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Abstract
Heterogeneous design presents an opportunity to improve

energy efficiency but raises a challenge in resource manage-
ment. Prior design methodologies aim for performance and
efficiency, yet a deployed system may miss these targets due to
run-time effects, which we denote as risk. We propose design
strategies that explicitly aim to mitigate risk. We introduce new
processor selection criteria, such as the coefficient of variation
in performance, to produce heterogeneous configurations that
balance performance risks and efficiency rewards. Out of the
tens of strategies we consider, risk-aware approaches account
for more than 70% of the strategies that produce systems with
the best service quality. Applying these risk-mitigating strate-
gies to heterogeneous datacenter design can produce a system
that violates response time targets 50% less often.

1. Introduction

The geometric growth of data stored on the cloud calls for
rapid growth in datacenter compute capability. The challenge
lies in meeting this demand with datacenters that already dis-
sipate megawatts of power. Datacenters can benefit from
unconventional mixes of highly efficient hardware. The power
savings afforded by mobile processors outweigh their per-
formance limitations [21, 32, 23]. Mobile technologies that
dissipate 1

10 th the power of server components allow datacen-
ters to deploy more servers, increase throughput, and improve
service quality within a given power budget [11].

Designing heterogeneous systems is difficult. and we find
that design methodology from prior work provides no insight
into the performance of heterogeneity under real-world con-
ditions [15, 18]. Prior efforts tailor heterogeneity to diverse
software by assuming ideal scheduling and allocation. How-
ever, datacenters are large systems with complex dynamics. It
is likely, in fact almost inevitable, that an application will not
execute on its ideal hardware due to run-time effects, such as
contention.

In this paper, we propose a novel approach to datacenter
design that aims for manageability, accounting for the per-
formance uncertainty and management risk introduced by
heterogeneity. Effective resource allocation is more difficult
in systems with diverse hardware. As an example of run-time
risk, consider a datacenter equipped with two resource types
such as server and mobile processors. Due to resource avail-
ability, an application ill suited to a mobile core may still be

forced to use one, and as a result incur a catastrophic slow-
down. The penalties of a sub-optimal allocation increase with
hardware diversity. Consequently, run-time effects should
influence design-time decisions to mitigate this effect.

We need metrics to quantify manageability and to penalize
extreme heterogeneity, which may potentially provide high
efficiency that is, in practice, difficult to attain. We also need
to understand disparate sources of management risk. A hetero-
geneous system may perform poorly if hardware choices are
tailored for other applications, if hardware contention is severe,
or if hardware mixes are not matched to software arrival rates.

We make the following contributions towards a design flow
for heterogeneous systems that anticipates run-time risk:

• Anticipating Risk in Heterogeneous Design. We propose
a novel approach to heterogeneous design that accounts for
system management. Unlike prior efforts, we ask whether
a deployed heterogeneous system is likely to meet design
objectives using non-ideal resource allocation (§2).

• Formalizing Heterogeneous Design Strategies. We set
forth a holistic framework of design strategies, and propose
strategies that minimize performance variation. In particular,
we consider the coefficient of variation for each application
on all processors in the heterogeneous system (§3).

• Designing for Manageability. From the tens of design
strategies in our framework, we identify those that produce
systems with the best service quality. We find that risk-
aware design accounts for more than 70% of these desirable
strategies (§5).

• Incurring Risk to Increase Reward. We show that the
additional diversity of aggressively heterogeneous systems
reduces violations of response time targets by 50% com-
pared to less diverse systems. Having formalized the notion
of risk, we enumerate reasons why a heterogeneous datacen-
ter might deviate from expected efficiency (§6).

Our work lays a foundation for datacenters that are hetero-
geneous by design. We challenge traditional heterogeneous
system design that selects processors from a design space
assuming an ideal, yet unlikely, mapping of applications to
resources. Instead, we show that our novel risk-aware design
strategies produce systems with better service quality than
traditional risk-agnostic design. Collectively, our findings
make the case for rethinking heterogeneous design strategies
to account for run-time risk.



2. Anticipating Risk in Heterogeneous Design

One of the greatest challenges to heterogeneous system de-
sign is resource management. A deployed system may not
realize the performance opportunity of the design effort due
to the difficulty of mapping applications to diverse hardware.
Prior approaches aim for performance and/or efficiency tar-
gets based on ideal mappings of workloads to resources. In
contrast, our work presents a novel approach to heterogeneous
design that provisions for the management of such systems in
the design flow.

2.1. Anticipating Run-time Effects

The state-of-the-art in heterogeneous processor design focuses
on tractable analysis and optimization. Heterogeneity signifi-
cantly expands the design space, especially given all permu-
tations of application-to-core pairings. Prior studies explore
design spaces for processor cores [15, 18, 7] and datacenter
organizations [11]. These methodologies find a subset of cores
from a design space that satisfy diverse application behavior.

This state-of-the-art strategy is rather limited. It focuses
on maximizing best-case performance and/or efficiency. Such
performance guarantees may collapse when an application can-
not execute on its best-matched architecture due to run-time
effects, such as contention, which are prevalent in datacenters.

Yet heterogeneity in datacenter hardware is desirable as it
presents an opportunity for energy efficiency. Web search exe-
cutes on small processors at 1

5× the energy of big cores, and
degrades throughput by 1

3× [21, 32]. Similarly, web search
and memcached will transfer data across low-bandwidth mem-
ory channels at 1

5× the energy of high-bandwidth channels
with negligible performance penalty [23]. Energy-efficient
technologies cannot provide uniform performance guarantees
to all applications; thus, a heterogeneous hardware mix is
needed to balance performance and efficiency.

