
●

●

●
●
●
●

●

●●●

●●

●●
●●
●●
●●
●
●
●
●●

●●●
●●
●
●●

●

●

●●
●●

0 5 10 15

0
50

10
0

PR

●●●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●●
●●●●●●
●●●●●
●

●
●
●
●●●●●

●

●●●●●●●
●●●
●
●
●

●●●
●●●●●●
●●●
●●
●●
●●●●
●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●●
●●
●
●●●

●

●
●●

●

●
●●
●●●●
●●●●●
●●●●●●
●●●●
●●●

●
●
●●●●●●●

●

●●

●

●
●
●●●●
●●●●
●●●●●
●●

●●
●●●
●●●
●●●●●●
●●●
●●
●●●●●●●
●●●●●●
●●●●
●

●●

●

●●
●●
●●
●●●
●

●●
●●
●●
●
●●●●
●●●●●
●●●
●
●●●
●●●●
●
●
●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●
●
●
●●●●
●●

0 5 10 15

0
10

0
20

0
30

0 LR

Time (s)

●●●
●●●●●
●●
●●
●
●●●●

●

●
●

●●●●●
●
●●●
●●
●
●●●
●●●●●●
●●●●
●●●●
●●●●●
●●●●●●

●

●●●●●
●●

●

●●●●
●●●●
●●●●●●
●●●●●●
●●●●
●●●
●●
●
●●
●
●●●●●
●
●●●
●●●●
●●
●
●
●
●●
●
●

●●

●●
●●●

●●

●●●●
●

●

●●●

●●●
●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●
●●●●
●●
●
●●●●●
●●●●
●●●●
●●●

0 5 10 15

0
50

15
0

PRS

●●●●
●●●●
●
●●
●●●●●●●●●
●
●●●●

●

●●●●●●
●

●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●●●
●
●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●

0 5 10 15

0
10

0
25

0

LRS

F����� �.�: Ordering of frames: gray dots represent frames’ arrival timings; solid line represents
the reordering using a bu�er.

the reorder bu�er length is 24 (i.e., one second). Routing methods with worker selection

have smoother curves than others because they produce smaller variances in end-to-end

delay, which corresponds to our previous observation. In contrast, methods without worker

selection would require larger bu�ers for smooth playback.

3.6.3 Handling Mobility

In this subsection, we demonstrate Swing’s ability to adapt to mobile users, who join the

system during computation, move in ways that a�ect network connectivity, and leave the

system abruptly.

Joining: Initially, we use phones B,D for computation. As these phones compute, we

launch a new Swing worker thread on G, which then joins the computation automatically.

Upon detecting an incoming connection, the upstream adds the corresponding downstream

worker IDs to the routing table and re-calculate all the probabilities using LRS. Figure 3.10

(left) shows that, within a second of G’s arrival, throughput rises to its maximum level of

24 FPS in the face recognition app. The system preserves links during the transition and no

data tuple is lost.

Moving: The system deploys phones B,G,H with the LRS routing method, which

copes with variations in network delay. Initially, phones are placed at a location with good

WiFi signals (RSSI¿-30dBm). After one minute, G’s user walks to a location with slightly

weaker signals (between -70dBm and -60dBm), stays there for one minute, and then walks

60

�

�

�

�

�

�

� � � �

� � �

�

�

� �

�

� �

�

�

�

�

� � � �

�

�

�

�

�

�

�

�

0 5 10 20 30

10
15

20
25 Joining

Th
ro

ug
hp

ut
 (F

PS
)

Time (s)

�

�

�

� �

�

�

�

�

�

� �

�

� �

�

� � �

�

� � �

�

�

�

� � �

�

�

�

� �

0 5 10 15 20 25 30 35

10
15

20
25 Leaving

Time (s)
F����� �.��: Throughput changes when device joins, leaves

0
5

10
20

O
ve

ra
ll

FP
S

0 50 100 150

0
5

10
20

FP
S

Time (s)

(> −30dBm) (−70~−60dBm) (−80~−70dBm)
B G H

F����� �.��: Throughput, load changes when device moves

to a third location with poor signals (-80 -70dBm). Figure 3.11 shows the e�ect of mobility

on signal strength, which a�ects overall throughput (top graph) and per-device throughput

(bottom graph). Overall throughput recovers quickly after G moves to a region with weak

signals as Swing re-routes data to the other two phones.

Leaving: Finally, consider the scenario in which three phones participate in Swing and

one phone leaves abruptly. The system deploys phones B,G,H with the LRS data routing

61

Router Far Mobile AP

Th
ro

ug
hp

ut
 (F

PS
)

0
5

10
15

20
25

Router Far Mobile AP

0
10

00
30

00
0

10
00

30
00

D
el

ay
 p

er
 fr

am
e

(m
s)

F����� �.��: comparison between Router and Mobile AP

scheme. In the midst of computation, we manually terminate the Swing thread on G. Upon

detecting the lost connection, the upstream traces the connection’s downstream ID, removes

the ID from the routing table, and re-calculates data routing probabilities for the remaining

downstreams. Figure 3.10 indicates that real-time throughput drops drastically after the

device leaves and before the system updates the routing table. The upstream attempts to

route data to the disconnected device and, during the recovery phase, 13 frames are lost.

Yet, within one second, throughput recovers to 16 FPS, which is the best that the remaining

devices can achieve.

3.6.4 Mobile Hotspot

Suppose all users move and increase their distance from the WiFI access point. The

transmission rate would be low even if the devices could communicate with each other. In

this setting, a mobile hotspot would perform better. We measure its performance advantage

by placing a master, which serves as a mobile hotspot, and three worker devices in a location

with weak WiFi signal. Figure 3.12 indicates that devices communicating via the distant

router perform much worse than when they communicate via the hotspot. Thus, Swing can

improve performance with a hotspot when public WiFi is insu�cient.

62

Clo
udl

et
Mo

bile

0 500 1000 1500 2000
Delay Per Frame (ms)

F����� �.��: Comparison between cloud and mobile

3.6.5 Cloudlet Mode

Although Swing targets at application scenarios where the cloud or cloudlet is not accessible,

Swing also supports o�oading computation from mobile devices to server machines, with

the help of an Android virtual machine, Here we compare the performance of mobile

distributed computing against a cloudlet-like solution. We use Genymotion Android-x86

emulator as a virtual machine running on a desktop located in the campus network. The

virtual machine is configured with two cores and 512MB of memory and is connected to the

Internet through bridged Ethernet. The master phone connects to this virtual phone through

a campus WiFi router and then the campus LAN. The virtual phone can easily process the

input data sent from the master phone at 24 FPS. The processing delay, 30ms, is several

times smaller than the processing delay on the phone. However, Figure 3.13 shows that the

average end-to-end delays of processing on the desktop and the phones (eight devices, LRS)

are comparable. For this application, even though the processing delay on the desktop is

much smaller, the transmission delay fills up the gap, and the overall di�erence is negligible

and less than 100ms on average.

3.7 Conclusion

We propose Swing, a framework that enables compute-intensive and delay-sensitive mobile

sensing applications, by collaboratively using multiple mobile devices. The framework uses

a stream computing model, allowing devices to perform computations based on a dataflow

63

graph. We identified the major challenges for achieving the performance potential and

propose resource management and routing techniques for coping with device heterogeneity

and dynamics. We built a system prototype using Android devices and a Java-based stream

processing platform. We demonstrated the programmability of the framework API by

porting two sensing applications onto Swing. By evaluating with multiple mobile devices

on a wireless testbed, we show that performance requirements and e�ciency can be satisfied

through device management with minimal computational overhead.

64

4

Sensory O�oading for Wearable Devices

New generations of wearable devices enable comprehensive sensing and computing, with

capabilities from simple step detection to complex gesture recognition. However, limita-

tions in the devices’ battery capacities constrain these applications’ future. We find that

continuously executing activity detection on a smart watch (e.g., Samsung Gear Live) drains

the battery in less than six hours. This leads to “range anxiety” — users are reluctant to use

continuous sensing apps for fear that the watch runs out of battery during the day. These

apps include long-running activity recognition services such as fitness tracking, sports

training, and health monitoring.

An opportunity lies in typical mobile device usage patterns — a user often carries both a

wearable device and a phone simultaneously (e.g., during commute). For example, a watch’s

activity tracking app continuously records users’ daily activities (e.g., walking, cycling and

running) and displays the number of calories burned. For this app, the phone can act as

a “range extender” by taking over app execution and preserving the watch’s energy. Our

key observation is that when the user is carrying both devices, their sensory data are highly

correlated and permits sensory o�oading, the idea of o�oading not only computation but

also sensing.

65

Traditionally, o�oading architectures shift computation from less capable devices (e.g.,

mobile) to more capable ones (e.g., server) that clone code and receive input data Cuervo

et al. (2010). Unfortunately, continuous sensing apps cannot o�oad in this manner as they

process high volumes of sensory data that would require prohibitively high transmission

costs. To reduce data movement, wearable devices could pre-process or compress data but

doing so would consume power and o�set gains from o�oading.

In this chapter, we present Telepath, a framework for sensory o�oading that transfers app

processing from a wearable device to a phone without communicating raw data. Telepath

allows the phone to take over sensing and computation by predicting the wearable’s sensory

data. The phone deploys an app clone that reads predicted sensory data, computes activity

recognition results, and sends them to the wearable. The wearable uses them as if they had

been sensed and computed locally. Telepath decides whether to o�oad dynamically based

on real-time correlation between device data. From the user’s perspective, an app employs

both wearable and phone’s resources transparently.

Telepath estimates data with transfer function models that statistically capture the rela-

tionship between two devices’ motions. With accurate models, the wearable can o�oad

sensing and computing to the phone with little performance loss but significant energy

savings. Yet Telepath encounters challenges. One model cannot capture all the dynamics

between wearable devices and phones. Raw sensory data may vary, even for the same

activity, due to device placement. We address these challenges with a modeling pipeline that

segments sensing data and tailors models for di�erent user activities and device placements.

The following summarizes our contributions:

• Motivation (Section 4.1). We study the power breakdown of continuous sensing apps

on wearable devices and show that traditional o�oading schemes cannot mitigate sensing’s

high energy costs.

• Abstractions (Section 4.1). Telepath defines an application-layer shim that automatically

66

o�oads sensing and computing tasks from wearables to a more capable device. We provide

programmable abstractions that support cross-device apps without explicit management.

• Design and Implementation (Section 4.3 - Section 4.4). Telepath contains o�ine and

online components. O�ine, we build hierarchical transfer functions with sensing traces

collected from both the phone and the wearable. Online, the phone uses these transfer

functions to predict sensory data and classify activities.

• Evaluation (Section 4.5 - Section 4.6). We prototype Telepath in Android Wear and

evaluate it on a Samsung Gear Live watch, with popular activities and a broad spectrum of

recognition algorithms. We show Telepath achieves real-time performance, with 85% of

the watch’s accuracy on average while extending the watch’s battery life by 2.1ˆ.

4.1 Motivation

4.1.1 Activity Recognition on Wearables

Activity recognition applications (”apps” for short) capture human behavior with motion

sensors such as accelerometers, gyroscopes, magnetic position sensors. Before phones were

equipped with these sensors, researchers strapped sensors to specific body parts (e.g., arm

and legs) to track motions online and recognize activities o�ine Mantyjarvi et al. (2001);

Lukowicz et al. (2004); Laerhoven and Cakmakci (2000); Karantonis et al. (2006); Ravi

et al. (2005); Intille et al. (2005). These “wearable” sensors were uncomfortable, which

prevented broader adoption in practice Zhang and Sawchuk (2012).

