
Predicting Sensory Data and Extending Battery Life for Wearable Devices

Songchun Fan
Duke University

Qiuyun Llull
Duke University

Benjamin C. Lee
Duke University

Telepath is a framework that supports communication-free
offloading for wearable devices. With offline training, activity
recognition tasks can be offloaded from the wearable to the
user’s phone, without transferring raw sensing data. The key
observation is that when the user is carrying both devices, the
sensing streams on the two devices are highly correlated. By
exploiting the correlation, the phone can estimate the wear-
able’s sensing data and emulate the watch. Our evaluations
shows that with Telepath, the phone performs accurately on
activity recognition tasks that are designed for smart watches,
achieving on average 87% of the watch’s accuracy while ex-
tending the watch’s battery life by 2.1x.

1. INTRODUCTION
Newgenerations of wearable devices enable comprehensive

sensing and computing, with capabilities from simple step de-
tection to complex gesture recognition. However, limitations
in the devices’ battery capacities constrain these applications’
future. We find that continuously executing motion recogni-
tion on a smart watch (e.g., Samsung Gear Live) drains the
battery in less than six hours. Consequently, smart watch
users are reluctant to use continuous sensing apps, for fear
that the watch runs out of battery during the day. These apps
include long-running activity recognition services such as
fitness tracking, sports training, and health monitoring.

An opportunity lies in typical mobile device usage patterns
— a user often carries both a wearable device and a phone
simultaneously (e.g., in commute). For instance, a wearable
activity tracking app continuously records users’ daily ac-
tivities (e.g., walking, cycling and running) and calculates
the number of calories burned. For this app, the phone can
take over the app execution and preserving the wearable’s
energy. Our key observation is that when the user is carrying
both devices, their sensory data are highly correlated, which
permits sensory offloading, the idea of offloading not only
computation but also sensing.
Traditionally, offloading architectures shift computation

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA
© 2017 ACM. ISBN 978-1-4503-4907-9/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3032970.3032971

from less capable devices (e.g., mobile) to more capable ones
(e.g., server) that clone code and receive input data [4]. Un-
fortunately, continuous sensing apps cannot offload in this
manner, as they process high volumes of sensory data that
would require prohibitively high transmission costs. To re-
duce data movement, wearable devices could pre-process or
compress data but doing so would consume power and offset
gains from offloading.
We present Telepath, a framework for sensory offloading

that transfers app processing from a wearable device to a
phone without communicating raw data. Telepath allows the
phone to take over sensing and computation by predicting the
wearable’s sensory data. The phone deploys an app clone
that reads predicted sensory data, computes activity recogni-
tion results, and sends them to the wearable. The wearable
uses them as if they had been sensed and computed locally.
Telepath decides whether to offload dynamically based on
real-time correlation between device data. From the user’s
perspective, an app employs both wearable and phone’s re-
sources transparently.

Telepath estimates data with transfer function models that
statistically capture the relationship between two devices’ mo-
tions. With accurate models, the wearable can offload sensing
and computing to the phone with little performance loss but
significant energy savings. Yet Telepath encounters chal-
lenges. One model cannot capture all the dynamics between
wearable devices and phones. Raw sensory data may vary,
even for the same activity, due to device placement. We ad-
dress these challenges with a modeling pipeline that segments
sensing data and tailors models for different user activities
and device placements.

We prototype Telepath in AndroidWear and evaluate it on a
Samsung Gear Live watch, with popular activities and a broad
spectrum of recognition algorithms. The prototype achieves
real-time performance, with 87% of the watch’s accuracy on
average while extending the watch’s battery life by 2.1x.

2. MOTIVATION

2.1 Activity Recognition on Wearables
An activity recognition app sees human motions through

sensors like accelerometers, gyroscopes and magnetic field
sensors. Before phones were equipped with such sensors, re-
searchers strapped sensors and development boards to specific
body parts (e.g., arms) to track motions online and recognize
activities offline [8]. Those “wearable” sensors were uncom-
fortable, which prohibited broader, practical adoption [12].