Datacenters that are heterogeneous by design will use hard-
ware that better matches application diversity to increase effi-
ciency. For a given a power budget, a heterogeneous datacen-
ter’s quality-of-service is greater than that of homogeneous
datacenters [11]. Achieving this improvement in service qual-
ity depends on effectively managing heterogeneous resources.
In this paper, we present a design flow to anticipate resource
management challenges during heterogeneous system design.

We propose alternative strategies that consider metrics be-
yond best-case performance and efficiency. We introduce
the notion of anticipating run-time effects during the design
process. Our new design strategies seek energy efficiency
while improving worst-case performance and mitigating per-
formance variation. Such optimization criteria are particularly
relevant for datacenters, which aim for strict service quality
guarantees and seek to avoid run-time variations.

2.2. Understanding Sources of Risk

As we introduce new heterogeneous design strategies, we
evaluate their ability to mitigate risk. To illustrate the im-
portance of risk analysis, consider the classical problem of
reducing application diversity through basic block clustering
[36] and benchmark redundancy analysis [31]. Suppose Xi
is performance for application i and Xi’s are identically and
independently distributed:

Var(E[X]) = Var

(
1
n

n

∑
i=1

Xi

)
=

1
n2

n

∑
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Var(Xi) =
1
n

Var(Xi)

Redundant applications may be removed from a suite while
preserving the mean (i.e., expected performance). But vari-
ance is affected, which is unfortunate since understanding
performance uncertainty is critical to heterogeneous design.

If risk is defined as uncertainty, then performance and effi-
ciency risk increases with heterogeneity. Next, we consider
three types of risk that may prevent a heterogeneous system
from realizing best-case performance and efficiency: (i) appli-
cation risk, (ii) contention risk, and (iii) system risk.

Application Risk. Processor architects design product fam-
ilies using benchmark suites. But system architects demand
performance for only a subset of these applications. By using
only a few representative benchmarks, architects risk design-
ing for benchmarks that are dissimilar to run-time software.
Note that this definition of risk excludes applications that lie
in the superset of the benchmark suite. Heterogeneity exacer-
bates application risk by more tightly tying benchmark mixes
to processor optimization.

Contention Risk. Architects select core types with the
intent that each application executes on the core that maxi-
mizes efficiency. Prior studies in heterogeneous processors
consider only this optimal matching of applications to cores
[14, 7, 18, 40]. Contention risk occurs when the preferred
core is present in the heterogeneous system, yet allocated to
another application. When a task uses an alternative to its
preferred core, design-time decisions determine performance
and efficiency penalties. Mitigating contention risk requires
accounting for substitution effects during design-time.

System Risk. Datacenter procurement invests a fraction
of the power budget to each core type. System risk is the
uncertainty that the fractional share of deployed cores will
match the run-time application mix. Prior work considers only
one core of each type or fixed shares [14, 7, 18, 40]. Fractional
shares matter most as core types become increasingly diverse.
Equally dividing a system’s power budget to big and small
cores may work well for a particular application mix. Yet a
different mix may demand another fractional share of big and
small cores. Mitigating system risk requires a coordinated
decision between the design of the heterogeneous core types
and the fractional share of each.
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Figure 1: A Strategy Framework shows the numerous approaches to heterogeneous design.

3. Formalizing Heterogeneous Design Strategies

Systems with heterogeneous processors aim to provide mi-
croarchitectures that more closely match diverse applications.
The design flow requires a series of decisions to select cores
from a design space: Do we cluster similar applications or
architectures? How do we select a processor to match each
cluster? Do we optimize for performance or efficiency? We
refer to the answers to these design questions as a strategy.
Strategies produce heterogeneous designs, with different per-
formance characteristics when deployed and managed at scale.

We set forth a set of essential design decisions in a strategy
framework, which is the scaffolding that contains all strategies.
The framework includes strategies from prior work that aim
to maximize performance or efficiency as long as applications
run on the best-matched core. In addition, the framework
includes novel strategies where cores are selected to reduce
variation or minimize performance under imperfect allocations.
We illustrate our framework in Figure 1, and detail each stage
in which a decision is made (e.g., hardware-software space,
clustering dimension, etc.).

3.1. Characterizing the Hardware-Software Space

A strategy begins with data from the hardware-software space,
which we represent as two data matrices. In the first, we profile
application behavior on many architectures. Microarchitecture-
independent characteristics, such as instruction mix, branches
taken, and basic block size, are the elements of the first matrix.
Matrix rows represent applications (e.g., web search), and
columns represent behaviors (e.g., basic block size).

In the second data matrix, we profile figures of merit for
a variety of application-architecture pairs. Matrix rows still
represent applications, and columns now represent architec-
tures (e.g., out-of-order, six-wide superscalar, 1GHz). Matrix
elements are measures of performance (BIPS) or efficiency
(BIPS3/W). These matrices are populated with data from cycle-
accurate simulation for diverse applications and processors.

3.2. Formulating the Clustering Problem

The applications and architectures we study may have similar
characteristics. To discard repetition from our design space,
we select a clustering dimension by grouping together rows
or columns of the matrices based on similarity. In the ap-
plication dimension, clusters identify software that behave
similarly across many architectures. In the architecture dimen-
sion, clusters identify hardware that perform similarly across
many applications. Further, we choose a similarity metric for
clustering, e.g. software behavior, performance, or efficiency.