The recent proliferation of smart phones led researchers to activity recognition algo-

rithms that used phones’ sensors Kwapisz et al. (2011); Brezmes et al. (2009); Khan et al.

(2013); Fan et al. (2014); Shoaib et al. (2014); Brush et al. (2010). A typical approach

extracted features from accelerometer or gyroscope signals and trained classifiers, such as

support vector machines, for a set of activities Anguita et al. (2012b, 2013, 2012a). With

continuous sensing and computing, phones classified activities and supplied feedback on

67

Table 4.1: Hardware specifications for typical watch, phone.

Specs Samsung Gear
Live Watch

Samsung Galaxy
Nexus Phone

Processor Quad-core 1.2 GHz Dual-core 1.2GHz
(Snapdragon 400) (ARM Cortex-A9)

Battery 300 mAh 1750 mAh
DRAM 512MB 1GB
Flash 4GB 16GB
Sensors Accelerometer Accelerometer

Gyroscope Gyroscope
Compass Compass
Heart-rate Monitor

sporting progress or health status.

Today, a new generation of technology brings activity recognition apps back to wearable

devices such as sports trackers, watches, and armbands Weiss et al. (2016); Bieber et al.

(2013); Bhattacharya and Lane (2016); Shoaib et al. (2015). Unlike phones that might be

placed or oriented in varied and obscure locations, such as pockets or purses, wearables

are typically placed in a fixed location on the user, such as the left wrist. This unique

property of wearables makes them better candidates for activity recognition, especially for

special-purpose activities involving hands Ghasemzadeh et al. (2009); Asselin et al. (2005);

Bächlin and Tröster (2012); Mortazavi et al. (2014). Recent smart watches provide attractive

platforms for app developers, providing rich sets of sensors, capable systems-on-chip, and

(most importantly) APIs that are compatible with those on phones.

4.1.2 Energy Consumption

Today’s wearable devices are equipped with capabilities like those in phones. Indeed,

Table 4.1 shows that a watch may have more processor cores than a phone. However, the

watch has limited battery capacity due to its size. Figure 4.1 lists 34 mobile and wearable

devices from the past three years and shows a 5-17ˆ di�erence in watches and phones’

battery capacities. Watches’ short battery lives hinder long-running activity recognition

68

● ● ● ● ● ● ● ● ●

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

Device

0
10

00
30

00

Asu
s Z

en
Watc

h

Sam
su

ng
 G

ea
r S

Moto
rol

a M
oto

 36
0

LG
 G

 W
atc

h R

Sam
su

ng
 G

ea
r L

ive

Son
y S

mart
Watc

h 3

Hua
wei

Watc
h

App
le

Watc
h 3

8m
m

App
le

Watc
h 4

2m
m

Sam
su

ng
 G

ea
r S

2

Sam
su

ng
 G

ea
r S

2 (
3G

)

Moto
 36

0 (
46

mm)

Moto
 36

0 (
42

mm)

LG
 W

atc
h U

rba
ne

Asu
s Z

en
Watc

h 2

Fo
ssi

l Q
 Fo

un
de

r

Moto
 36

0 S
po

rt

●
●

●

● ● ●

●
●

LG
 G

3

Gala
xy

S5

HTC O
ne

 M
8

Nex
us

 5
LG

 G
3

Gala
xy

S6 E
dg

e+

Nex
us

 5X

Gala
xy

S6 LG
 G

4

Moto
 X Style

HTC O
ne

 M
9

One
Plus

 2

Gala
xy

Note
 5

Gala
xy

S7 E
dg

e

LG
 G

5

One
Plus

 3

HTC O
ne

 M
10

●

●

Phone 2014
Watch 2014

2015
2015

2016
2016

F����� �.�: Battery capacity comparison. The average watch battery holds 330mAh, only 11% of a
phone’s 2924mAh.1

apps. Empirically, we show that sensing and computation rapidly consume battery charge in

wearable devices. Moreover, we find that traditional o�oading strategies are as expensive

as the original computation.

Costs of Activity Sensing. Activity recognition apps have three components. First,

the app reads data from sensors. Then, the app performs signal processing on raw sensory

data and computes features that combine multiple sensor measurements. Finally, the app

recognizes activities from extracted features using classifiers.

We profile three tasks to understand the power breakdown in an activity recognition app.

In the first, the activity recognition app senses but does not process sensory data.

In the second, the app senses and extracts features such as the standard deviation of

acceleration in each of three dimensions (see Table 3 for complete list). Features are

computed once per second based on a 128-element array of doubles that hold raw sensory

data. Finally, in the third task, the app performs all the computation needed for activity

1 Ampere-Hour is often used to describe battery capacity. Actual energy is the product of ampere-hour and
voltage, which is 3.8V in standard mobile li-ion batteries.

69

Table 4.2: Power consumption and battery life time comparison between watch and phone.

Task Samsung Gear Samsung Galaxy
Live Watch Nexus Phone

Accelerometer Sensing 200.5 mW 229.7 mW
(5.7 hrs) (29.8 hrs)

Sensing+Feature 217.7 mW 231.8 mW
(5.2 hrs) (29.6 hrs)

Sensing+Feature+Classifier 239.2 mW 267.0 mW
(4.8 hrs) (25.0 hrs)

O�oading Strategies
Sensing + Bluetooth 261.6 mW (4.4 hrs)
Sensing + Feature + Bluetooth 224.3 mW (5.1 hrs)

recognition—sensing, feature extraction, and classification with a support vector machine.

We measure the power consumption of two mobile devices — a Samsung Gear Live

smart watch and a Samsung Galaxy Nexus phone — for a variety of tasks. We turn o� the

display and run the task for an hour. For tasks that do not require wireless communication,

we disable Bluetooth and WiFi. We measure average power during task computation using

Android Batterystats.

Table 4.2 shows power consumption and estimated battery life when the device runs only

its assigned task. For example, the watch dissipates 200.5mW when using the accelerometer.

At this discharge rate, a fully charged watch battery is estimated to last 5.7 hours. Although

the accelerometer only consumes 1.6mW InvenSense (2014), transporting data from sensor

to system-on-chip consumes additional power. Moreover, sensing apps often request a

wake lock that prevents the CPU from entering the idle state. Consequently, sensing is

power-intensive.

The 1st-3rd rows present tasks associated with activity recognition. For a given task,

the watch benefits from more energy-e�cient hardware and consumes less power than the

phone. However, the large gap in battery capacities – the watch’s 1.1Wh versus the phone’s

6.8Wh – means the watch battery lasts only 4.8 hours during activity recognition (sense +

feature + classifier) whereas the phone battery lasts 5ˆ longer. This analysis is optimistic

70

because, in daily use, the watch’s battery is often partially charged and is shared by other

apps. Practical battery scenarios would further constrain long-running apps.

Costs of O�oading. For activity recognition tasks, traditional o�oading reduces

modest computational costs but incurs significant communication overheads. To illustrate

this trade-o�, we measure power when o�oading computation from watch to phone, via

Bluetooth, in one of two ways. First, the watch collects and sends raw sensory data to the

phone. The phone computes features, classifies them, and returns recognition results to the

watch. Alternatively, the watch collects sensory data, computes features, and sends features

to the phone. The phone classifies features and returns results.

According to Table 4.2, the watch cannot benefit from either o�oading strategy. Trans-

mitting raw sensory data to the phone increases watch power due to high communication

cost. Transmitting processed features to the phone only marginally reduces watch power

due to high computational costs.

Traditional approaches that o�oad computation are unhelpful because wearables dissi-

pate most of their power in sensing, not computation. To address this challenge, Telepath

exploits correlated sensory data across multiple devices to “o�oad” both sensing and com-

putation, eliminating communication between one device’s sensors and another’s system-

on-chip.

4.2 Telepath Overview

The key observation behind Telepath is the correlation between the wearable and the phone’s

sensing streams. Figure 4.2 presents sensory data (with noise filtered) from a walking user

who wears a Samsung Gear Live watch on her left wrist and places a Samsung Galaxy

Nexus phone in her right pocket. When walking, her feet step while her hands swing.

Thus, leg and arm motions are coordinated. In the top figure, a valley in the watch’s x-axis

acceleration always matches a valley in the phone’s, albeit with slight time shifts. The

71

−1.0

−0.5

0.0

0.5

0 2 4 6 8
Time (s)

X
−

Ac
ce

le
ra

tio
n(

m
s−

2)
Device

Watch
Phone

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5
Phone

W
at

ch

Acceleration

F����� �.�: Sensory correlation between two devices

scatterplot indicates the two streams are highly correlated.

Telepath exploits this correlation to leverage the phone’s sensors and avoid the expensive

communication of the watch’s sensory data. In this section, we outline the the framework’s

workflow at runtime. We then show how programmers can use Telepath in their apps.

Workflow. Figure 4.3 shows the workflow of Telepath. In local mode, TelepathWear

interfaces to the wearable’s OS, reading sensory data from local drivers and classifying

features for activity recognition. In remote mode, TelepathWear neither senses nor com-

putes. Instead, TelepathPhone reads sensory data from the phone, predicts sensory data

for the watch, and recognizes activity using cloned computation. The result is sent back to

TelepathWear for the app UI. Periodically, Telepath verifies predictor accuracy and halts

remote execution when accuracy is poor.

Shim. Telepath is an application-layer shim that lies between the app and Android OS.

A Telepath instance has two modules – TelepathWear and TelepathPhone – running on the

72

App
Front-end

App
Back-end

Local
Resources

App
Clone

Wearable Phone

Remote
Resources

Data flow Local Data flow Remote Verification & Results

Raw Sensing Phone

Raw Sensing WearableUser Interface

Computing

Sensing

Operating System

Sensors

Telepath (Sender)

Telepath (Receiver)

Computing

Sensing

Operating System

Sensors

Telepath (Predictor)
Feature Extraction

Classification

Transfer Function

Verification

Telepath (Sender)

F����� �.�: Telepath Workflow. The blue arrows show data flow in local execution. The red arrows
show data flow in remote execution.

respective devices.

On the wearable’s side, the app interfaces to Telepath Receiver, which receives results

computed either locally on the wearable or remotely on the phone. The local app back-end

includes computing and sensing. It receives data from Telepath Sender, which resides atop

Android and requests o�oading from the phone. When an o�oading request is accepted,

the Sender deactivates the local sensors. Otherwise, it receives sensing data from the local

sensors and passes it to the upper layer.

On the phone’s side, a Telepath Sender sends computed results to the wearable’s Telepath

Receiver. Results are produced by a clone of wearable app’s back-end. A Telepath Predictor

receives sensing data from the phone’s local sensors, predicts corresponding sensor readings

on the watch, and sends them to the cloned app for computation. The Predictor has three

sub-modules — Feature-Extraction, Classification, and Transfer-Function — which we

detail in Section 4.3.

A Verification module communicates with the phone’s Telepath Predictor and the

wearable’s Telepath Sender. It compares predicted data and groundtruth data received from

73

the wearable to determine whether an o�oading request should be accepted. The phone

declines requests when Verification finds that the phone’s predictions of the wearable’s

sensing data is inaccurate.

API. Telepath APIs extend Android’s for interfacing with sensors. Developers can easily

port their apps without changing the original code flow. We demonstrate an example below.

Suppose a developer designs a watch app that recognizes activities in a user’s exercise

routine. The app includes a trained support vector machine (SVM) that classifies activities

based on standard deviation in the accelerometer’s three axis’ readings. The developer

specifies the flow of data from sensors to classifier. First, the app registers the accelerometer’s

listener to receive sensor events (i.e., readings) at the highest frequency. Upon receiving an

event, the app computes the standard deviation � of the current accelerations. SVM then

uses � to label activities.