The recent proliferation of smart phones led researchers to
activity recognition algorithms that used phones’ sensors [11].
A typical approach extracted features from accelerometer or
gyroscope signals and trained classifiers, such as support
vector machines, for a set of activities [1]. With continu-
ous sensing and computing, phones classified activities and
supplied feedback on sporting progress or health status.

Today, a new generation of technology brings activity recog-
nition apps back to wearable devices such as sports trackers,
watches, and armbands [3]. Unlike phones that might be
placed in varied and obscure locations (e.g., pockets or purses),
wearables are typically placed in a fixed location on the user
(e.g., left wrist). This unique property makes wearables better
candidates for activity recognition, especially those involv-
ing hands [6]. Moreover, recent smart watches appeal to app
developers by providing rich sets of sensors, capable systems-
on-chip, and most importantly, APIs that are compatible with
those on phones.

2.2 Energy Consumption
Today’s wearable devices are equipped with computational

capabilities like those in phones — a 2016 watch may have
more processor cores than a 2014 phone. However, due to its
small size, an average wearable device has only 11%1 of a
phone’s battery capacity. This short battery life hinders the
usage of long-running activity recognition apps.
An activity recognition app consumes energy in three ac-

tions: (1) reading data from sensors, (2) processing raw sen-
sory data and computing features that combine multiple sen-
sor measurements, and (3) recognizing activities from ex-
tracted features using classifiers. For such an app, traditional
approaches that offload computation are unhelpful because
wearables dissipate most of their power in sensing not com-
putation (i.e., action (1), not (2) and (3)).
Continuous sensing is expensive because the raw sensing

data must be transported from the sensor to the system-on-
chip, requiring the CPU to be awake. We find that a Sam-
sung Gear Live watch dissipates 200.5mW when using the
accelerometer. At this rate, a fully charged watch battery is
estimated to last 5.7 hours. To reduce the energy cost of ac-
tivity recognition apps, Telepath exploits correlated sensory
data across multiple devices to “offload” both sensing and
computation, while eliminating communication cost between
devices.

2.3 Natural Questions
Do I still need a watch if everything is performed on

the phone? Telepath is not a solution that replaces the watch.
Rather, it encourages wearable/watch usage by improving
the watch’s battery life. It aggressively exploits the strong
correlation between two devices and uses the phone as a range
extender for apps such as walking, biking, running activity
recognitions. Saved energy can enable more watch-specific
apps, such as hand gesture recognition.

Why not directly run the phone’s version of the app?

1Based on our survey of 34 mobile and wearable devices from
past three years.

−1.0

−0.5

0.0

0.5

0 2 4 6 8
Time (s)

X
−

A
cc

el
er

at
io

n(
m

s−2
)

Device
Watch
Phone

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5
Phone

W
at

ch

Acceleration

Figure 1: Sensory correlation between devices of a walking user.

Activity recognition apps rely on carefully calibrated models.
Our framework allows watch developers to easily port an
existing model onto Telepath, without spending time and
effort to train additional models for various types of phones.
Moreover, a Telepath sensing app dynamically reads data
from local and remote sensors, and users need not manually
switch between the phone and watch app at runtime.

Does Telepath decrease the phone’s battery life? In-
deed, the phone sacrifices some battery life as it helps the
watch sense and compute. However, phones have large battery
capacities and are more convenient to charge during the day.
Essentially, Telepath reduces the huge energy gap between
the phone and the watch. Our evaluation shows that Telepath
increases the watch’s battery life from 4.8 hours to 10.0 hours,
which is still much shorter than the phone’s 17-hour battery
life when running Telepath.

3. TELEPATH OVERVIEW
The key observation behind Telepath is the correlation

between the wearable’s and the phone’s sensing streams. Fig-
ure 1 presents the de-noised sensory data from a walking user
who wears a Samsung Gear Live watch on her left wrist and
places a Samsung Galaxy Nexus phone in her right pocket.
When walking, her feet step while her hands swing. Thus, leg
and arm motions are coordinated. In the top figure, a valley
in the watch’s x-axis acceleration always matches a valley
in the phone’s, albeit with slight, consistent time shifts. The
scatterplot indicates the two streams are highly correlated.
Telepath builds on top of this correlation.