Clustering Dimension. Only a subset of the cores in a
design space need actually be deployed given that many of
the cores provide similar performance or efficiency to similar
applications, and are thus redundant. Clustering applications
distills many applications into a few representative ones for
which hardware can be tailored. For a particular application
mix, this approach may produce a narrowly defined mix of
cores. Clustering architectures identifies a few representative
cores that span the full spectrum of performance and power
trade-offs. Diversity is particularly useful at run-time as re-
source managers have the opportunity to maximize efficiency
and/or meet performance targets with more types of cores.
Next, we detail clustering implementations.

Application Clustering. We can identify similar appli-
cations based on their microarchitecture-independent behav-
ior. The application-behavior matrix is split into row vectors,
which are clustered so that applications with similar behavior
belong in the same cluster.

Alternatively, we might identify similar applications based
on performance or efficiency. If two applications exhibit sim-
ilar performance across a broad spectrum of cores, we infer
that microarchitectural mechanisms (e.g., dynamic instruc-
tion scheduling) affect both in similar ways. In this case, the
application-architecture matrix is split into row vectors and
clustered. Applications that prefer the same architectures will
be assigned to the same cluster.

Architecture Clustering. In the architecture dimension,
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cores that deliver similar performance across a spectrum of
applications might be expected to have similar microarchi-
tectures. The application-architecture matrix is clustered by
columns, distilling the large hardware design space into repre-
sentative cores.

3.3. Invoking the Clustering Heuristic

We use the K-Means algorithm to cluster applications or ar-
chitectures. As the number of clusters, K, increases, the
heuristic identifies more classes of similar applications (re-
spectively architectures). The data fed into the clustering
heuristic is one of the following three similarity metrics:
microarchitecture-independent behavior, performance (BIPS),
or efficiency (BIPS3/W). Each vector is a dimension to the
heuristic, and similarity is defined by Euclidean distance be-
tween vector-elements. When application behavior is the
similarity metric, the vector-elements are weighted by the
correlation coefficient of each dimension to performance.

Empirically, we see that clustering by application behaviors
or performance produces a small number of similar clusters.
This approach leads to systems made up of big cores that
deliver high performance. In contrast, clustering by efficiency
exploits interesting performance and power trade-offs. The
outcome is a mix of big and small cores, reflecting the fact
that the performance advantage of big cores may not justify
their power cost.

3.4. Selecting Designs from Clusters

The final heterogeneous system contains a core from each of
the K clusters. To select a single, representative core from
several in a cluster, we specify a selection criterion. For each
cluster k ∈ [1,K], we use a figure of merit F , either perfor-
mance or efficiency, to evaluate its nk cores. The selection
criterion can either maximize reward or minimize risk; we
describe each approach below.

Maximizing Reward. Selecting cores from each cluster
can maximize performance or power assuming a best-case
allocation, but this approach makes no provision for imperfect
profiling. It also neglects contention that diverts a task from
its preferred core to a sub-optimal alternative. While this cri-
terion produces a system with the best potential performance
or efficiency, it may perform poorly under typical, let alone
adverse, conditions.

We describe this reward-maximizing selection criterion as
argMax Max(F): from the nk cores in cluster k, the argMax
operator selects the core that maximizes the figure of merit
(F) from within the cluster. In practice, the criterion typically
produces extreme cores tailored for a particular application
and is the approach taken by prior work [15, 18, 7].

To accommodate other applications, we can use selection
criteria that reduce uncertainty albeit with lower rewards. We
might select cores to target the moderate center of the appli-
cation space, using argMax Mean(F) or argMax Median(F),

Core Exe Width L2 Freq Power Area Num
ID (insns) (MB) (GHz) (W) (mm2) (per CMP)
1 IO 1 1/4 1 2.01 8.30 18
2 IO 1 1/4 2 3.11 8.30 18
3 IO 1 1/2 1 2.33 8.96 17
4 IO 1 1/2 2 3.43 8.96 17
5 IO 1 1 1 2.24 9.99 15
6 IO 1 1 2 3.34 9.99 15
7 IO 2 1/4 1 2.69 9.78 15
8 IO 2 1/4 2 4.45 9.78 15
9 IO 2 1/2 1 3.00 10.44 14

10 IO 2 1/2 2 4.77 10.44 14
11 IO 2 1 1 2.91 11.47 13
12 IO 2 1 2 4.68 11.47 13
13 IO 4 1/4 1 4.42 13.29 11
14 IO 4 1/4 2 7.93 13.29 11
15 IO 4 1/2 1 4.74 13.96 11
16 IO 4 1/2 2 8.24 13.96 11
17 IO 4 1 1 4.65 14.99 10
18 IO 4 1 2 8.15 14.99 10
19 OOO 2 1 1 5.56 13.96 11
20 OOO 2 1 2 9.98 13.96 11
21 OOO 2 2 1 5.72 16.94 9
22 OOO 2 2 2 10.14 16.94 9
23 OOO 2 4 1 6.42 23.21 6
24 OOO 2 4 2 10.84 23.21 6
25 OOO 4 1 1 9.90 16.40 9
26 OOO 4 1 2 18.66 16.40 9
27 OOO 4 2 1 10.07 19.38 7
28 OOO 4 2 2 18.82 19.38 7
29 OOO 4 4 1 10.76 25.65 5
30 OOO 4 4 2 19.52 25.65 5
31 OOO 6 1 1 12.13 22.96 6
32 OOO 6 1 2 23.11 22.96 6
33 OOO 6 2 1 12.29 25.94 5
34 OOO 6 2 2 23.27 25.94 5
35 OOO 6 4 1 12.99 32.20 4
36 OOO 6 4 2 23.97 32.20 4
37 OOO 8 1 1 17.12 29.20 5
38 OOO 8 1 2 33.09 29.20 5
39 OOO 8 2 1 17.28 32.18 4
40 OOO 8 2 2 33.25 32.18 4
41 OOO 8 4 1 17.98 38.45 4
42 OOO 8 4 2 33.95 38.45 4

Table 1: Processor Design Space.

which select a representative core to maximize the mean or
median figure of merit across all applications.

