

Navigating Heterogeneous Processors with Market Mechanisms

Marisabel Guevara

Duke University

Benjamin Lubin Boston University

Benjamin C. Lee Duke University

Growth of Cloud Applications

Market Mechanism

- Data volumes are growing geometrically
- Cloud applications are diversifying rapidly
- Computing capability must grow
- Datacenters consume tens of megawatts of power

Datacenter Scaling Limitations

Market Mechanism

- Dennard scaling is over
 - On-chip power density is a constraint
- Adding servers is expensive
 - Power determines operating costs
- Heterogeneity improves energy efficiency
 - Small cores consume a fraction of big core power
 - Big cores ensure service quality

Executive Summary

Goal:

Improve service quality in heterogeneous datacenters

Methods:

- Leverage processor heterogeneity
- Mitigate performance risk using market

Evaluation:

- Big/Small core heterogeneity improves service quality
- Three core types reduce service violations by 12x

Risks of Heterogeneity

Heterogeneity introduces performance risk

Market Mechanism

Yet it can improve service quality

Market Mechanism

Managing Risk

- Types of processors?
- Number of each?
- How to allocate?
- Resource allocation that mitigates performance risk
 - Hide hardware complexity
 - Trade-off performance and power
 - Allocate small cores when possible
- Coordinate design and management

Allocating Time

Market periodically allocates time on hardware resource

Market Mechanism

$$\frac{\text{Tasks}}{\text{Sec}} = \frac{\text{Tasks}}{\text{Cycles}} \times \frac{\text{Cycles}}{\text{Sec}}$$

Right-size datacenter via server activation and DVFS

Accommodating Heterogeneity

Market Mechanism

Profile task-specific performance on each processor:

$$\frac{\text{Tasks}}{\text{Sec}} = \frac{\text{Tasks}}{\text{Inst}} \times \underbrace{\frac{\text{Insts}}{\text{Cycle}}}_{\text{Sec}} \times \underbrace{\frac{\text{Cycles}}{\text{Sec}}}_{\text{Sec}}$$

Store IPC_{a,m} as scaling factor relative to baseline IPC₀

Market Resource Allocation

Market Mechanism

maximize \sum (Value_a – Cost) a∈App

Proxy

 $\lambda \Leftrightarrow \text{predict demand}$

T ← predict wait time

V ← predict value

Cost Model

C ← energy × price

Big/Small Core

Experimental Methodology

Real tasks

Diurnal arrivals

Java implementation, **CPLEX** solver for optimization System profiles

Simulation

Defining Big and Small Cores

- Within fixed power budget, vary number of:
 - 4-core Xeon servers
 - 16-core Atom servers
- Core measurements [ISCA'10]
 - 0.3 1.0 relative IPC
 - 1.5 W Atom vs.15 W Xeon
- System model
 - Equal die area
 - Fixed system power overhead (65 W)

Modeling Application Behavior

Market Mechanism

- One week of requests
- Diurnal pattern

- Processor Sensitive (PS) Atom throughput ½ that of Xeon
- Processor Insensitive (¬PS) same throughput

Understanding Datacenter Dynamics

- Vary Atom to Xeon ratio
- Examine allocations to each task
- Identify a balanced mix (e.g. 147:55)

Big/Small Core

Improving Service Quality

Homogeneous Xeon

Homogeneous Atom

- Xeon-only has insufficient resources
- Atom-only incurs violations due to cost

Improving Service Quality

Heterogeneous Xeon/Atom

- Xeon/Atom mix reduces waiting time
 - Atoms mostly allocated to ¬PS
 - Xeons freed to service PS peaks

Defining Greater Heterogeneity

- Within fixed power budget, vary core designs
 - Dynamic scheduling (IO vs OO)
 - Issue Width (1,2,4,6,8)
 - Frequency (1.0,2.4 GHz)
- Processor simulation
 - 0.4 1.5 relative IPC (gem5)
 - 1.1 W 28 W (McPAT)
- System model
 - Equal die area
 - Fixed system power overhead (65 W)

Clustering Heterogeneous Processors

- Cluster cores with similar SPEC performance
- Select core with lowest performance variation from each cluster
- Evaluate with diverse SPEC task streams

Clusters of Processors

Visualizing the Design Space

- Ellipses represent core types
- Points are combinations of cores
- Colors represent service violations

Design Space with Four Processors

Service Quality Violations

- Identify right core types
- Prune design space
- Best configuration is heterogeneous
 - RT violations reduced from 15.5% to 1.6%

Conclusions and Future Directions

- Leverage market to mitigate heterogeneity's risk
 - Embed microarchitectural insight into the market
 - Allocate multiple resources
- Deploy heterogeneous hardware in a datacenter
 - Optimal balance improves service
 - Sophisticated trade-offs require further study
- Propose a datacenter research methodology
 - Simulating detailed server architecture
 - Modeling user and datacenter dynamics
 - Tractability for web search, memcached, map/reduce

Navigating Heterogeneous Processors with Market Mechanisms

Marisabel Guevara

Duke University

Benjamin Lubin Boston University

Benjamin C. Lee Duke University