Workflow. Telepath is an application-layer shim that lies
between the app and OS. A Telepath instance has two modules
– TelepathWear and TelepathPhone – running on the respec-
tive devices. Figure 2 shows the workflow. In local mode,
TelepathWear interfaces to the wearable’s OS, reading sensory
data from local drivers and classifying features for activity
recognition. In remote mode, TelepathWear neither senses nor
computes. Instead, TelepathPhone reads sensory data from
the phone, predicts sensory data of the watch, recognizes ac-
tivity using cloned computation, and sends results back to
TelepathWear for UI. Periodically, Telepath verifies device
correlation and halts remote execution when correlation is
weak.

On the wearable’s side, the app interfaces to Telepath Re-

App
Front-end

App
Back-end

Local
Resources

App
Clone

Wearable Phone

Remote
Resources

Data flow Local Data flow Remote Verification & Results

Raw Sensing Phone

Raw Sensing WearableUser Interface

Computing

Sensing

Operating System

Sensors

Telepath (Sender)

Telepath (Receiver)

Computing

Sensing

Operating System

Sensors

Telepath (Predictor)
Feature Extraction

Classification

Transfer Function

V
erificatio

n

Telepath (Sender)

Figure 2: Telepath Workflow. The blue arrows show data flow in
local execution. The red arrows show data flow in remote execution.

ceiver, which receives results computed either locally on the
wearable or remotely on the phone. The local app back-end in-
cludes computing and sensing. It receives data from Telepath
Sender, which resides atop OS and requests offloading from
the phone. When the offloading is granted, the Sender deac-
tivates the local sensors. Otherwise, it receives sensing data
from the local sensors and passes it to the upper layer.
On the phone’s side, a Telepath Sender sends computed

results to the wearable’s Telepath Receiver. Results are pro-
duced by a clone of wearable app’s back-end. A Telepath
Predictor receives sensing data from the phone’s local sen-
sors, predicts corresponding sensor readings on the watch, and
sends them to the cloned app for computation. The Predictor
has three sub-modules — Feature-Extraction, Classification,
and Transfer-Function — which we detail in Section 4.

4. PREDICTOR DESIGN
The key component in Telepath is the predictor. Offline, raw

data from both devices are collected, processed, and clustered
to develop a phone-to-wearable predictor. Online, the phone’s
sensing data is fetched, processed, and classified to invoke
the predictor that predicts the wearable’s sensing data.

4.1 Offline Training
Periodically, the phone and the wearable read and upload

their sensing data to the cloud for offline training. The key
training technique, transfer function modeling, is an autore-
gressive model that captures the relationship between two
time series [7].

4.1.1 Transfer Function Models (TFM)
A classic example of TFM is the relationship between ad-

vertising costs and sales. Let At and St be random variables
that denote advertising and sales at time t. The general form
of a transfer function is:

St = v0At + v1At−1 + v2At−2 + · · ·+Nt.

At−1 is advertising cost at time t− 1 and v1 is the advertise-
ment’s effect after one time period. Nt is the sum of effects
from all factors other than advertising and should be indepen-
dent of At. The function is often rewritten as

St = (v0 + v1B + v2B
2 + · · ·)At +Nt = v(B)At +Nt,

in which B is a backshift operator defined as

BAt = At−1 or BmAt = At−m,

and v(B) is a transfer function. The output time series St can
be predicted from the current observation of At as well as
the history of the input time series At. Given the nature of
human motion, we can assume that our input and output time
series are bounded, leading to stable transfer functions.
Offline training identifies polynomial v(B) and noise Nt.

First, based on training data At and St, the impulse response
weights of the transfer function, v0, v1, · · · , are initialized
from the correlation coefficients of the two time series. Then,
Nt is checked to determine whether it is white noise.
If Nt is not noise and exhibits some relationship with the

time series, there is still information left to be captured by
the transfer function. In this case, the coefficients of v(B)
are revised with maximum likelihood estimation. Training
proceeds iteratively until the transfer function captures much
of the variance in the time series and Nt resembles white
noise. Online prediction estimates St from At given v(B)
and the forecast of Nt.