Minimizing Uncertainty. Reward-centric selection crite-
ria handle uncertainly only implicitly. These criteria assume
that uncertainty in performance or efficiency may fall simply
by optimizing these figures of merit less aggressively. As
an extreme example of a reward-centric approach towards
minimizing uncertainty, we include argMax Min(F). This con-
servative selection criterion opts for cores that accommodate
worst-case allocations and the lowest-performance application
in the suite.

In contrast, we propose selection criteria that handle uncer-
tainty explicitly by using measures of variance. For each of
nk cores in cluster k, we calculate the variance of that core’s
figure of merit F across all applications. Low variance indi-
cates that a core provides similar F across all applications.
High variance suggests that improving F for one application is
attained at the expense of others. We describe an uncertainty-
minimizing selection criterion as argMin Var(F).

However, minimizing variance alone may sacrifice too
much reward; one way to minimize variance is to select a
core that provides equally bad performance for all applica-
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tions. To strike a balance, a better selection criterion uses the
coefficient of variation (CoV = σ/µ) and selects cores using
argMin CoV(F). 1 The coefficient of variation is the standard
deviation divided by the mean. Lower mean performance de-
grades this selection criterion, hence it minimizes uncertainty
in a way that favors high-performance cores [24].

Heterogeneous Outcomes. In summary, we start with ma-
trices that detail hardware-software interactions. We apply the
strategy framework to make decisions that constitute design
strategies. Each strategy first creates clusters of applications
and cores. A representative core is selected from each clus-
ter, creating a heterogeneous mix of cores that we refer to as
the strategy’s outcome. An outcome is a family of processor
designs, which system architects can use to organize a large
system (e.g., datacenter) tailored for diverse applications.

3.5. Ranking Heterogeneous Outcomes

The strategy framework yields many heterogeneous outcomes,
but processor and datacenter architects choose only one of
these to produce and procure. This choice depends on applica-
tions in the system, yet different applications prefer different
outcomes. One application might prefer heterogeneous sys-
tems with at least one big core. Another might prefer systems
with various small cores. The designer needs to navigate, not
only the hardware design space, but also divergent application
preferences for heterogeneous systems. We present a voting
mechanism to reconcile these divergent preferences, and aid
the designer in selecting the best heterogeneous outcome.

Ranked Voting for Heterogeneous Core Types. The fol-
lowing ranked voting (a.k.a. preferential voting) system allows
a designer to reconcile divergent preferences. Outcomes are
ranked based on the preferences of each application, and then
aggregated by computing rank sums. This ranking mechanism
is a design-time exercise to identify the outcomes that pro-
vide the best quality-of-service across many applications. The
ranking balances competing application preferences, and the
degree to which application preferences align determines a
system’s overall service quality.

Suppose the system runs requests from two applications,
a1 and a2. A designer ranks heterogeneous systems based on
the service quality of a1 when competing with a2 for shared
resources. Thus, a ranking of outcomes based on the service
quality of a1 is different than one for a2. We combine two sets
of ranked preferences by computing rank sums. If a particular
heterogeneous outcome is ranked 1st by a1 and 10th by a2, the
outcome has rank sum 11. The mechanism behaves likewise
for any a.

Applications that prefer the same heterogeneous systems
will have rankings that align, and the resulting system will
provide high service quality to all. However, if applications
have different preferences, the rank sums will identify het-
erogeneous design compromises that avoid sacrificing one

1Alternatives might also be used, for example the Sharpe ratio that is
effectively the inverse of CoV, or the Sortino ratio to penalize downside risk.

Figure 2: Application Diversity (IPC on Core 42 of Table 1).

application more than others. We apply preferential voting
to the outcomes of the strategy framework, and compare the
service quality of the best-ranked outcomes in §5.

4. Experimental Methodology
To evaluate heterogeneous processor design strategies for data-
centers, we deploy a comprehensive methodology. Cycle-
accurate processor and memory simulations for datacen-
ter workloads provide detailed, node-level analysis. For
datacenter-level analysis, we add queueing models and allo-
cation mechanisms for heterogeneous hardware. Collectively,
this infrastructure allows us to study processor design strate-
gies and their run-time effect on datacenters.

Processor Simulation. We use the Marssx86 full-system
simulator [30], integrated with DRAMSIM2 [34], to simulate
the 42 processors listed in Table 1. The design space is defined
by four microarchitectural parameters: instruction scheduling,
superscalar width, last-level cache size, and frequency. Ad-
ditional structures scale in proportion to superscalar width,
shown in Tables 3–4. We use McPAT/CACTI at 32nm to
model power and area [19]. We set an area budget for chip
multiprocessors and determine the number of cores that can
fit within it.

Applications. We simulate web search queries using the
open-source Nutch/SOLR search engine. We crawl/index 50K
Wikipedia documents and evaluate diverse types of queries
[37]. A query type denotes whether page content or title is
searched. Wildcards and searches for similar words (near) are
supported. Negative queries are denoted by inverse. Queries
may contain multiple search terms (single, double, triple,
quad) connected by logical operators (and, or).

We use checkpoints to simulate 100M instructions at regions
of interest in PARSEC, SPLASH-2, and web search. Our
checkpoints for web search are taken after the server has been
initialized and warmed up with 100 queries.