To port her app to Telepath, the developer modifies the wearable app to include Telepath-

Wear and creates a cloned app for TelepathPhone. The clone shares the same back-end code,

including trained classifiers’ binaries, as the wearable app. An app registers Telepath sensors

like it would invoke the Android SensorManager API. The process is illustrated by Fig-

ure 4.4. Instead of computing on each sensing event, the app now listens to TelepathEvents,

which could be local sensing events or remote result events.

The developer need not worry about o�oading decisions or resource management.

Because the phone predicts the watch’s sensory data, recognition classifiers trained for

wearables need not be re-trained for the phone.

4.3 Predictor Design

To predict the wearable’s raw sensing data from the phone’s, the predictor must first be

trained o�ine. O�ine, raw data from both devices are collected, processed, and clustered

to develop phone-to-wearable transfer function models. Online, the phone’s sensing data is

74

public class MainActivity extends WearableActivity
implements SensorEventListener {

SensorManager sensorManager = (SensorManager)
getContext().getSystemService(SENSOR_SERVICE);

Sensor mSensor = sensorManager.getDefaultSensor(
Sensor.TYPE_ACCELEROMETER);

sensorManager.registerListener(this, mSensor,
SensorManager.SENSOR_DELAY_FASTEST);

public void onSensorChanged(SensorEvent event){
float[] accel = event.values;
double feature = getStandardDeviation(accel);
int label = (int) svm.predict(svmModel, feature);
display(label);

}
}

public class MainActivity extends WearableActivity
implements TelepathSensorListener{

TelepathWear tp = new TelepathWear(context, this);
tp.getTelepathSensor(Sensor.TYPE_ACCELEROMETER,

SensorManager.SENSOR_DELAY_FASTEST);
public void onTelepathEvent(TelepathEvent event){

int label = tp.getResults(event); //dynamic
display(label);

}
@override
public int compute(TelepathEvent event){

float[] accel = event.values;
double feature = getStandardDeviation(accel);
int label = (int) svm.predict(svmModel, feature);
return label;

}
}

w/o Telepath w/ Telepath

F����� �.�: Code snippet for example wearable app, before and after integrating with Telepath.

fetched, processed, and classified to invoke the models that predict the wearable’s sensing

data. In this section, we introduce transfer function models. We then describe signal

processing techniques that improve prediction accuracy.

4.3.1 O�ine Training

Periodically, the phone and the wearable reads and uploads its sensing data to the cloud for

o�ine training. The key training technique, transfer function modeling, is an autoregressive

model that captures the relationship between two time series (a.k.a. ARMAX model).

Transfer Function Models

Transfer function modeling describes the relationship between two strongly correlated

time series Helmer and Johansson (1977). A classic example of such time series is the

relationship between advertising costs and sales. Let At and St be random variables that

denote advertising and sales at time t. The general form of a transfer function is:

St “ v0At ` v1At´1 ` v2At´2 ` ¨ ¨ ¨ ` Nt.

At´1 is advertising cost at time t´1 and v1 is the advertisement’s e�ect after one time period.

Nt is the sum of e�ects from all factors other than advertising and should be independent

75

of At. The function is often rewritten as

St “ pv0 ` v1B ` v2B
2 ` ¨ ¨ ¨ qAt ` Nt, or

St “ vpBqAt ` Nt,

in which B is a backshift operator defined as

BAt “ At´1 or BmAt “ At´m.

and vpBq is a transfer function. The target time series St (i.e., the output) can be predicted

from the current observation of At as well as the history of At (i.e., the inputs). Given the

nature of human motion, we can assume that our input and output time series are bounded,

leading to stable transfer functions.

The output can be a�ected by not only present and past but also future values of the input

such that vj ‰ 0 for j † 0. This e�ect arises because two devices can experience a time lag

when sensing the same motion (e.g., hand moves first than the leg). It could also be caused

by drifting clocks. To accommodate these data artifacts, prediction is performed periodically

on bu�ered data to leverage multiple observations from an extended time period.

Training Transfer Function Models. O�ine training identifies polynomial vpBq and

noise Nt. First, based on training data At and St, the impulse response weights of the

transfer function, v0, v1, ¨ ¨ ¨ , are initialized from the correlation coe�cients of the two time

series. Then, Nt is checked to determine whether it is white noise.

If Nt is not noise and exhibits some relationship with the time series, there is still

information left to be captured by the transfer function. In this case, the coe�cients of vpBq
are revised with maximum likelihood estimation. Training proceeds iteratively until the

transfer function captures much of the variance in the time series and Nt resembles white

noise. Online prediction estimates St from At given vpBq and the forecast of Nt.

Segmentation for Stationarity. To train valid transfer function models, the time series

must be stationary, which means their statistical properties (e.g., mean, variance, autocor-

76

relation) do not change over time.2 Stationarity is essential because it makes time series

easier to predict.

Unfortunately, we observe that when users perform di�erent motions, the sensing data

presents distinct statistical properties. Consider leg motions when jumping and walking.

These two activities are so di�erent that data transformations, such as finite-order di�erenc-

ing or logarithmic operations, cannot produce a stationary time series that includes both

jumping and walking.

On the other hand, each independent activity consists of regular and repetitive motions

that produce stationary statistical properties. This finding implies that we must segment our

data such that stationarity can be guaranteed within each segment of the time series.

Training Pipeline

In addition to segmenting the data and identifying transfer function models for each segment,

Telepath’s o�ine training contains additional steps to process the data and improve prediction

accuracy. Fortunately, these steps can be parallelized to reduce the training time.

Interpolation. The phone and the wearable device could be equipped with sensors of

di�erent sampling rates. To match the timestamps from a pair of sensing streams, linear

interpolation is the first data processing step. After interpolating the time series for every 20

millisecond window, the output is two aligned time series, one for the phone and one for the

wearable. This process assumes that clocks in two devices are perfectly synchronized. This

assumption is rather strong, but slightly unsynchronized clocks have little practical impact.

De-noising. Data streams from motion sensors are inherently noisy. In addition, the

devices’ unstable placements (e.g., in the pocket) generate noise. To extract meaningful

motion from noisy data, we use a Butterworth filter on the Fourier domain to remove high

frequency noises. Our heuristic cuto� frequency is based on the observation that meaningful

motions cannot have a frequency higher than 5Hz.

2 Strictly speaking, this is the definition of weak stationarity but it su�ces for our purposes.

77

Pre-whitening. Telepath uses the phone’s data as inputs At into transfer functions and

the wearable’s data as output St. Each device has multiple data streams from various sensors

and each stream is multi-dimensional (e.g., three-axis acceleration). Instead of predicting

each axis separately, Telepath employs multivariate transfer functions that span dimensions

and sensors.

For instance, to predict the x-axis accelerometer reading in the wearable, all x-, y- and

z-axis accelerometer readings from the phone are used. In addition, all three-axis gyroscope

readings from the phone are used. Since these six variables are highly correlated by nature,

we remove redundant information by calculating the autoregressive function for one variable

and filtering it out from the other variables. The remaining series are then used for the

transfer function modeling. This process is referred to as pre-whitening.

Segmentation - Feature Extraction. We extract features that commonly represent

motion in time and frequency domains (see Table 4.3). Features are extracted on sampling

windows. Each window has a width of 128 data points (i.e., a duration of 2.56 seconds),

and they overlap with each other by 50%. This configuration matches the speed of human

movement Anguita et al. (2013).

Segmentation - Clustering. To segment sensing streams collected from two devices,

we classify data points into clusters. Each cluster presents a set of motions, during which

the two devices share a unique correlation that di�ers from those in other clusters. However,

the clusters need not have semantic meaning. We use unsupervised clustering, k-means, to

cluster values for extracted features into k “ 10 number of clusters. The number of clusters

represents not only di�erent motions, but the same motion with di�erent device placements.

Each cluster produces a stationary time series.

Transfer Function Modeling. Finally, we identify one transfer function for each cluster

using the algorithm explained earlier. The transfer function is re-trained if clusters change.

The training dataset should be large, diverse, and adaptive to capture the most recent

relationships between sensors on two devices. When their batteries permit (e.g., charged

78

Table 4.3: Selected features for clustering.

ID Description
1 Standard deviation of x-axis acceleration
2 Standard deviation of y-axis acceleration
3 Standard deviation of z-axis acceleration

4-6 Median of absolute values of i-axis, i P tx, y, zu
7-9 Interquartile Range of i-axis

10-12 Coe�cients of auto-regression of i-axis
13-15 Largest frequency component in the spectrum of i
16-18 Weighted frequency average of i
19-21 Spectrum skewness of i

to more than 80% of capacity), wearables and the phone record paired time series that

contain raw sensory data. When charging, the phone sends this data to servers that train

transfer functions. Periodically, the phone downloads updated functions and organizes them

according to clusters’ centroids.

4.3.2 Online Prediction

Verification of Model Accuracy. The online process predicts the raw sensing data on the

wearable from the raw sensing data on the phone. In practice, the user may not be carrying

both devices at the same time, precluding the use of Telepath. Therefore, the online process

must include a verification stage, assuring that the current placement of the devices are

suitable for data prediction.

Prior to, and in the midst of o�oading, a small set of sensing data is periodically collected

and sent from the wearable to the phone. If the data does not correlate with the data on the

phone, Telepath informs the wearable that o�oading is canceled and the wearable proceeds

with local execution mode.

To determine if the o�oading is suitable, Telepath estimates the correlation between

the pair of sensing series collected from both devices. Traditionally, Pearson’s correlation

coe�cient is used to measure the correlation of two variables. However, this metric requires

79

the variables to be approximately normal. Our sensing data series are generated from human

motion and normal distributions on the data cannot be assumed.

Instead, we use Kendall’s rank correlation coe�cient to measure the extent that ranks of

the two series match each other. This metric does not have requirements on the distributions

of the two series. To quantify the correlation, the two series are filtered to remove noise and

transformed into rankings. Then, the Kendall Tau-b coe�cient is calculated, which accounts

for concordant, discordant, and tied pairs in two series McLeod and McLeod (2011). A

corresponding p-value is computed on a two-sided test of the null hypothesis, H0: the two

time series are not correlated, and is compared against a 0.01 significance level.

If p • 0.01, we do not reject the null hypothesis and do not have su�cient confidence

that the phone’s data can predict the wearable’s. Perhaps the phone and the wearable are

not carried by the user simultaneously or the phone is vibrating for an incoming phone call.

In such cases, the phone informs the wearable of its limitations and the wearable cancels

the request for o�oading.

Prediction Pipeline. When the phone accepts a request for o�oading, it predicts the

wearable’s sensing data stream in several steps.

During feature extraction, the phone’s real-time sensing data enters a bu�er of width

2.56s and overlap 1.28s. The bu�er is configured to match the sampling window during

training. When the bu�er is full, its data is processed to produce features (see Table 4.3).

Notice that bu�ering introduces a delay in predicting the data, which does not a�ect activity

tracking apps. Moreover, the bu�er size can be tuned to match with app requirements.

During classification, because multiple transfer functions are generated for di�erent

clusters of motion, the prediction process must identify the cluster corresponding to the

measured motion. Extracted features are classified and assigned to a cluster based on their

distance to cluster’s centroids. Then, the cluster’s corresponding transfer function model is

fetched.

During prediction, the transfer function estimates the wearable’s raw sensing data from

80

the phone’s. Although models are trained with filtered data, in which random noise is

removed, models are evaluated with raw sensing data that includes noise. Noise in model

inputs produce noise in model’s outputs. In practice, because motion recognition apps

remove noise in their first processing step, apps can accommodate noisy sensor data and

noisy predicted data in the same manner. Ultimately, the apps’ results are una�ected.