To train valid transfer function models, the time series must
be stationary, which means their statistical properties (e.g.,
mean, variance, autocorrelation) do not change over time.2
Unfortunately, we observe that when users perform different
motions, the sensing data presents distinct statistical proper-
ties. However, each independent activity consists of regular
and repetitive motions that produce stationary statistical prop-
erties. This finding implies that we must segment our data
such that stationarity can be guaranteed within each segment
of the time series. We detail the procedure below.

4.1.2 Training Pipeline
Telepath’s offline training contains three major steps to ex-

tract activity features and improve prediction accuracy. These
steps can be parallelized to reduce the training time.

Segmentation - Feature Extraction. We extract features
that commonly represent motion in time and frequency do-
mains (see Table 1). Features are extracted within sampling
windows. Each window has a width of 128 data points (i.e.,
a duration of 2.56 seconds with the sampling interpolated to
50Hz), overlapping with each other by 50%. The configura-
tion matches the speed of human movement [2].

Segmentation - Clustering. To segment sensing streams
collected from two devices, we classify data points into clus-
ters. Each cluster presents a set of motions, during which
the two devices share a unique correlation that differs from
those in other clusters. However, the clusters need not have
semantic meaning. We use unsupervised clustering, k-means,
to cluster values for extracted features into k = 10 clusters.
The number of clusters represents not only different motions,
but the same motion with different device placements. Each
cluster produces a stationary time series.

Transfer Function Modeling. Finally, we identify one
transfer function for each cluster using the algorithm explained
2Strictly speaking, this is the definition of weak stationarity
but it suffices for our purposes.

ID Description

1 Standard deviation of x-axis acceleration
2 Standard deviation of y-axis acceleration
3 Standard deviation of z-axis acceleration

4-6 Median of absolute values of i-axis, i ∈ {x, y, z}
7-9 Interquartile Range of i-axis

10-12 Coefficients of auto-regression of i-axis
13-15 Largest frequency component in the spectrum of i
16-18 Weighted frequency average of i
19-21 Spectrum skewness of i

Table 1: Selected features for clustering.

earlier. The transfer function is re-trained if clusters change.
The training dataset should be large, diverse, and adaptive to
capture the most recent relationships between sensors on two
devices. When their batteries permit (e.g., charged to more
than 80% of capacity), wearables and the phone record paired
time series that contain raw sensory data. When charging,
the phone sends this data to servers that train transfer func-
tions. Periodically, the phone downloads updated functions
and organizes them according to clusters’ centroids.

4.2 Online Prediction

4.2.1 Verification of Model Accuracy
The online process predicts the raw sensing data on the

wearable from the raw sensing data on the phone. In practice,
the user may not be carrying both devices at the same time,
precluding the use of Telepath. Therefore, the online process
must include a verification stage, assuring that the current
placement of the devices are suitable for data prediction.
During offloading, a small set of sensing data is periodi-

cally collected and sent from the wearable to the phone. If
data streams from the two devices do not strongly correlate,
Telepath informs the wearable that offloading is canceled and
the wearable proceeds with local execution mode.
We use Kendall’s rank correlation coefficient to measure

the extent that ranks of the two series match each other. To
quantify the correlation, the two series are filtered to remove
noise and transformed into rankings. Then, the Kendall Tau-
b coefficient and a corresponding p-value is computed on a
two-sided test of the null hypothesis, H0: the two time series
are not correlated.
The p-value is then compared against a 0.01 significance

level. If p ≥ 0.01, we do not have sufficient confidence that
the phone’s data can predict the wearable’s. In such cases, the
phone informs the wearable of its limitations and the wearable
cancels the request for offloading.

4.2.2 Prediction Pipeline
When the phone accepts a request for offloading, it predicts

the wearable’s sensing data in several steps.
1. During feature extraction, the phone’s real-time sensing

data enters a buffer of width 2.56s and overlap 50% (to match
the sampling window during training). When the buffer is
full, its data is processed to produce features (see Table 1).
2. During classification, because multiple transfer func-

tions are generated for different clusters of motion, the pre-
diction process must identify the cluster corresponding to
the measured motion. Extracted features are classified to a
cluster based on their distance to cluster’s centroids. Then,
the corresponding transfer function model is fetched.
3. During prediction, the transfer function estimates the

wearable’s raw sensing data from the phone’s.