These applications exhibit diverse performance as shown
in Figure 2. Diverse search queries vary in computational
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barnes|radix barnes|quadword radix|quadword
Task Profile 2972 1326 2972 32 1326 32
(Mcycles/task)
Daily Peak 420 1884 420 76827 942 76827
Weekly Peak 1261 5652 1261 230482 2826 230482
(tasks/min)
Value $5 if T≤200ms $5 if T≤200ms $5 if T≤200ms $5 if T≤20ms $5 if T≤200ms $5 if T≤20ms
(K$/month) $0 if T≥1000ms $0 if T≥1000ms $0 if T≥1000ms $0 if T≥160ms $0 if T≥1000ms $0 if T≥160ms
Scaling Factors 0.19-1.0 0.79-1.0 0.19-1.0 0.25-1.0 0.79-1.0 0.25-1.0

Table 2: Application Parameters in the Market.

Width 2 4 6 8

Phys RF 64 128 192 256
ROB 64 128 192 256
Fetch Q 24 48 72 96
Load Q 24 48 72 96
Store Q 24 48 72 96
L1 D-$ 64 KB 4-way, wb
L1 I-$ 64 KB 4-way, wb

Table 3: Out-of-order.

Width 1 2 4

Dispatch Q 8 16 32
Store Buff 8 16 32
Forward Buff 16 32 64
Commit Buff 16 32 64
L1 D-$ 32 KB 4-way, wb
L1 I-$ 32 KB 4-way, wb

Table 4: In-order.

K=2 K=3 K=4
Application Behavior

MaxMax 42|37 42|37|40 41|42|37|40
MaxMean 41|42 41|42 41|42
MaxMin 42 42 42
MinVar 5|2 5|2 5|2
MinCoV 5|4 5|2|24 5|2|24

Application Performance
MaxMax 41 41 41
MaxMean 41 41 41
MaxMin 35|41 41 29|35|41
MinVar 6|1 5|2 1|2||14|27
MinCoV 1|22 5|20|31 1|2|14|27

Architecture Performance
MaxMax 17|42 12|17|42 17|24|30|42
MaxMean 17|41 12|17||41 17|23|41|38
MaxMin 11|42 5|11|42 11|24|30|42
MinVar 5|21 5|11|21 5|21|25|27
MinCoV 5|21 5|11|21 5|21|29|25

Table 5: Outcomes from BIPS strategies.

K=2 K=3 K=4
Application Behavior

MaxMax 29| 35 29|35 29|35
MaxMean 29 29 29|35
MaxMin 5|23 5|23|29 5|23|29
MinVar 14 14 14
MinCoV 14 14 14

Application Efficiency
MaxMax 29 29|35 23|29
MaxMean 29 29|35 29|35
MaxMin 5|35 5|29 5|29|35
MinVar 14 14 14|38
MinCoV 14 14 14|42|38

Architecture Efficiency
MaxMax 29|42 22|29|30 11|23|29|37
MaxMean 29|42 23|22|29 11|23|29|37
MaxMin 5|23 5|23|29 5|23|29|37
MinVar 14|21 14|24|37 14|22|38
MinCoV 14|21 14|24 14|22|38

Table 6: Outcomes from BIPS3/W strategies.

complexity. The complex inverseContentSingle query incurs
a larger performance penalty on a small core than the simple
doubleOr query. Some workloads have a strong preference for
high-performance cores (e.g., barnes). Others execute more
efficiently on a small, low-power core (e.g., radix).

Application Task Streams. To evaluate applications in the
datacenter, we organize workloads into task streams that fol-
low known diurnal and sinusoidal activity [26]. Such patterns
have been used to evaluate other datacenters [5, 11, 22].

The task arrival rate is the composite of a sinusoid with a
week-long period and another with a day-long period. Ampli-
tudes, shown in Table 2, are set such that load is no greater
than the maximum computational capacity of a 20KW budget.
We add Gaussian-distributed noise to the time series.

As is typical in elastic clouds [5, 22, 11], users specify
service-level agreements (SLA) that define value as a function
of response time. Without loss of generality, we use M/M/1
queues to estimate 95th percentile response time. Value de-
grades linearly as response time increases up to some cut-off,
after which computation has no value (Table 2). Users that
derive higher value from computation are given higher priority.

Datacenter Management. To anticipate run-time effects
during design, we must consider a particular management
mechanism. For heterogeneous design, the mechanism must
differentiate heterogeneous processing resources when allocat-
ing them to diverse applications. Any management mechanism
may be used within our framework.

Without loss of generality, we use markets to allocate hard-
ware in our evaluation. Markets have several compelling prop-
erties. First, markets provide an attractive interface as users

express value for performance. Second, market agents use
value functions to automatically bid for hardware on behalf
of users, thus shielding users from the complexity of hetero-
geneous hardware. Finally, markets are cleared to maximize
welfare via hardware allocations.

Our market allocates heterogeneous processors periodically
(e.g., every 10 minutes) to serve diverse application tasks.
An allocation might span many heterogeneous core types.
The market invokes CPLEX, a mixed integer program solver,
to determine an allocation that efficiently meets quality-of-
service targets. We refer the reader to prior work for detail
[5, 11, 22].

We apply the market to the heterogeneous outcome of a
design strategy from Figure 1. We configure systems with a
20KW budget, which is approximately the power dissipated
by two datacenter racks. Server power is processor power
plus 65W, which accounts for memory, motherboard, network
interface, and disk [32]. These servers are integrated into a
heterogeneous chassis (e.g., IBM PureFlex). Datacenter power
usage effectiveness (PUE) is 1.6. Energy costs $0.07 per kWh.

Scaling Factors. The market uses scaling factors to account
for performance differences in heterogeneous systems[11].
For each application, these factors report performance for
each core relative to that of the highest-performance core.