4.4 Implementation

4.4.1 Predictor Implementation

O�ine. We implement the o�ine training pipeline in R. In particular, we used approx()

in the stats packages for linear interpolation, butter() and filtefilt() in the

signal package for de-noising, kmeans() in stats and cl predict() in clue for

clustering and classification, and auto.arima() and forecast() in the forecast

package for transfer function learning and prediction.

On a 48-core AMD Opteron processor, training on a pair of time series with 65k data

points and 21 extracted features completes in 6.6 minutes. The predictor module exports

trained transfer functions as model coe�cients written in json files. The module exports

k-means clusters as their centroids in text files.

Online. On the phone, the Telepath instance downloads from the cloud the files con-

taining transfer functions’ coe�cients and cluster centroids and stores them locally, on

a daily basis. When sensing is o�oaded, Telepath loads the files with the org.json

library at runtime. Given sensing data features and a set of centroids, the closest cluster is

identified and the appropriate transfer function model is selected. The prediction function

is implemented in Android based on the R forecast library.

4.4.2 Runtime Implementation

A Telepath app has two instances, TelepathWear and TelepathPhone, which run on the

respective devices. They implement separate modules to manage interfaces and o�oading

81

decisions.

TelepathWear. For sensing apps, TelepathWear sends a 1-second bu�er of data to the

phone every 15 minutes to determine if o�oading is suitable. If the phone rejects the request

for o�oading, TelepathWear executes locally. Otherwise, it starts (or continues) remote

execution.

During local execution, TelepathWear registers local sensors, listens to sensor events,

and receives sensory data. TelepathWear calls the compute() function defined by the

developer and classifies activity before returning results to the UI. When local execution

halts, TelepathWear unregisters sensors and stops sensing.

During remote execution, when an o�oading request is accepted, TelepathWear sends a

“start” command, along with sensor IDs, their sampling frequencies and the frequency that

results are sent from the phone. Instead of listening for sensor events, TelepathWear listens

to incoming data events over Bluetooth, receives classification results from the phone, and

returns results to the app UI. When a remote execution halts, TelepathWear sends a “stop”

command, with sensor IDs, instructing the phone to stop sensing and computing.

TelepathPhone. TelepathPhone is a background service that runs continuously, mon-

itoring the data link and listening for commands from TelepathWear. If the command is

“bootstrapping,” it receives and stores app configurations and models. If the command is

“start,” it receives sensor IDs and frequencies that are used to begin sensing and computing.

It sends results to TelepathWear periodically based on the configured result frequency. If

the command is “stop,” TelepathPhone unregisters the sensors and stops both sensing and

computing.

TelepathPhone guards against inaccurate prediction and classification. Upon receiving

an o�oad request, the phone obtains bu�ered sensing data from the watch and compares

it against Telepath’s prediction. Kendall’s rank correlation is computed and the p-value is

checked (see Section 4.3). O�oading requests are rejected when the p-value exceeds 0.01,

which indicates that the phone is used in ways that preclude accurate sensing and prediction.

82

Table 4.4: Popular tracking apps on Android Wear.
App Running Walking Cycling

C25K X
Endomondo X X X
Google Fit X X X
Loseit X
Map My Fitness X X X
Map My Hike X X
Map My Ride X
May My Run X
Map My Walk X
MevoLife X
Misfit X
Runkeeper X
Runtastic X X X
Under Armour Record X X X

Table 4.5: Benchmark classifiers
Classifier Description Category

C5.0 Decision tree boosting Decision Tree
glm Logistic regression Linear Classifiers
knn k-Nearest neighbor Kernel estimation
lda Linear discriminant analysis Linear Classifiers
lssvmRadial Least squares SVM SVM
mlpWeightDecay Multi-layer perceptron Neural Networks
nb Naive Bayes Linear Classifiers
nnet Single-layer perceptron Neural Networks
parRF Parallel randomforest Decision Tree
svmRadial SVM with radial basis kernel SVM

4.5 Experimental Methods

Activities and Classifiers. Our evaluation studies the performance and e�ciency of

Telepath for sensing applications. To benchmark typical wearable device usage, we survey

the characteristics of the top fourteen, free activity tracking apps on the wearable app market

(see Table 4.4). They constantly check motion sensors, acquiring wake locks and motion

83

sensors in their permissions, to record running, walking, or cycling activities during the day.

We evaluate Telepath’s accuracy in recognizing these three activities. Because we cannot

know the algorithms used in these commercial apps, we test Telepath on ten popular machine

learning classifiers (see Table 4.5). The classifiers are diverse and vary in complexity, from

the simple decision tree to more complex neural networks.

Data. During data collection, a user wears a Samsung Gear Live watch on her left

wrist and places a Samsung Galaxy Nexus phone in her right pocket. A user performs each

activity—running, walking, cycling— for 15 minutes to produce approximately 270K raw

sensing data points in total. Both devices record data at the highest sampling rate. The user

labels data with corresponding activity to supply groundtruth. We sample 70% of the data

for training and 30% for testing. We use an equal amount of data from each activity.

4.6 Evaluation

We compare Telepath against four alternatives with less sophisticated data and analysis: (1)

Telepath without using gyroscope, (2) Telepath without using multivariate transfer function

models, (3) Telepath without de-noising and (4) directly using the phone’s raw sensing data

without Telepath’s prediction. Groundtruth is sensing data collected from the watch.

4.6.1 Prediction Accuracy

An error metric is needed to measure the accuracy of prediction. Traditional error metrics,

such as root-mean-square error, measure the distance between the predicted multivariate

time series and the groundtruth, which cannot accurately represent the e�ectiveness of

Telepath. Human motion is not always coordinated. Take walking as an example, during

which arms and legs have corresponding movements most of the time, but sometimes the

leg moves faster than the arm and vice versa. If leg and arm motions do not match perfectly

during online prediction, estimated watch data can lag groundtruth. If estimates di�er from

groundtruth only due to a small time shift, the distance can be large even when the model

84

Table 4.6: Confusion matrix of using knn to classify Telepath’s prediction.
Predicted Activities

biking running walking total recall
biking 149 0 22 171 0.871
running 0 162 6 168 0.964
walking 52 0 116 168 0.690
total 201 162 144 507
precision 0.741 1.000 0.806

can be considered accurate and su�cient for motion recognition.

Instead, we use dynamic time warping (DTW), a distance metric, to evaluate prediction

accuracy. DTW pairs two time series, shifts and distorts them slightly in time, and finds the

minimum distance between them across all possible alignments Giorgino et al. (2009). We

allow a maximum shift of one second and calculate the distance between the predicted time

series and groundtruth for the watch’s sensing data. Both time series are de-noised.

The DTW distance is defined as

DpAt, Ftq “ min
�

d�pAt, Ftq, (4.1)

where d� is the accumulated distortion between time series At and Ft when they are applied

warping functions �pkq “
`
�apkq,�f pkq

˘
, for each time step k Giorgino et al. (2009).

Figure 4.5 shows the distance between sensing data predicted by Telepath and groundtruth.

The y-axis is the DTW distance normalized to the length of the time series, and a smaller

value means higher accuracy. Across activities, using Telepath significantly outperforms

not using it. Not surprisingly, raw sensing data from the phone looks very di�erent than that

from the watch. Interestingly, Telepath without multivariate models and Telepath without

de-noising have smaller distances to the groundtruth. However, a smaller distance is only

one measure of fit and does not evaluate activity classification.

4.6.2 Classification Accuracy

We define “app accuracy” to measure the accuracy of activity classification when using

predicted sensing data. Our metric is the F1 score. Given a classifier, for each activity i,

85

0.0

0.3

0.6

0.9

Biking Running Walking
Activity

N
or

m
al

ize
d

D
TW

 D
is

ta
nc

e

Method
Telepath
w/o Gyroscope
w/o Multivariate
w/o De−noising
No Telepath

F����� �.�: Data prediction accuracy, measured by DTW distance between predicted time series
and groundtruth (smaller is better). Telepath has smaller distance than alternatives.

0.00

0.25

0.50

0.75

1.00

Watch
Phone

Telepath

knn

F1
 S

co
re

Activity
Biking
Running
Walking

0.00

0.25

0.50

0.75

1.00

Watch
Phone

Telepath

lda

F1
 S

co
re

Activity
Biking
Running
Walking

F����� �.�: Activity classification accuracy, measured by F1 scores, for representative activities and
classifiers.

Precisioni is the fraction of instances classified as activity i that indeed correspond to i.

Recalli is the fraction of instances of activity i that are recognized as such. A good classifier

has both recall and precision, identifying more instances of an activity with fewer false

positives. The F1 score accounts for recall and precision on a scale of zero (worst) to one

(best):

F1 Scorei “ 2 ˆ Precisioni ˆ Recalli
Precisioni ` Recalli

.

For insight, Table 4.6 presents the confusion matrix for KNN classification for three

activities when using Telepath’s predictions. The bold numbers are correctly recognized

86

0.00

0.25

0.50

0.75

C5.0 glm knn lda
lssvmRadial

mlpWeightDecay nb nnet
parRF

svmRadial

Classifier

F1
 S

co
re

Telepath w/o Gyroscope w/o Multivariate w/o De−noising No Telepath

F����� �.�: Activity classification accuracy, measured by F1 scores normalized to those when using
groundtruth sensing data. Telepath classifies more accurately than alternatives.

activities. The first column shows 201 data points recognized as biking, but groundtruth

says that 52 of them are actually walking and precision for biking is 0.74. Similarly, we

calculate precision and recall for each activity.

In Figure 4.7, we evaluate app accuracy with the motion recognition classifiers in Ta-

ble 4.5. The F1 Scores are averaged across activities and normalized to those when using

groundtruth data, the watch’s sensing data for activity recognition. Telepath outperforms

other variants and achieves, on average, 85% of groundtruth accuracy. Observe that gyro-

scope data has a moderate impact on improving accuracy, while multivariate modeling is

crucial for accurate data prediction and activity classification. Low scores without de-noising

mean that Telepath is sensitive to noise and data pre-processing is required.

4.6.3 Step Counting Accuracy

Some motion tracking apps o�er step counting as a service. We evaluate Telepath using

an open source pedometer app Bagi (2011) and test data sampled from walking. The app

detects and computes the lags between peaks and valleys in the sensed signals. If the lag

exceeds a threshold, a step is detected. The threshold determines detection sensitivity—a

low threshold detects more steps.

Figure 4.8 shows that the service produces similar step counts whether using the phone’s

87

0

1000

2000

3000

4000

Low Medium High
Detection Threshold

N
um

be
r o

f S
te

ps
 D

et
ec

te
d

Watch
Telepath
w/o Gyroscope
w/o Multi−dimension
w/o De−noising
No Telepath

F����� �.�: Step counting accuracy, measured by the number of steps, which decreases as the
detection threshold increases. Blue bar shows groundtruth with wearable data. Gold bar shows
Telepath estimates, which are closest to the watch’s.

predictions of watch data or using the watch’s groundtruth data. Telepath without de-noising

has small step counts as it generates predictions with a much smaller variance. Noise

obscures the correlation between the two devices, hindering the construction of accurate

transfer functions.

On the other hand, not using Telepath but directly using the phone’s sensing data results

in high step counts. The readings on the phone have a much higher variance than those on

the watch. A step counting model tailored for the watch cannot be directly applied to the

phone.