5. IMPLEMENTATION

5.1 Predictor Implementation
Offline. We implement the offline training pipeline in R. In

particular, we used kmeans() in stats and cl_predict()
in clue for clustering and classification, and auto.arima()
and forecast() in the forecast package for transfer func-
tion learning and prediction.

On a 48-core AMDOpteron processor, training on a pair of
time series with 65k data points and 21 extracted features com-
pletes in 6.6 minutes. The predictor module exports trained
transfer functions as coefficients to json files. The module
exports k-means clusters as their centroids to text files.

Online. On a daily basis, TelepathPhone downloads from
the cloud the model files, which contain transfer functions’
coefficients and clusters’ centroids. At runtime, when sensing
is offloaded, TelepathPhone loads the files with org.json
library. Given sensing data features and a set of centroids,
the closest cluster is identified and the appropriate transfer
function model is selected. The prediction function is imple-
mented in Android based on R forecast library.

5.2 Runtime Implementation
As mentioned earlier, a Telepath app has two instances,

TelepathWear and TelepathPhone, which run on the respec-
tive devices. They implement separate modules that manage
interfaces and offloading decisions.

TelepathWear. For sensing apps, TelepathWear sends a
1-second buffer of data to the phone every 15 minutes to deter-
mine if offloading is suitable. If the phone rejects the request
for offloading, TelepathWear executes locally. Otherwise, it
starts (or continues) remote execution.
In local execution, TelepathWear registers local sensors,

listens to sensor events, and receives sensory data. Telepath-
Wear calls compute(), which is defined by the developer and
classifies the activity before returning results to UI.

In remote execution, when an offloading request is accepted,
TelepathWear sends a “start” command, along with sensor
IDs, their sampling frequencies and the frequency that results
are sent from the phone. Instead of listening for sensor events,
TelepathWear now listens to incoming data over Bluetooth,
receives classification results from the phone, and returns
results to UI. When a remote execution halts, TelepathWear
sends a “stop” command, with sensor IDs, instructing the
phone to stop sensing and computing.

TelepathPhone. TelepathPhone is a background service
that runs continuously, monitoring the data link and listen-
ing for commands from TelepathWear. If the command is
“bootstrapping,” it receives and stores app configurations and

Classifier Description Category

C5.0 Decision tree boosting Decision Tree
glm Logistic regression Linear Classifiers
knn k-Nearest neighbor Kernel estimation
lda Linear discriminant analysis Linear Classifiers
lssvmRadial Least squares SVM SVM
mlpWeightDecay Multi-layer perceptron Neural Networks
nb Naive Bayes Linear Classifiers
nnet Single-layer perceptron Neural Networks
parRF Parallel randomforest Decision Tree
svmRadial SVM with radial basis kernel SVM

Table 2: Benchmark classifiers.

models. If the command is “start,” it receives sensor IDs
and frequencies that are used to begin sensing and comput-
ing. It sends results to TelepathWear periodically based on
the configured result frequency. If the command is “stop,”
TelepathPhone unregisters the sensors and stops both sensing
and computing.
TelepathPhone guards against inaccurate prediction and

classification. Upon receiving an offload request, the phone
obtains buffered sensing data from the watch and compares
it against Telepath’s prediction. Kendall’s rank correlation
is computed and the p-value is checked (see Section 4). Of-
floading requests are rejected when the p-value exceeds 0.01,
which indicates that the phone is used in ways that preclude
accurate sensing and prediction.

6. EXPERIMENTAL METHODS
Activities and Classifiers. Our evaluation studies the per-

formance and efficiency of Telepath for sensing applications.
We survey the characteristics of the top fourteen free activity
tracking apps on the wearable app market. They constantly
check motion sensors, acquiring wake locks and motion sen-
sors in their permissions, to record running, walking, or cy-
cling activities during the day.

We evaluate Telepath’s accuracy in recognizing these three
activities. Because we cannot know the algorithms used in
these commercial apps, we test Telepath on ten popular ma-
chine learning classifiers (see Table 2). The classifiers are
diverse and vary in complexity, from the simple decision tree
to more complex neural networks.