If scaling factors for an application are uniformly 1.0, its
tasks are indifferent to core microarchitecture. In contrast,
an application with greater diversity in scaling factors has
stronger preferences for particular core types, perhaps its tasks
are more compute intensive. Table 2 shows a broad range of
scaling factors. Radix is least sensitive to core type whereas
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barnes and quadword search queries are more sensitive.
Scaling factors may be obtained from profiling tools, such as

gprof [10], VTune [12], or OProfile [29]. At datacenter scale,
profiling every application on every node is infeasible and
sampling is required. For example, the Google-Wide Profil-
ing infrastructure periodically activates profilers on randomly
selected machines and collects results for integrated analy-
sis [33]. Given sparsely sampled profiles, statistical machine
learning can fit models and predict scaling factors [43].

System Model. Our datacenter model envisions applica-
tions, made up of task streams, running on heterogeneous
processors, where heterogeneity exists across racks. Rack-
level heterogeneity allows for system-wide resource manage-
ment. A resource allocator explicitly directs applications to
compute resources by steering tasks to the right rack. In ad-
dition, system designers can deploy heterogeneous resources
at a fractional share that matches an expected application mix.
By fractional share we refer to the portion of the total power
budget provisioned to each type of heterogeneous resource. In
§6.1 we evaluate each heterogeneous outcome and its sensitiv-
ity to fractional shares.

5. Designing for Manageability

In this section, we compare the strategies that produced the
50 unique outcomes listed in Tables 5–6. An outcome is a
set of heterogeneous core types, and it is the product of a
design strategy that is applied to the benchmark suite and
processor design space. We evaluate heterogeneous design
strategies based on manageability, which we quantify as ser-
vice quality across co-running applications using a realistic
heterogeneous resource manager. We simulate equal-power
datacenters equipped with systems that house heterogeneous
processors across racks.

The framework of strategies detailed in §3 produces the out-
comes in Tables 5–6, where each entry is a tuple of identifiers
that map to the microarchitectures in Table 1. Identifiers in
the 1 - 18 range designate in-order, power efficient cores,
whereas 19 - 42 are out-of-order, high performance cores.
For example, heterogeneous outcome 42|37 is made up of
two types of out-of-order cores, and is the product of a Max-
Max(BIPS) selection strategy from two clusters of applications
grouped by behavior. The systems we evaluate range from
homogeneous high-performance big cores, 42, to highly het-
erogeneous datacenters composed of both big and small cores,
11|24|30|42.

Allocation and run-time risks are a function of user com-
petition, thus we study application pairs that exemplify three,
distinct contention scenarios:

• barnes|radix exhibit complementary preferences
• barnes|quadword contend for big, high-performance cores
• radix|quadword contend for small, low-power cores

Across all three types of contention, we find that risk-aware

Figure 3: Risk-aware strategies are more likely to produce out-
comes with the best service quality.

strategies at design-time improve service quality at run-time.
Results also show that ranked voting at design-time reconciles
competing user preferences for hardware at run-time.

Mitigating Risk During Design. Prior approaches to het-
erogeneous design identify core types that maximize perfor-
mance or efficiency for the benchmark suite, and hence aim
only to maximize rewards. Such approaches correspond to
MaxMax and MaxMean strategies in our framework. For these
strategies to deliver expected performance and efficiency, users
must receive the cores best suited to their applications. Yet,
such ideal allocations are difficult to obtain in the real world,
where applications compete for shared hardware.

In contrast, strategies that anticipate risk by measuring per-
formance variance at design-time are more robust to dynamic
hardware allocation at run-time. Selecting cores using MinVar
or MinCoV criteria accounts for allocation risk in heteroge-
neous systems. Alternatively, the MaxMin criterion optimizes
heterogeneity for worst case management scenarios when a
user receives the least ideal processor type in the system.

To quantify these effects, we examine the 20 best outcomes
(e.g., 14|22|38|39, . . .) based on service quality across appli-
cations. Figure 3 shows all the design strategies that produce
the 20 most effective heterogeneous systems for barnes|radix.
These strategies are desirable from the perspective of manage-
ability. For example, there exist 24 strategies that provide the
20 heterogeneous outcomes with the best service quality when
barnes and radix are co-runners.2 Of these 24 strategies, 83%
of them account for risk either by optimizing performance
variance with MinVar or MinCov, or by optimizing for worst-
case scenarios with MaxMin. Similarly, risk-aware strategies
account for more than 70% of the strategies that produce the
top 20 outcomes for barnes|quadword and radix|quadword.

Case for Risk-Aware Design. Three of the selection cri-

2Note that the number of good strategies exceed the number of good
outcomes because multiple strategies may produce the same outcome.

7



teria form a part of risk-aware design strategies: MinCoV,
MinVar, and MaxMin. These strategies balance rewards in
performance and efficiency against risks in heterogeneous re-
source allocation. As Figure 3 shows for barnes|radix, the
20 outcomes with the best service quality are most likely the
product of risk-aware design.

MinCoV is the best at balancing risk and reward as it se-
lects cores to moderate variance but not at the expense of
average performance. Thus, cores with higher performance
are included in the heterogeneous outcome. For example,
MinCoV BIPS produces 5|2|24 while MinVar BIPS more
conservatively produces 5|2.

MinVar minimizes performance variance, which tends to
favor small cores that provide uniformly low performance. The
advantage of small cores is power efficiency, which allows
more servers to fit within a fixed power budget. More servers
translate into greater throughput and fewer service quality
violations. If bigger cores are needed for performance, MinVar
provides them in highly heterogeneous systems (e.g., when
K = 4, MinVar BIPS produces 1|2|14|27).