4.6.4 Verification Accuracy

Verifying the feasibility of o�oaded sensing and computing is essential to device man-

agement. Telepath permits o�oading only when sensing streams on the phone and watch

exhibit strong correlation. Otherwise, Telepath’s phone will decline requests for o�oad-

ing and Telepath’s watch will rely on its local sensors. To assess correlation in sensing

streams, Telepath computes Kendall’s rank correlation on two de-noised time series. The

conservative p-value is 0.01.

To evaluate verification, we collect three sets of sensing data. The first includes the

88

0.00

0.25

0.50

0.75

1.00

Correlated
Precision

Uncorrelated
Precision

Correlated
Recall

Uncorrelated
Recall

Metric

Sc
or
e Method

Telepath
Pearson

F����� �.�: Verification accuracy, measured by the correlation between devices’ data streams. A
high score on recall for independence means Telepath abandons o�oading when two devices’ data
are uncorrelated.

phone and watch’s sensing streams, W1 and P1, collected when the user is walking. The

second includes streams, W2 and P2, collected when the user is jumping. In these two

datasets, the user wears both devices simultaneously. A third, W3 and P3, is collected when

the devices are placed on a table.

We verify that W1 is correlated with P1, but neither P2 nor P3. Assessing correlation

between W1 and P2 simulates a user walking with the watch on her wrist and the phone

bouncing inside her backpack. Similarly, assessing correlation betweenW1 andP3 represents

a user who carries the watch but leaves the phone in the o�ce. Wi should be correlated

with Pi if i “ j and uncorrelated otherwise.

Figure 4.9 shows that Telepath accurately recognizes correlated data streams. Compared

with Pearson, Telepath’s Kendall achieves high scores on recall for lack of correlation and on

precision for correlation. Good recall for lack of correlation means that, when two devices’

data are uncorrelated, Telepath rejects the watch’s o�oad request with high confidence.

Good precision for correlation means that, when Telepath accepts requests for o�oaded

sensing, the two devices’ data are very likely correlated.

89

Watch Phone0
10

0
20

0
30

0
40

0
Po

we
r (

m
W

)

(a)

Local
Remote

Watch Phone0
10

20
30

40
Ba

tte
ry

 L
ife

 (H
ou

r)

(b)

Local
Remote

)
0

2
4

6
8

10 Local
Raw
Feature
Telepath

Watch

Ba
tte

ry
 L

ife
 (H

ou
r)

(c)
F����� �.��: (a) Power and (b) battery life under local and remote (Telepath) execution. (c) Battery
life under variants of remote execution that transmit raw data, transmit extracted features, or transmit
nothing by relying on Telepath prediction.

4.6.5 Energy E�ciency

We compare system power in local and remote execution modes, profiling TelepathWear

and TelepathPhone with Android Batterystats. We profile a Telepath app that recognizes

biking, running and walking activities from accelerometer readings.

Figure 4.10(a) shows how watch power decreases by 2ˆ while phone power increases

when switching from local to remote execution. The watch dissipates power during remote

execution because it receives classification results from the phone every second (configured

by app). Similarly, the phone dissipates power during local execution because it listens

continuously for Telepath command.

Figure 4.10(b) shows that remote execution increases the watch’s battery life from 4.8

hours to 10.0 hours, but reduces the phone’s batter life to 17 hours. Note that Telepath

could further increase the watch’s battery life with asynchronous recognition. When activity

logging apps are neither real-time nor interactive, the phone can bu�er and send classification

results less frequently to reduce transmission costs.

Figure 4.10(c) shows that Telepath’s o�oading strategy benefits battery life more than

traditional strategies. Invoking the phone for both sensing and computing extends the

90

wearable’s battery life to 10 hours. In contrast, relying on the watch’s sensors but transmitting

raw data or extracted features to the phone for computation does little for battery life. Telepath

outperforms these strategies by 2.3x and 2.0x, respectively. Indeed, these strategies perform

no better than using the watch’s local resources.

Transmitting data or features to the phone for computation is ine�ective as increased

communication costs outweigh reduced computation costs. However, invoking the phone’s

sensors and transfer function models dramatically extends the wearable’s battery life. Thus,

Telepath addresses range anxiety by using the phone as a range-extender for wearables.

4.6.6 Costs and Overheads

Training. Telepath models must train quickly to permit frequent updates. However, a

tradeo� exists between training time and prediction accuracy. Training time increases with

the dataset size (Figure 4.11A). When the dataset has 6.5k paired data points, Telepath

takes roughly 7 minutes to train models for 10 clusters. But increasing the dataset size

significantly increases app accuracy (Figure 4.11B).

Training time can be reduced by increasing the number of clusters (Figure 4.11C). Each

cluster trains in parallel with a small dataset per cluster. Increasing the number of clusters

improves app accuracy as more transfer functions are generated (Figure 4.11D).

Prediction. During remote execution, the transfer function predictor on the Samsung

Galaxy Nexus phone requires 3.42 milliseconds, on average, to compute a 21-dimensional

feature vector, classify, and predict. This prediction latency is shorter than the sensors’

10ms sampling period, which means the predictor may be invoked for every sensor event. In

practice, a bu�er holds sensory data and only periodically (e.g., once per second) performs

computation to process and predict features. Prediction costs do not a�ect app performance.

91

A

0

2

4

6

0 20k 40k 60k
Training Data Size

Tr
ai

ni
ng

 T
im

e
(m

in
)

B

0.5

0.6

0.7

0.8

0 20k 40k 60k
Training Data Size

F1
 S

co
re

C

0

20

40

60

80

1 2 3 4 5 6 7 8 910
Number of Clusters

Tr
ai

ni
ng

 T
im

e
(m

in
)

D

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 910
Number of Clusters

F1
 S

co
re

F����� �.��: Impact of training data size and the number of clusters on the training time and app
accuracy.

4.6.7 Sensitivity to Device Placement

A transfer function learned from one device placement may be inaccurate when placement

changes. We test two device placements—phone in right and left pocket—while the watch

is worn on the left wrist. We compare app accuracy when model is (1) trained with right

pocket and tested with left pocket; (2) trained and tested with left pocket; (3) trained with

left and right pockets but tested with left pocket.

Figure 4.12 shows, unsurprisingly, that transfer functions trained from one placement

cannot accurately model another. Testing and training with di�erent placements achieves

only 71% of the accuracy when testing and training with same placements. However, models

can be made resilient by enriching the dataset. When training includes both left- and right-

pocket placements, accuracy increases by 44%, on average. Telepath should periodically

92

0.00

0.25

0.50

0.75

1.00

C5.0 glm knn lda
lssvmRadial

mlpWeightDecay nb nnet
parRF

svmRadial

Classifier

F1
 S

co
re Dataset

Left
Left + Right

F����� �.��: Activity classification accuracy when using datasets that di�er in device placement.

update datasets and re-train predictors for new placements.

4.6.8 Sensitivity to Users

Heterogeneous users might share transfer function models, which would accelerate model

training. Exploring this possibility, we compare two training datasets. A homogeneous

dataset contains sensing data from user 1’s walking, running, and biking. A heterogeneous

dataset mixes user 1’s walking and biking with user 2’s running. Both users wear the watch

on the left wrist and place the phone in the right pocket.

Figure 4.13 shows that transfer functions learned from the heterogeneous dataset, which

has incomplete training data from user 1, cannot accurately predict user 1’s watch data.

App accuracy drops by 83% compared to apps that use models of user 1’s complete dataset.

Di�erences in body motion and device usage may require di�erent transfer functions. When

the user population is small, Telepath may require tailored models for individual users. As

the population grows, however, users may naturally fall into clusters characterized by similar

motions. Crowd-trained models are interesting avenue for future work.

93

0.00

0.25

0.50

0.75

C5.0 glm knn lda
lssvmRadial

mlpWeightDecay nb nnet
parRF
svmRadial

Classifier

F1
 S

co
re Dataset

User 1
User 1 + User 2

F����� �.��: Activity classification accuracy using a homogeneous dataset with user 1 and a
heterogeneous dataset with user 1 and 2. Shared training data does little to improve prediction
accuracy for any one user.

4.7 Related Work & Discussion

O�oading has been extensively studied Shiraz et al. (2013); Dinh et al. (2013); Fernando

et al. (2013) for mobile-cloud computing (MCC). Mobile devices o�oad compute-intensive

apps—image, video, audio processing, gaming—to the cloud to reduce execution time,

reduce energy, or improve service quality Hauswald et al. (2015); Balan et al. (2007); Flinn

et al. (2002); Su and Flinn (2005); Chun and Maniatis (2009). Some MCC frameworks

migrate virtual machines Satyanarayanan et al. (2009); Chun et al. (2011) while others

partition applications Cuervo et al. (2010); Kristensen (2010). O�oading decisions are

based on run-time analyses of network latency, transmission data size, devices’ energy

models, and code execution time Cuervo et al. (2010); Chun et al. (2011); Kristensen

(2010); Zhang et al. (2011); Kumar and Lu (2010); Wang and Li (2004).

Telepath adapts o�oading to extending battery life for wearable devices. For sensing

apps, prohibitively high communication costs preclude traditional o�oading. In response,

we leverage cross-device correlation to “o�oad” sensing and minimize data transmission.

In future, as Telepath aggregates sensing and computing from multiple devices, coordinated

sensing with lower and higher measurement frequencies on wearables and phones, respec-

94

tively, could permit fine-grained device management. Policies for duty-cycling sensors

could consider Telepath’s impact on aggregate battery life of both devices.

Advances in hardware greatly improve the energy e�ciency of mobile devices Halpern

et al. (2016). With asymmetric multiprocessing, mobile devices can equip low-power

cores to handle long-running sensing tasks that are not compute-intensive, leaving high-

power cores asleep Lukefahr et al. (2012b); Gaudette et al. (2016). Sensing apps can

benefit from accelerators that reduce the power and latency in signal processing and activity

classification Mahajan et al. (2016); Arnau et al. (2012); Manatunga et al. (2015); Rajovic

et al. (2013). Telepath is orthogonal to these approaches as it allows wearable devices to

preserve energy and utilize idle resources on phones, however they are implemented.

Admittedly, Telepath is constrained to motion sensors such as accelerometers and gyro-

scopes. Wearables are equipped with other sensors such as GPS and heart rate monitors,

which do not yet benefit from Telepath. GPS sensing can be o�oaded without Telepath’s

sophisticated signal processing Liu et al. (2012). Heart monitoring requires more compre-

hensive learning and training, as there is no correlated sensor on the phone.

4.8 Conclusions

We design and implement Telepath to improve the lifetime of wearable devices for sensing

applications. When users carry a phone and watch together, Telepath uses only the phone’s

sensory data to accurately predict the watch’s sensory data by exploiting correlation between

devices’ motions. Telepath is triggered when the correlations between two devices are

significant, and the phone’s predictions extend its battery life by reducing the watch’s

sensing demands. Telepath accurately predicts the watch’s sensing data with 85% app

accuracy while extending the watch’s battery life by 2.1x.

95

5

Conclusion and Lessons Learned

This thesis presents three pieces of works that improves the energy e�ciency of mobile

sensing and computing. There is room for improvement for each work. The first work

focuses on individual devices and explores the design space of mobile processors, leaving

the scheduling policies as future work. The second work focuses on a distributed system

that utilizes multiple devices. There exists a rich set policies to be applied to the system to

manage the devices for performance, energy and fairness targets. The third work focuses on

the signal processing approach to enable sensory o�oading. A scheduler can be designed to

provide trade-o�s between performance and energy according to user preferences. Overall,

the works presented in this thesis emphasize more on developing platforms and less on

managing them.