Data. During data collection, a user wears a Samsung
Gear Live watch on her left wrist and places a Samsung
Galaxy Nexus phone in her right pocket. A user performs
each activity—running, walking, cycling— for 15 minutes
to produce approximately 270K raw sensing data points in
total. Both devices record data at the highest sampling rate.
The user labels data with corresponding activity to supply
groundtruth. We sample 70% of the data for training and use
an equal amount of data from each activity.

7. EVALUATION
We compare Telepath against alternatives with less sophis-

ticated data analysis: (1) Telepath without using gyroscope,
(2) Telepath without using multivariate transfer function mod-
els, (3) Telepath without de-noising and (4) directly using
the phone’s raw sensing data without Telepath’s prediction.

0.00

0.25

0.50

0.75

C5.0 glm knn lda

lssvmRadial

mlpWeightDecay nb nnet
parRF

svmRadial

Classifier

F
1

S
co

re

Telepath w/o Gyroscope w/o Multivariate w/o De−noising No Telepath

Figure 3: Activity classification accuracy. F1 scores are normalized
to those when using groundtruth sensing data.

Watch Phone

0
10

0
20

0
30

0
40

0
P

ow
er

 (
m

W
)

(a)

Local
Remote

Watch Phone

0
10

20
30

40
B

at
te

ry
 L

ife
 (

H
ou

r)

(b)

Local
Remote

)
0

2
4

6
8

10 Local
Raw
Feature
Telepath

Watch

B
at

te
ry

 L
ife

 (
H

ou
r)

(c)

Figure 4: (a) Power and (b) battery life under local and remote
(Telepath) execution. (c) Battery life under variants of remote execu-
tion that transmit raw data, transmit extracted features, or transmit
nothing by relying on Telepath prediction.

Groundtruth is using sensing data collected from the watch.

7.1 Classification Accuracy
Wedefine “app accuracy” as activity classification accuracy

when using predicted sensing data. Our metric is the F1 score.
Given a classifier, for each activity i, Precisioni is the fraction
of instances classified as activity i that indeed correspond
to i. Recalli is the fraction of instances of activity i that are
recognized as such. The F1 score accounts for recall and
precision on a scale of zero (worst) to one (best).
In Figure 3, we evaluate app accuracy with the motion

recognition classifiers in Table 2. The F1 Scores are aver-
aged across activities and normalized to those when using
groundtruth data, the watch’s sensing data for activity recogni-
tion. Telepath outperforms other variants and achieves, on av-
erage, 87% of groundtruth accuracy. Observe that gyroscope
data has a moderate impact on improving accuracy, while mul-
tivariate modeling is crucial for accurate data prediction and
activity classification. Low scores without de-noising mean
that Telepath is sensitive to noise and data pre-processing is
essential to training.

7.2 Energy Efficiency
We compare system power in local and remote execution

modes, profiling TelepathWear and TelepathPhone with An-
droid Batterystats. We model a Telepath app that continuously
recognizes biking, running and walking activities from ac-
celerometer readings.

Figure 4(a) shows how watch power decreases by 2× while
phone power increases when switching from local to remote

execution. The watch dissipates power during remote execu-
tion because it receives classification results from the phone
every second (configured by app). Similarly, the phone dissi-
pates power during local execution because it listens continu-
ously for Telepath commands.

Figure 4(b) shows that remote execution increases thewatch’s
battery life from 4.8 hours to 10.0 hours but reduces the
phone’s battery life to 17 hours. Note that Telepath could
further increase the watch’s battery life with asynchronous
recognition. When activity logging apps are neither real-time
nor interactive, the phone can buffer and send classification
results less frequently to reduce transmission costs.

Figure 4(c) shows that Telepath’s offloading strategy bene-
fits battery life more than traditional strategies. Invoking the
phone for both sensing and computing extends the wearable’s
battery life to 10 hours. In contrast, relying on the watch’s
sensors but transmitting raw data or extracted features to the
phone for computation does little for battery life. Telepath
outperforms these strategies by 2.3x and 2.0x, respectively. In-
deed, these strategies perform no better than using the watch’s
local resources.