Finally, MaxMin can be considered a risk-aware design
strategy. This strategy favors big cores to ensure service qual-
ity in worst-case allocation scenarios by maximizing minimum
performance. MaxMin accommodates the most demanding
applications with a high-performance core (e.g., 42 for BIPS)
or with a high-efficiency core (e..g, 5|23|29 for BIPS3/W).

Limitations of Risk-Agnostic Design. In contrast to risk-
aware strategies, MaxMax and MaxMean strategies rarely lead
to a heterogeneous system with good service quality. These
strategies identify the very best heterogeneous processor mixes
for the complete application suite. When a subset of these ap-
plications actually use the resulting systems, their lack of flex-
ibility degrades service quality. For example, radix|quadword
prefers small, low-power cores. Yet MaxMax will produce
several big, high-performance cores as it tries to maximize
best-case performance for the original set of 32 applications.

6. Classifying Sources of Risk
Our evaluation has thus far determined that the best design
strategies are risk-aware. Next, we consider the sources of
risk in the top-ranked outcomes and observe that higher re-
ward comes at higher risk (§6.1). Another metric of interest
to system architects is the efficiency of top-ranked outcomes.
We compare the efficiency of heterogeneous outcomes to an
optimal case where each application runs on the efficiency-
maximizing core in the design space. We find that heteroge-
neous systems are most efficient when running complementary
applications (§6.2).

6.1. Incurring Risk to Increase Reward

Heterogeneity allows a system to provide specialized resources
for subsets of applications, and thus more effectively invest
a limited power budget than systems with low diversity. The
reward of heterogeneity is an improvement in performance.

Figure 4: Heterogeneous system 14|22|38|39 exhibits more
risk yet reduces response time violations by 50% rel-
ative to low-risk system 42|39 (barnes|radix).

In a datacenter, this reward is a reduction in the number of
allocation periods that incur response time violations.

However, it is difficult to provision diverse resources in pro-
portions that match the application mix. A strategy’s outcome
defines a set of heterogeneous cores, but not their organization
in the system. Our evaluation thus far has assumed that the
system’s power budget is divided amongst heterogeneous core
types such that service quality is optimized. Yet identifying
each core type’s share of the power budget is a design space
of its own. We explore this space and assess service quality.

Risk. We quantify risk-reward trade-offs by varying the
fractional share of the power budget that each processor type
is allocated. For barnes|radix, Figure 4 illustrates service qual-
ity for different heterogeneous outcomes (x-axis) at different
shares of those types (boxes). The x-axis spans varying de-
grees of heterogeneity, from the conservative system 42|39

to increasingly heterogeneous systems.
For an application mix, the box shows the effect of different

fractional shares. Given K heterogeneous cores, we evaluate
all combinations of 1

K -sized fractions within a fixed power
budget (e.g., 20KW). For example, when K = 2, core types
can be organized into fractions of 1:0, 1

2 : 1
2 , and 0:1. Across

these different shares, boxes illustrate the variance in service
quality, measured by the number of allocation periods that
violate response time targets (y-axis).

Greater heterogeneity leads to higher variability in service
quality and system risk. Figure 4 shows increased risk for
outcomes 14|22|38|39 and 5|20|31. Note that heterogene-
ity and system risk is not simply a function of the number of
core types. Although both outcomes have three core types,
5|20|31 exhibits lower variance than 14|42|38. Cores 42
and 38 only differ in L2 cache size and hence the variation in
application performance across the two cores is small.

Reward. Despite the increase in system risk, the reward is a
significant improvement in service quality. The highest ranked
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(a) barnes|radix

(b) barnes|quadword

(c) radix|quadword

Figure 5: Quality-of-service as we vary fractional shares of
cores for top 5 ranked outcomes.

outcome for barnes|radix is 14|22|38|39, which is also most
risky. If the deployed share is well-matched to barnes and
radix load, we observe only 375 allocation periods in which
an application violates the service target. This is a 50% reduc-
tion in intervals that suffer violations, compared to the 675
violations observed on a more conservative outcome 42|39.
We also see that in the worst case, when the fractional share
of the aggressively heterogeneous outcome 14|22|38|39 is

poorly suited to the application mix, the number of violations
is no worse than that of the conservative outcomes in Figure 4.

barnes|radix. Most top ranked outcomes in Figure 5a pose
significant system risk, as shown by the span of the boxes as we
vary the shares at which each outcome may be deployed. The
exception is 5|11|21, which we prefer since it provides high
service quality at low system risk. In contrast, 17|24|30|42
is a particularly poor option; the fractional share that provides
the best service is an outlier.

barnes|quadword. Most heterogeneous outcomes are ca-
pable of high service quality. But 5|2 or 1|22 clearly provide
that service quality at lower risk. Selecting poor fractional
shares is too likely in the other three outcomes.

radix|quadword. These applications contend for small,
efficient cores and hence prefer outcomes with low hetero-
geneity. The top ranked outcome is, in fact, homogeneous
(Figure 5c). However, outcomes 5|4 and 6|1 may be better
choices. In the best case, if the fractional shares are well-
matched to application mixes, heterogeneity improves service
quality. Only 161 allocation periods see service violations, a
42% reduction compared to the 278 violations observed on the
top-ranked homogeneous system. Moreover, despite system
risk, the worst-case service on the heterogeneous system is no
worse than that of the homogeneous one.

6.2. Quantifying Risks to Efficiency

The previous section studied performance sensitivity to the
number of each processor type and task mix. Next, we
consider variability in energy efficiency and two additional
sources of risk. For this evaluation, we define the upper
bound on efficiency as the application running on its BIPS3/W-
maximizing core from the complete design space.