Throughout the research process, many lessons have been learned, from problem finding,

to problem formation, to problem solutions. System research should not be limited to, or

constrained by specific hardware platforms. Indeed, research works that build on the

invention of new, “trendy” hardware platforms are easy to publish papers on. New platforms

often bring new problems, accelerating the problem finding phase. However, the approaches

taken to solve these problems should not be constrained to the very platform. Often, we

96

are attempted to make assumptions about hardware, their computing bottlenecks and their

power limitations, and format our problem statements on top of such assumptions. And

very often, we are told that these assumptions do not hold in the real world, or do not hold

any more. For example, mobile devices evolve so fast, that an assumption on the hardware

might not hold for longer than six months. My entire thesis, for instance, might turn out to

be completely useless, if someone on the other end of the earth makes a breakthrough in

the li-ion technology that improves today’s battery capacities by two-hundred fold (I will

have to revisit this number after doing some research). Or better, by harvesting energy from

the ambient, your phones will never run out of battery. The energy constraint will be gone,

together with the meanings of all the papers that rely on it. This might not happen (yes,

I am still holding on to my assumptions), but in an extreme case it does, I will leave the

judgment for my readers.

A good system research work should able to separate from the platform. Similarly, an

approach that seems overly complicated for a certain problem might serve a great purpose

somewhere else. My own inspirations come from software — applications, workloads,

essentially users. A software is always fairly bounded to the hardware, but also relatively

independent. But, when using workloads as benchmarks, one should again, always be aware

of the mind trap: our brains seem to be fond of making assumptions. One should, at least,

be aware that an assumption is being made, and it might not hold.

97

Appendix A

Mobile Trend Survey

Table A.1: Hardware specifications of mobile devices from 2012 to 2016. Data collected from
Wikipedia. Observe series like Samsung Note*, LG G* and Galaxy S* that upgrade every year.

Device Release Year Big Cores Frequency (GHz) Little Cores Frequency (GHz) 64-bit Memory (GB) Battery (mAh) System-on-chip Manufacturer
iPhone 5 2012 2 1.3 1 1440 Apple A6 Apple
Galaxy S3 2012 4 1.4 1 2100 Samsung Exynos 4 Quad Samsung
Droid Razr Maxx HD 2012 2 1.5 1 3300 Snapdragon S4 Motorola
One X 2012 4 1.5 1 1800 Nvidia Tegra 3 HTC
Lumia 920 2012 2 1.5 1 2000 Qualcomm Snapdragon S4 Nokia
Nexus 4 2012 4 1.5 2 2100 Qualcomm Snapdragon S4 LG
Galaxy Note2 2012 4 1.6 2 3100 Samsung Exynos 4412 Quad Samsung
Note 3 2013 4 1.9 4 1.3 3 3200 Samsung Exynos 5 Octa 5420 Samsung
LG G2 2013 4 2.26 2 3000 Qualcomm Snapdragon 800 LG
Moto G 2013 4 1.2 1 2070 Qualcomm Snapdragon 400 Motorola
Moto X 1 2013 2 1.7 2 2200 QualcommSnapdragon S4 Motorola
Nexus 5 2013 4 2.26 2 2300 Qualcomm Snapdragon 800 LG
Galaxy S4 2013 4 1.6 4 1.2 2 2600 Exynos 5 Octa Samsung
HTC One M7 2013 4 1.7 2 2300 Qualcomm Snapdragon 600 HTC
Optimus G Pro 2013 4 1.7 2 3140 Qualcomm Snapdragon 600 LG
BlackBerry Z10 2013 2 1.5 2 1800 BlackBerry BlackBerry
Xperia Z 2013 4 1.5 2 2330 Qualcomm Snapdragon S4 Pro Sony
iPhone 5s 2013 2 1.3 X 1 1560 Apple A7 Apple
Lumia 1520 2013 4 2.2 2 3400 Qualcomm Snapdragon 800 Nokia
Galaxy S5 2014 4 1.9 4 1.3 2 2800 Samsung Exynos 5 Octa Samsung
HTC One M8 2014 4 2.26 2 2600 Qualcomm Snapdragon 801 HTC
iPhone 6 2014 2 1.4 X 1 1810 Apple A8 Apple
iPhone 6 Plus 2014 2 1.4 X 1 1810 Apple A8 Apple
LG G3 2014 4 2.5 2 3000 Qualcomm Snapdragon 801 LG
OnePlus 1 2014 4 2.5 3 3100 Qualcomm Snapdragon 801 OnePlus
Nexus 6 2014 4 2.7 3 3220 Qualcomm Snapdragon 805 Motorola
Moto X 2 2014 4 2.5 2 2300 Qualcomm Snapdragon 801 Motorola
Note 4 2014 4 1.9 4 1.3 X 3 3220 Exynos 7 Octa 543364-bit Samsung
Nexus 6P 2015 8 2 X 3 3450 Qualcomm Snapdragon 810 v2.1 Huawei
Nexus 5X 2015 6 1.8 2 2700 Qualcomm Snapdragon 808 LG
iPhone 6s 2015 2 1.85 X 2 1715 Apple A9 Apple
iPhone 6s Plus 2015 2 1.85 X 2 2750 Apple A9 Apple
Galaxy S6 Edge+ 2015 4 2.1 4 1.5 X 3 3000 Samsung Exynos 7 Octa 7420 Samsung
Galaxy S6 Edge 2015 4 2.1 4 1.5 X 3 2600 Samsung Exynos 7 Octa 7420 Samsung
Galaxy S6 2015 4 2.1 4 1.5 X 3 2550 Samsung Exynos 7 Octa 7420 Samsung
Note 5 2015 4 2.1 4 1.5 X 4 3020 Samsung Exynos 7 Octa 7420 Samsung
LG G4 2015 2 1.82 4 1.44 X 3 3000 Qualcomm Snapdragon 808 LG
Moto X Style 2015 6 1.8 X 3 3000 Qualcomm Snapdragon 808 Motorola
HTC One M9 2015 4 1.555 4 1.958 X 3 2840 Qualcomm Snapdragon 810 HTC
OnePlus 2 2015 4 1.77 4 1.56 X 3 3300 Qualcomm Snapdragon 810 OnePlus
Galaxy S7 2016 4 2.3 4 1.6 X 4 3000 Samsung Exynos 8890 Samsung
Galaxy S7 Edge 2016 2 2.15 2 1.59 X 4 3600 QualcommSnapdragon 820 Samsung
LG G5 2016 2 2.15 2 1.59 X 4 2800 Qualcomm Snapdragon 820 LG
OnePlus 3 2016 2 2.15 2 1.59 X 6 3000 Qualcomm Snapdragon 820 OnePlus
HTC One M10 2016 2 2.15 2 1.59 X 4 3000 Qualcomm Snapdragon 820 HTC
Note 7 2016 2 2.15 2 1.59 X 4 3500 QualcommSnapdragon 820 Samsung

98

Bibliography

(2011), “Variable SMP – A multi-core CPU architecture for low power and high perfor-
mance,” in NVIDIA White Paper.

(2013), “NVIDIA Tegra 4 family CPU architecture: 4-PLUS-1 quad core,” in NVIDIA
White Paper.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2012a), Ambient Assisted
Living and Home Care: 4th International Workshop, IWAAL 2012, Vitoria-Gasteiz, Spain,
December 3-5, 2012. Proceedings, chap. Human Activity Recognition on Smartphones
Using a Multiclass Hardware-Friendly Support Vector Machine, pp. 216–223, Springer
Berlin Heidelberg, Berlin, Heidelberg.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2012b), “Human
Activity Recognition on Smartphones Using a Multiclass Hardware-friendly Support
Vector Machine,” in Proceedings of the 4th International Conference on Ambient Assisted
Living and Home Care, IWAAL’12, pp. 216–223, Berlin, Heidelberg, Springer-Verlag.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013), “A Public Domain
Dataset for Human Activity Recognition Using Smartphones,” in ESANN 2013 proceed-
ings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning.

Annavaram, M., Grochowski, E., and Shen, J. (2005), “Mitigating Amdahl’s Law Through
EPI Throttling,” SIGARCH Comput. Archit. News.

ARM (2012), “CoreTile Express A15x2 A7x3,” in ARM Technical Reference Manual.

Arnau, J.-M., Parcerisa, J.-M., and Xekalakis, P. (2012), “Boosting mobile GPU performance
with a decoupled access/execute fragment processor,” in ACM SIGARCH Computer
Architecture News, vol. 40, pp. 84–93, IEEE Computer Society.

Arslan, M. Y., Singh, I., Singh, S., Madhyastha, H. V., Sundaresan, K., and Krishnamurthy,
S. V. (2012), “Computing While Charging: Building a Distributed Computing Infras-
tructure Using Smartphones,” in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’12, pp. 193–204, New
York, NY, USA, ACM.

99

Asselin, R., Ortiz, G., Pui, J., Smailagic, A., and Kissling, C. (2005), “Implementation and
evaluation of the personal wellness coach,” in Distributed Computing Systems Workshops,
2005. 25th IEEE International Conference on, pp. 529–535, IEEE.

Bächlin, M. and Tröster, G. (2012), “Swimming performance and technique evaluation with
wearable acceleration sensors,” Pervasive and Mobile Computing, 8, 68–81.

Bagi, L. (2011), “Open source Android Pedometer,” https://github.com/

bagilevi/android-pedometer.

Balan, R. K., Gergle, D., Satyanarayanan, M., and Herbsleb, J. (2007), “Simplifying cyber
foraging for mobile devices,” in Proceedings of the 5th international conference on
Mobile systems, applications and services, pp. 272–285, ACM.

Banerjee, N., Corner, M., and Levine, B. (2007), “An Energy-E�cient Architecture for DTN
Throwboxes,” in INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pp. 776–784.

Bao, X., Fan, S., Varshavsky, A., Li, K., and Roy Choudhury, R. (2013), “Your Reactions
Suggest You Liked the Movie: Automatic Content Rating via Reaction Sensing,” in
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’13, pp. 197–206, New York, NY, USA, ACM.

Bhattacharya, S. and Lane, N. D. (2016), “From Smart to Deep: Robust Activity Recognition
on Smartwatches using Deep Learning,” .

Bieber, G., Haescher, M., and Vahl, M. (2013), “Sensor requirements for activity recognition
on smart watches,” in Proceedings of the 6th International Conference on PErvasive
Technologies Related to Assistive Environments, p. 67, ACM.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J.,
Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill,
M. D., and Wood, D. A. (2011), “The Gem5 Simulator,” SIGARCH Comput. Archit.
News.

Brezmes, T., Gorricho, J.-L., and Cotrina, J. (2009), Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living: 10th In-
ternational Work-Conference on Artificial Neural Networks, IWANN 2009 Workshops,
Salamanca, Spain, June 10-12, 2009. Proceedings, Part II, chap. Activity Recognition
from Accelerometer Data on a Mobile Phone, pp. 796–799, Springer Berlin Heidelberg,
Berlin, Heidelberg.

Brush, A. J. B., Krumm, J., and Scott, J. (2010), “Activity Recognition Research: The Good,
the Bad, and the Future,” .

100

https://github.com/bagilevi/android-pedometer
https://github.com/bagilevi/android-pedometer

Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. (2013), “Integrating
Scale out and Fault Tolerance in Stream Processing Using Operator State Management,”
in Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pp. 725–736, New York, NY, USA, ACM.

Chang, J. (2013), “0xbench, intergrated Android benchmark suite by 0xlab,” http://
code.google.com/p/0xbench/.