7.3 Costs and Overheads
Training. Telepath models must train quickly to permit

frequent updates. When the dataset has 6.5k paired data
points, Telepath takes roughly 7 minutes to train models for
10 clusters. Training time can be reduced by increasing the
number of clusters.

Prediction. During remote execution, the transfer func-
tion predictor on the Samsung Galaxy Nexus phone requires
3.42ms, on average, to compute features, classify, and predict.
This prediction latency is shorter than the sensors’ 10ms sam-
pling period, which means the predictor may be invoked for
every sensor event and does not affect app performance.

8. RELATED WORK & DISCUSSION
Offloading has been extensively studied for mobile-cloud

computing (MCC). Mobile devices offload compute-intensive
apps—image, video, audio processing, gaming—to the cloud
to reduce execution time, reduce energy, or improve service
quality [5]. Telepath adapts offloading to extend battery life for
wearable devices. Similar to prior offloading works, Telepath
needs to make the trade-off between energy and accuracy. Fu-
ture works include quantifying this trade-off for different users
and device placements. In addition, polices for duty-cycle
sensors could consider Telepath’s impact on the aggregate
battery life of both devices.
Sensing apps can benefit from hardware accelerators that

reduce the power and latency in signal processing and activity
classification [10]. Telepath is orthogonal to these approaches
as it allows wearable devices to preserve energy and utilize
idle resources on phones, regardless of how they are imple-
mented. We view Telepath as more than a temporary solution
for current wearable devices, but instead, a sensing resource
sharing technique for future wearable usages.

Admittedly, Telepath is constrained to motion sensors such
as accelerometers and gyroscopes. Wearables are equipped

with other sensors such as GPS and heart rate monitors, which
do not yet benefit from Telepath. GPS sensing can be of-
floaded without Telepath’s sophisticated signal processing [9].
Heart monitoring might require more comprehensive learning
and training, as there is no correlated sensor on the phone.

Acknowledgments
This work is supported by the National Science Foundation
under grants CCF-1149252 (CAREER), CCF-1337215 (XPS-
CLCCA), SHF-1527610, and AF-1408784. This work is also
supported by STARnet, a Semiconductor Research Corpora-
tion program, sponsored by MARCO and DARPA. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of these sponsors

9. REFERENCES
[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz.

Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. In International
Conference on Ambient Assisted Living and Home Care
(WAAL), 2012.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz.
A public domain dataset for human activity recognition using
smartphones. In European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning
(ESANN), 2013.

[3] S. Bhattacharya and N. D. Lane. From smart to deep: Robust
activity recognition on smartwatches using deep learning. In
International Conference on Pervasive Computing and
Communication Workshops (PerCom), 2016.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: Making
smartphones last longer with code offload. MobiSys, 2010.

[5] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud
computing: A survey. Future Generation Computer Systems,
29(1):84–106, 2013.

[6] H. Ghasemzadeh, V. Loseu, and R. Jafari. Wearable coach for
sport training: A quantitative model to evaluate wrist-rotation
in golf. Journal of Ambient Intelligence and Smart
Environments, 2009.

[7] R. M. Helmer and J. K. Johansson. An exposition of the
box-jenkins transfer function analysis with an application to
the advertising-sales relationship. Journal of Marketing
Research, pages 227–239, 1977.

[8] S. S. Intille, K. Larson, J. Beaudin, J. Nawyn, E. M. Tapia, and
P. Kaushik. A living laboratory for the design and evaluation
of ubiquitous computing technologies. In Conference on
Human Factors in Computing Systems (CHI), 2005.

[9] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. Loureiro, and
Q. Wang. Energy efficient gps sensing with cloud offloading.
In Conference on Embedded Network Sensor Systems, 2012.

[10] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh. Tabla: A unified
template-based framework for accelerating statistical machine
learning. In International Symposium on High Performance
Computer Architecture (HPCA), 2016.

[11] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J.
Havinga. Fusion of smartphone motion sensors for physical
activity recognition. Sensors, 14(6):10146–10176, 2014.

[12] M. Zhang and A. A. Sawchuk. Usc-had: A daily activity
dataset for ubiquitous activity recognition using wearable
sensors. In Conference on Ubiquitous Computing, 2012.