An application may not realize the upper bound on effi-
ciency and instead run on a less efficient core for two reasons.
First, an application’s most efficient core may not be available
in the heterogeneous outcome chosen for the system. In this
scenario, efficiency is lost due to application risk. Second, an
application’s most efficient core may be present but allocated
to another application, which is contention risk.

In Figure 6, we report efficiency when the application runs
on the best core in the heterogeneous outcome. Any efficiency
lost to application risk is due to choices during design (“AR”).
We also report efficiency based on the actual allocation of
cores in the market mechanism. Any further efficiency loss is
due to contention during allocation (“CR”). Carefully selected
heterogeneous designs provide 80% of the BIPS3/W upper-
bound. On the other hand, contention can cause systems to
realize only 20% of this potential.

barnes|radix. Figure 6a shows efficiency losses due to ap-
plication and contention risk. Radix executes at near-optimal
efficiency for a few of the top ranked outcomes (i.e., 5|11|21
and 5|20|31). Reconciled rankings closely align with radix’s
ranking. If the second- and third-ranked configurations are
chosen, efficiency losses are zero.
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(a) barnes|radix

(b) barnes|quadword

(c) radix|quadword

Figure 6: Efficiency for top ranked outcomes of heteroge-
neous cores. The BIPS3/W-maximizing core for each
application may not occur in an outcome due to ap-
plication risk (AR) or may not be allocated to that
application due to contention risk (CR).

On the other hand, barnes loses efficiency to both applica-
tion and contention risk. The heterogeneous configurations in
the reconciled rankings do not represent barnes’s preferences;
radix introduces big cores into the system, which determines
barnes’s efficiency loss from application risk. Moreover, these
big cores are most often allocated to barnes, which ensures
service quality but degrades run-time efficiency.

Since the top-ranked configurations provide similar qual-
ity of service, the system architect can opt for the configu-
ration that maximizes efficiency. Although not shown, the
sixth-ranked configuration provides better efficiency for both
applications without further harming service quality.

barnes|quadword. These applications illustrate efficiency
losses primarily from application risk. When these two appli-
cations are contending for cycles, neither will likely execute
at near-optimal efficiency. Figure 6b shows that several of
the configurations most highly ranked for quality-of-service
achieve performance by sacrificing at least 60% of the effi-
ciency available in the design space. Although the first and
fifth configurations retain most of the efficiency during design
clustering, contention means that actual efficiency is often less
than 20% of the upper bound. This mix is particularly difficult
to accommodate within the fixed power budget given that both
applications incur benefit from power-hungry cores.

radix|quadword. For both radix and quadword queries,
Figure 6c indicates that allocated efficiency matches the best
possible designed efficiency. Nearly all the cores in various
configurations are from the low-power, in-order end of the
design spectrum (cores 1-18). Since these cores are similar,
efficiency is not significantly impacted by allocation decisions.
Only the fourth configuration includes a high-performance
design (core 42), and only this configuration suffers any sig-
nificant efficiency loss from allocation decisions.

7. Related Work
Kumar et al. consider existing cores drawn from multiple
design generations [14, 16]. Alternatively, Kumar et al. ex-
haustively simulate and search a space with hundreds of de-
signs to maximize performance subject to power and area
constraints [15]. Choudhary et al. evaluate synthesizable core
designs in heterogeneous mixes [7]. This particular strategy
maps approximately to our architecture-driven clustering with
a MaxMean selection criterion on performance.

Lee and Brooks also explore a large design space, using
regression models to explore performance and power trade-
offs tractably, and use K-means clustering in their optimization
[18]. Strozek and Brooks similarly study clustering strategies
for heterogeneous embedded systems [40]. This strategy maps
approximately to our architecture-driven clustering with a
maxMean selection criterion on BIPS3/W efficiency.

Prior heterogeneous strategies do not produce designs that
are robust to system integration, performance risk, and con-
tention risk. These prior efforts take a particular strategy
whereas we explore a broad space of strategies. Unlike prior
work, we anticipate run-time manageability at design-time.

While much prior work in distributed systems have con-
sidered diverse tasks and heterogeneous VMs, the underlying
processors are often homogeneous by design. At present, het-
erogeneity in datacenters is modest and involves multiple pro-
cessor generations [28, 25] or frequencies [22]. However, stud-
ies of datacenter software on diverse hardware motivate greater
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heterogeneity due to the potential for efficiency [21, 32, 9].
To anticipate run-time manageability, we deploy a frame-

work that uses a market mechanism to assign cores to tasks
[22, 11, 5]. These mechanisms operate at datacenter scale,
examining application preferences for hardware and allocating
cores to task streams.

A large body of work studies scheduling in heterogeneous
CMPs. Much of this work focuses on profiling and thread
migration. Scheduling software to heterogeneous hardware
might account for memory-level parallelism [8], instruction-
level parallelism [2, 13], resource demands [1, 6, 35, 38, 39],
thread age [17], load balance [20], or hardware faults [42, 3].
Scheduling is simplified when big or small cores are used for
a specific purpose. Big cores can accelerate critical sections
in parallel computation [41] while small cores can efficiently
support the operating system [27] or managed software [4].

8. Conclusions
Our work is the first to define a taxonomy of the risks that
heterogeneous systems face due to the current divide between
design and management. We present a framework of design
strategies, and for the first time include risk-aware strate-
gies that complement traditional performance or efficiency
maximizing strategies. We evaluate these strategies under
diverse datacenter contention scenarios, and find them to re-
duce service quality violations by 50% relative to traditional
approaches to heterogeneous design.
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