Chun, B.-G. and Maniatis, P. (2009), “Augmented Smartphone Applications Through Clone
Cloud Execution.” in HotOS, vol. 9, pp. 8–11.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011), “CloneCloud: Elastic
Execution Between Mobile Device and Cloud,” in Proceedings of the Sixth Conference
on Computer Systems, EuroSys ’11, pp. 301–314, New York, NY, USA, ACM.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., and
Bahl, P. (2010), “MAUI: Making Smartphones Last Longer with Code O�oad,” in
Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’10, pp. 49–62, New York, NY, USA, ACM.

Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013), “A survey of mobile cloud comput-
ing: architecture, applications, and approaches,” Wireless Communications and Mobile
Computing, 13, 1587–1611.

Dong, Z., Kong, L., Cheng, P., He, L., Gu, Y., Fang, L., Zhu, T., and Liu, C. (2014),
“REPC: Reliable and e�cient participatory computing for mobile devices,” in Sensing,
Communication, and Networking (SECON), 2014 Eleventh Annual IEEE International
Conference on, pp. 257–265.

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., and Tuulos, V. H. (2010), “Misco:
A MapReduce Framework for Mobile Systems,” in Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’10,
pp. 32:1–32:8, New York, NY, USA, ACM.

Fan, S. (2015), “ActionBench Source code,” https://github.com/ispass-

anonymous/actionbench-.

Fan, S. and Lee, B. C. (2016), “Evaluating Asymmetric Multiprocessing for Mobile Ap-
plications,” in Proceedings of the 2016 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS ’16, IEEE.

Fan, S., Gowda, M., and Roy Choudhury, R. (2012), “Poster: saving power for mobile
phones with partial Wi-Fi scans,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services, pp. 509–510, ACM.

101

http://code.google.com/p/0xbench/
http://code.google.com/p/0xbench/
https://github.com/ispass-anonymous/actionbench-
https://github.com/ispass-anonymous/actionbench-

Fan, S., Shin, H., and Choudhury, R. R. (2014), “Injecting Life into Toys,” in Proceedings
of the 15th Workshop on Mobile Computing Systems and Applications, HotMobile ’14,
pp. 4:1–4:6, New York, NY, USA, ACM.

Fan, S., Zahedi, S. M., and Lee, B. C. (2016), “The computational sprinting game,” in
Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 561–575, ACM.

Fernando, N., Loke, S. W., and Rahayu, W. (2013), “Mobile cloud computing: A survey,”
Future Generation Computer Systems, 29, 84–106.

Flinn, J., Park, S. Y., and Satyanarayanan, M. (2002), “Balancing performance, energy, and
quality in pervasive computing,” in Distributed Computing Systems, 2002. Proceedings.
22nd International Conference on, pp. 217–226, IEEE.

Forcada, M., Ginestı́-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz,
J., Sánchez-Martı́nez, F., Ramı́rez-Sánchez, G., and Tyers, F. (2011), “Apertium: a
free/open-source platform for rule-based machine translation,” Machine Translation, 25,
127–144.

Gaudette, B., Wu, C.-J., and Vrudhula, S. (2016), “Improving smartphone user experience
by balancing performance and energy with probabilistic QoS guarantee,” in 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp.
52–63, IEEE.

Ghasemzadeh, H., Loseu, V., and Jafari, R. (2009), “Wearable coach for sport training: A
quantitative model to evaluate wrist-rotation in golf,” Journal of Ambient Intelligence
and Smart Environments, 1, 173–184.

Giorgino, T. et al. (2009), “Computing and visualizing dynamic time warping alignments
in R: the dtw package,” .

Goulding-Hotta, N., Sampson, J., Venkatesh, G., Garcia, S., Auricchio, J., Huang, P., Arora,
M., Nath, S., Bhatt, V., Babb, J., Swanson, S., and Taylor, M. (2011), “The GreenDroid
Mobile Application Processor: An Architecture for Silicon’s Dark Future,” Micro, IEEE.

Guevara, M., Lubin, B., and Lee, B. (2013), “Navigating heterogeneous processors with
market mechanisms,” in HPCA.

Guevara, M., Lubin, B., and Lee, B. (2014a), “Strategies for anticipating risk in heteroge-
neous system design,” in HPCA.

Guevara, M., Lubin, B., and Lee, B. (2014b), “Strategies for anticipating risk in heteroge-
neous system design,” in HPCA.

Guo, S., Ghaderi, M., Seth, A., and Keshav, S. (2006), “Opportunistic scheduling in Ferry-
Based Networks,” in In WNEPT.

102

Gutierrez, A., Dreslinski, R., Wenisch, T., Mudge, T., Saidi, A., Emmons, C., and Paver, N.
(2011), “Full-System Analysis and Characterization of Interactive Smartphone Applica-
tions,” in IISWC.

Halpern, M., Zhu, Y., and Reddi, V. J. (2016), “Mobile CPU’s rise to power: Quantifying
the impact of generational mobile CPU design trends on performance, energy, and user
satisfaction,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 64–76, IEEE.

Hauswald, J., Laurenzano, M. A., Zhang, Y., Li, C., Rovinski, A., Khurana, A., Dreslinski,
R. G., Mudge, T., Petrucci, V., Tang, L., et al. (2015), “Sirius: An open end-to-end voice
and vision personal assistant and its implications for future warehouse scale computers,”
in ACM SIGPLAN Notices, vol. 50, pp. 223–238, ACM.

Helmer, R. M. and Johansson, J. K. (1977), “An exposition of the Box-Jenkins transfer
function analysis with an application to the advertising-sales relationship,” Journal of
Marketing Research, pp. 227–239.

Horowitz, M., Alon, E., Patil, D., Na�ziger, S., Kumar, R., and Bernstein, K. (2005),
“Scaling, power and the future of CMOS,” in IEDM.

Huang, Y., Zha, Z., Chen, M., and Zhang, L. (2014), “Moby: A mobile benchmark suite
for architectural simulators,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, pp. 45–54.

Huggins-Daines, D., Kumar, M., Chan, A., Black, A., Ravishankar, M., and Rudnicky, A.
(2006), “Pocketsphinx: A Free, Real-Time Continuous Speech Recognition System for
Hand-Held Devices,” in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, vol. 1, pp. I–I.

Hui, P., Chaintreau, A., Gass, R., Scott, J., Crowcroft, J., and Diot, C. (2006), “Pocket
Switched Networking: Challenges, Feasibility and Implementation Issues,” in Proceed-
ings of the Second International IFIP Conference on Autonomic Communication, WAC’05,
pp. 1–12, Berlin, Heidelberg, Springer-Verlag.

Intille, S. S., Larson, K., Beaudin, J., Nawyn, J., Tapia, E. M., and Kaushik, P. (2005), “A
living laboratory for the design and evaluation of ubiquitous computing technologies,”
in CHI’05 extended abstracts on Human factors in computing systems, pp. 1941–1944,
ACM.

InvenSense (2014), “MPU-9250 Product Specification Revision 1.0,” http:

//43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-

content/uploads/2015/02/MPU-9250-Datasheet.pdf.

Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F. (2007), “Core Fusion: Accommodating
Software Diversity in Chip Multiprocessors,” in ISCA.

103

http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-9250-Datasheet.pdf
http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-9250-Datasheet.pdf
http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-9250-Datasheet.pdf

Kang, S., Lee, Y., Min, C., Ju, Y., Park, T., Lee, J., Rhee, Y., and Song, J. (2010), “Or-
chestrator: An active resource orchestration framework for mobile context monitoring in
sensor-rich mobile environments,” in Proceeding of 2010 IEEE International Conference
on Pervasive Computing and Communications (PerCom).

Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., and Celler, B. G. (2006),
“Implementation of a real-time human movement classifier using a triaxial accelerom-
eter for ambulatory monitoring,” IEEE Transactions on Information Technology in
Biomedicine, 10, 156–167.

Khan, W. Z., Xiang, Y., Aalsalem, M. Y., and Arshad, Q. (2013), “Mobile Phone Sensing
Systems: A Survey,” IEEE Communications Surveys Tutorials, 15, 402–427.

Khubaib, Suleman, A., Hashemi, M., Wilkerson, C., and Patt, Y. (2012), “MorphCore: An
energy-e�cient microarchitecture for high performance ILP and high throughput TLP,”
in MICRO.

Kim, C., Sethumadhavan, S., Govindan, M. S., Ranganathan, N., Gulati, D., Burger, D., and
Keckler, S. W. (2007), “Composable Lightweight Processors,” in Micro.

Koufaty, D., Reddy, D., and Hahn, S. (2010), “Bias Scheduling in Heterogeneous Multi-core
Architectures,” in EuroSys.

Kristensen, M. D. (2010), “Scavenger: Transparent development of e�cient cyber foraging
applications,” in Pervasive Computing and Communications (PerCom), 2010 IEEE
International Conference on, pp. 217–226, IEEE.

Kumar, K. and Lu, Y.-H. (2010), “Cloud computing for mobile users: Can o�oading
computation save energy?” Computer, pp. 51–56.

Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., and Tullsen, D. (2003), “Single-ISA
heterogeneous multi-core architectures,” in MICRO.

Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P., and Farkas, K. I. (2004), “Single-
ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance,”
SIGARCH Comput. Archit. News.

Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011), “Activity Recognition Using Cell
Phone Accelerometers,” SIGKDD Explor. Newsl., 12, 74–82.

Laerhoven, K. V. and Cakmakci, O. (2000), “What shall we teach our pants?” in Wearable
Computers, The Fourth International Symposium on, pp. 77–83.

Lee, B. and Brooks, D. (2007a), “Illustrative design space studies with microarchitectural
regression models,” in HPCA.

104

Lee, B. and Brooks, D. (2007b), “Illustrative design space studies with microarchitectural
regression models,” in HPCA.

Lee, B. and Brooks, D. (2008a), “E�ciency trends and limits from comprehensive microar-
chitectural adaptivity,” in ASPLOS.

Lee, B. and Brooks, D. (2008b), “Roughness of microarchitectural design topologies and
its implications for optimization,” in HPCA.

Lee, Y., Kang, S., Min, C., Ju, Y., Hwang, I., and Song, J. (2016), “CoMon+: A Cooperative
Context Monitoring System for Multi-Device Personal Sensing Environments,” IEEE
Transactions on Mobile Computing, 15, 1908–1924.

Li, K. A., Varshavsky, A., Bao, X., Choudhury, R. R., and Fan, S. (2012), “Method and
apparatus for content rating using reaction sensing,” US Patent App. 13/523,927.

Li, S., Ahn, J., Strong, R., Brockman, J., Tullsen, D., and Jouppi, N. (2009), “McPAT:
An integrated power, area and timing modeling framework for multicore and manycore
architectures,” in MICRO.

Li, T., Baumberger, D., Koufaty, D. A., and Hahn, S. (2007), “E�cient Operating System
Scheduling for Performance-asymmetric Multi-core Architectures,” in Supercomputing.

Liu, J., Priyantha, B., Hart, T., Ramos, H. S., Loureiro, A. A., and Wang, Q. (2012), “Energy
e�cient GPS sensing with cloud o�oading,” in Proceedings of the 10th ACM Conference
on Embedded Network Sensor Systems, pp. 85–98, ACM.

Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F., Dreslinski, R., Wenisch, T., and Mahlke,
S. (2012a), “Composite Cores: Pushing heterogeneity into a core,” in MICRO.

Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F. M., Dreslinski, R., Wenisch, T. F., and
Mahlke, S. (2012b), “Composite cores: Pushing heterogeneity into a core,” in Proceedings
of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, pp.
317–328, IEEE Computer Society.

Lukowicz, P., Ward, J. A., Junker, H., Stäger, M., Tröster, G., Atrash, A., and Starner,
T. (2004), Pervasive Computing: Second International Conference, PERVASIVE 2004,
Linz/Vienna, Austria, April 21-23, 2004. Proceedings, chap. Recognizing Workshop
Activity Using Body Worn Microphones and Accelerometers, pp. 18–32, Springer Berlin
Heidelberg, Berlin, Heidelberg.

Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdanbakhsh, A., Kim, J. K., and Es-
maeilzadeh, H. (2016), “TABLA: A unified template-based framework for accelerating
statistical machine learning,” in 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 14–26, IEEE.

105

Manatunga, D., Kim, H., and Mukhopadhyay, S. (2015), “SP-CNN: A Scalable and Pro-
grammable CNN-Based Accelerator,” IEEE Micro, 35, 42–50.

Mantyjarvi, J., Himberg, J., and Seppanen, T. (2001), “Recognizing human motion with mul-
tiple acceleration sensors,” in Systems, Man, and Cybernetics, 2001 IEEE International
Conference on, vol. 2, pp. 747–752 vol.2.

Marinelli, E. (2009), “Hyrax: Cloud Computing on Mobile Devices using MapReduce,”
Master’s thesis, Carnegie Mellon University.

McLeod, A. and McLeod, M. A. (2011), “Package ‘Kendall’,” .

Mittal, R., Kansal, A., and Chandra, R. (2012), “Empowering Developers to Estimate App
Energy Consumption,” in Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking, Mobicom ’12, pp. 317–328, New York, NY, USA,
ACM.

Mortazavi, B. J., Pourhomayoun, M., Alsheikh, G., Alshurafa, N., Lee, S. I., and Sarrafzadeh,
M. (2014), “Determining the single best axis for exercise repetition recognition and
counting on smartwatches,” in Wearable and Implantable Body Sensor Networks (BSN),
2014 11th International Conference on, pp. 33–38, IEEE.

Nose, K. and Skurai, T. (2000), “Optimization of Vdd and Vth for low-power and high-speed
applications,” in DAC.

Padmanabha, S., Lukefahr, A., Das, R., and Mahlke, S. (2013), “Trace Based Phase Predic-
tion for Tightly-coupled Heterogeneous Cores,” in MICRO.

Pandiyan, D., Lee, S.-Y., and Wu, C.-J. (2013), “Performance, Energy Characterizations
and Architectural Implications of An Emerging Mobile Platform Benchmark Suite –
MobileBench,” in IISWC.

Priyantha, B., Lymberopoulos, D., and Liu, J. (2011), “LittleRock: Enabling Energy-
E�cient Continuous Sensing on Mobile Phones,” Pervasive Computing, IEEE.

Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., and Govindan, R. (2011),
“Odessa: Enabling Interactive Perception Applications on Mobile Devices,” in Proceed-
ings of the 9th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pp. 43–56, New York, NY, USA, ACM.

Ra, M.-R., Liu, B., La Porta, T. F., and Govindan, R. (2012), “Medusa: A Programming
Framework for Crowd-sensing Applications,” in Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pp. 337–350,
New York, NY, USA, ACM.

106

Rajovic, N., Carpenter, P. M., Gelado, I., Puzovic, N., Ramirez, A., and Valero, M. (2013),
“Supercomputing with commodity CPUs: Are mobile SoCs ready for HPC?” in 2013
SC-International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12, IEEE.

Ravi, N., Dandekar, N., Mysore, P., and Littman, M. L. (2005), “Activity Recognition from
Accelerometer Data,” in Proceedings of the 17th Conference on Innovative Applications
of Artificial Intelligence - Volume 3, IAAI’05, pp. 1541–1546, AAAI Press.

Robotic Apps (2013), “Opensource Face Recognition Application,” https://github.
com/ayuso2013/face-recognition.

Saez, J. C., Prieto, M., Fedorova, A., and Blagodurov, S. (2010), “A Comprehensive
Scheduler for Asymmetric Multicore Systems,” in EuroSys.

Satyanarayanan, M. (2001), “Pervasive Computing: Vision and Challenges,” IEEE Personal
Communications, 8, 10–17.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009), “The Case for VM-Based
Cloudlets in Mobile Computing,” IEEE Pervasive Computing, 8, 14–23.

Shelepov, D. and Fedorova, A. (2008), “Scheduling on Heterogeneous Multicore Processors
Using Architectural Signatures,” in Workshop on the Interaction between Operating
Systems and Computer Architecture, in conjunction with ISCA.

Shiraz, M., Gani, A., Khokhar, R. H., and Buyya, R. (2013), “A Review on Distributed Ap-
plication Processing Frameworks in Smart Mobile Devices for Mobile Cloud Computing,”
IEEE Communications Surveys Tutorials, 15, 1294–1313.

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., and Havinga, P. J. (2014), “Fusion of
smartphone motion sensors for physical activity recognition,” Sensors, 14, 10146–10176.

Shoaib, M., Bosch, S., Scholten, H., Havinga, P. J., and Incel, O. D. (2015), “Towards
detection of bad habits by fusing smartphone and smartwatch sensors,” in Pervasive Com-
puting and Communication Workshops (PerCom Workshops), 2015 IEEE International
Conference on, pp. 591–596, IEEE.

Su, Y.-Y. and Flinn, J. (2005), “Slingshot: deploying stateful services in wireless hotspots,”
in Proceedings of the 3rd international conference on Mobile systems, applications, and
services, pp. 79–92, ACM.

Sunwoo, D., Wang, W., Ghosh, M., Sudanthi, C., Blake, G., Emmons, C., and Paver,
N. (2013), “A structured approach to the simulation, analysis and characterization of
smartphone applications,” in IISWC.

Van Craeynest, K. and Eeckhout, L. (2013), “Understanding Fundamental Design Choices
in single-ISA Heterogeneous Multicore Architectures,” ACM Trans. Archit. Code Optim.

107

https://github.com/ayuso2013/face-recognition
https://github.com/ayuso2013/face-recognition

Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer, J. (2012), “Scheduling
Heterogeneous Multi-cores Through Performance Impact Estimation (PIE),” in ISCA.

Verbelen, T., Simoens, P., De Turck, F., and Dhoedt, B. (2012), “Cloudlets: Bringing the
Cloud to the Mobile User,” in Proceedings of the Third ACM Workshop on Mobile Cloud
Computing and Services, MCS ’12, pp. 29–36, New York, NY, USA, ACM.

Wang, C. and Li, Z. (2004), “Parametric analysis for adaptive computation o�oading,” in
ACM SIGPLAN Notices, vol. 39, pp. 119–130, ACM.

Wang, H. and Peh, L.-S. (2014), “MobiStreams: A Reliable Distributed Stream Processing
System for Mobile Devices,” in Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, IPDPS ’14, pp. 51–60, Washington, DC, USA,
IEEE Computer Society.

Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., and Schreiber, A. J. (2016),
“Smartwatch-based Activity Recognition: A Machine Learning Approach,” Proceedings
of the 2016 IEEE International Conference on Biomedical and Health Informatics.

Xu, F., Liu, Y., Li, Q., and Zhang, Y. (2013), “V-edge: Fast Self-constructive Power
Modeling of Smartphones Based on Battery Voltage Dynamics,” in Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation, nsdi’13,
pp. 43–56, Berkeley, CA, USA, USENIX Association.

Yang, F., Qian, Z., Chen, X., Beschastnikh, I., Zhuang, L., Zhou, L., and Shen, J. (2011),
“Sonora: A Platform for Continuous Mobile-Cloud Computing,” .

Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012), “Discretized Streams: An
E�cient and Fault-tolerant Model for Stream Processing on Large Clusters,” in Proceed-
ings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing, HotCloud’12,
pp. 10–10, Berkeley, CA, USA, USENIX Association.

Zhang, M. and Sawchuk, A. A. (2012), “USC-HAD: A Daily Activity Dataset for Ubiqui-
tous Activity Recognition Using Wearable Sensors,” in Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pp. 1036–1043, New York, NY,
USA, ACM.

Zhang, X., Kunjithapatham, A., Jeong, S., and Gibbs, S. (2011), “Towards an elastic
application model for augmenting the computing capabilities of mobile devices with
cloud computing,” Mobile Networks and Applications, 16, 270–284.

Zhu, Y. and Reddi, V. J. (2013), “High-performance and Energy-e�cient Mobile Web
Browsing on Big/Little Systems,” in HPCA.

Zyuban, V., Friedrich, J., Gonzalez, C. J., Rao, R., Brown, M. D., Ziegler, M., Jacobson,
H., Islam, S., Chu, S., Kartschoke, P., Fiorenza, G., Boersma, M., and Culp, J. (2011),

108

“Power optimization methodology for the IBM Power7 microprocessor,” IBM Journal of
Research and Development, 55.

109

Biography

Songchun Fan was born on March 15, 1989 in Nantong, China. In 2011, she received her

Bachelor of Engineering degree from Nanjing University, China, in Software Engineering.

She received her Master of Science degree in 2013 and her Doctor of Philosophy degree in

2016 from Duke University in Computer Science. Her research interests include energy-

e�cient mobile networking Fan et al. (2012), interactive mobile sensing Fan et al. (2014);

Bao et al. (2013); Li et al. (2012), interactive mobile app benchmarking Fan and Lee (2016)

and deploying heterogeneous mobile processor at large scale Fan et al. (2016). She received

Honorable Mention Award in Ubicomp 2013 conference and Best Paper Award in ASPLOS

2016 conference.

110

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	2 Evaluating Asymmetric Multiprocessing for Mobile Applications
	2.1 Mobile Benchmarking
	2.1.1 Application and User Actions
	2.1.2 Microbenchmarks
	2.1.3 Macrobenchmarks

	2.2 Asymmetric Mobile Processors
	2.2.1 Shared Memory
	2.2.2 Shared Last-Level Cache
	2.2.3 Shared First-Level Cache

	2.3 Methodology
	2.3.1 Oracular Switching
	2.3.2 Simulation

	2.4 Evaluation
	2.4.1 Case Study with Scrolling
	2.4.2 Generalizations with Benchmark Suite
	2.4.3 Sensitivity to Management Parameters
	2.4.4 Sensitivity to Design Parameters

	2.5 Related Work
	2.6 Conclusion

	3 Swarm Computing for Mobile Sensing
	3.1 The Case for Swing
	3.2 Related Work
	3.3 Challenges
	3.4 System Overview
	3.4.1 Programming Model
	3.4.2 Workflow
	3.4.3 Implementation

	3.5 Managing Swarm
	3.5.1 Function Activation
	3.5.2 Worker Selection
	3.5.3 Data Routing

	3.6 Evaluation
	3.6.1 Experiment Setup
	3.6.2 Comparison of Data Routing Methods
	3.6.3 Handling Mobility
	3.6.4 Mobile Hotspot
	3.6.5 Cloudlet Mode

	3.7 Conclusion

	4 Sensory Offloading for Wearable Devices
	4.1 Motivation
	4.1.1 Activity Recognition on Wearables
	4.1.2 Energy Consumption

	4.2 Telepath Overview
	4.3 Predictor Design
	4.3.1 Offline Training
	4.3.2 Online Prediction

	4.4 Implementation
	4.4.1 Predictor Implementation
	4.4.2 Runtime Implementation

	4.5 Experimental Methods
	4.6 Evaluation
	4.6.1 Prediction Accuracy
	4.6.2 Classification Accuracy
	4.6.3 Step Counting Accuracy
	4.6.4 Verification Accuracy
	4.6.5 Energy Efficiency
	4.6.6 Costs and Overheads
	4.6.7 Sensitivity to Device Placement
	4.6.8 Sensitivity to Users

	4.7 Related Work & Discussion
	4.8 Conclusions

	5 Conclusion and Lessons Learned
	A Mobile Trend Survey
	Bibliography
	Biography

