Navigating Heterogeneous Processors with Market Mechanisms

Marisabel Guevara
Duke University
mg@cs.duke.edu

Abstract

Specialization of datacenter resources brings performance and
energy improvements in response to the growing scale and
diversity of cloud applications. Yet heterogeneous hardware
adds complexity and volatility to latency-sensitive applications.
A resource allocation mechanism that leverages architectural
principles can overcome both of these obstacles.

We integrate research in heterogeneous architectures with
recent advances in multi-agent systems. Embedding architec-
tural insight into proxies that bid on behalf of applications,
a market effectively allocates hardware to applications with
diverse preferences and valuations. Exploring a space of het-
erogeneous datacenter configurations, which mix server-class
Xeon and mobile-class Atom processors, we find an optimal
heterogeneous balance that improves both welfare and energy-
efficiency. We further design and evaluate twelve design points
along the Xeon-to-Atom spectrum, and find that a mix of three
processor architectures achieves a 12X reduction in response
time violations relative to equal-power homogeneous systems.

1. Introduction

As datacenters proliferate and access to them is democratized,
increasingly diverse cloud applications will demand compu-
tation. To accommodate the rise in demand, traditional data-
center servers have relied on Moore’s Law. Yet this strategy is
insufficient as Dennard scaling ends and constrains the power
efficiency of processor servers [28].

Instead of relying on process technology for datacenter
efficiency, we turn to new system architectures and microar-
chitectures. Recent research and industry trends highlight
opportunities for building servers with lightweight proces-
sors that were originally designed for mobile and embedded
platforms [3, 59]. These small cores are several times more
energy-efficient than high performance processors.

However, lightweight cores have limited applicability.
While memory- or IO-intensive applications benefit from small
core efficiency, the era of big data is introducing more so-
phisticated computation into datacenters. Tasks may launch
complex analytical or machine learning algorithms with strict
targets for service quality [32]. To guarantee service, high-
performance cores must continue to play a role. To this end,
heterogeneous datacenter servers can balance big core perfor-
mance and small core efficiency.

Not only must we design heterogeneous hardware, we must
deploy it in large, dynamic systems. Doing so successfully re-
quires mitigating performance risk and uncertainty as diverse

Benjamin Lubin
Boston University
blubin@bu.edu

Benjamin C. Lee
Duke University
benjamin.c.lee@duke.edu

applications contend for heterogeneous hardware. Addition-
ally, datacenters must shield increasingly non-expert users
from the complexity of underlying heterogeneity.

To address these challenges, we coordinate the design of het-
erogeneous architectures with recent advances in multi-agent
systems. We present a market where diverse applications bid
for heterogeneous architectures. On behalf of users, a proxy
profiles hardware-software interactions, infers preferences for
heterogeneous hardware, and translates preferences into bids.

Both early research [61] and more recent markets [44, 10]
assume fungible processor cycles, an assumption that no
longer holds given processor heterogeneity. Ours is the first
to incorporate microarchitectural preferences of the applica-
tions into an economic mechanism for hardware allocation. In
particular, we make the following contributions:

e Processor Heterogeneity in the Datacenter (§2). We
identify a new design space where heterogeneous proces-
sor architectures allow a datacenter to combine the benefits
of specialization with the performance guarantees of tradi-
tional high-performance servers.

e Economic Mechanisms and Optimization (§3). We de-
velop a market that manages resources and navigates
performance-efficiency trade-offs due to microarchitectural
heterogeneity. Inferring application preferences for hard-
ware, proxies compose bids on behalf of applications within
the market. A mixed integer program allocates resources to
maximize welfare, which is user value net datacenter cost.

o Application to Big/Small Cores (§4). We apply the eco-
nomic mechanism to explore a space of heterogeneous dat-
acenters, varying the mix of server- and mobile-class pro-
cessors. We find an optimal heterogeneous balance that
improves welfare and reduces energy. Moreover, 30% of
tasks incur response time violations in homogeneous sys-
tems but not in heterogeneous ones.

e Application to Further Heterogeneity (§5). We further
explore the microarchitectural design space and tailor pro-
cessor cores to application mixes. With processors that
differ in pipeline depth, superscalar width, and in-order
versus out-of-order execution, we find that a combination
of three processor architectures can reduce response time
violations by 12 x relative to a homogeneous system.

Thus, we present a management framework that allows data-
centers to exploit the efficiency of heterogeneous processors
while mitigating its performance risk.

2. Heterogeneity — Principles and Strategies

The largest datacenters today are equipped with high-
performance processors. Despite diversity due to process
technology or generations, these cores all reside at the high-
performance end of the design spectrum. Thus, we refer to the
processors in state-of-the-art datacenters as homogeneous by
design. While such homogeneity can provide near-uniform
performance, it also keeps datacenters from exploiting recent
advances in energy-efficient hardware. For example, small
processor cores are far more power efficient than conventional,
high-performance ones. Since only certain tasks are amenable
to small core execution, big cores must also remain as guaran-
tors of service quality.

2.1. Heterogeneity as a Design Space

Server heterogeneity is efficient but requires sophisticated
resource managers to balance performance risk and reward.
This balance requires a novel type of design space exploration
to survey and appraise a variety of datacenter configurations.
To illustrate the challenge, Figure 1 depicts the design space
for two core types: a high-performance, server-class core
and its low-power, mobile-class counterpart. Combinations
of these two processor types fall into three regions shown
in the Venn diagram. Two regions represent homogeneous
configurations, where the datacenter is comprised of only
server or mobile cores. Heterogeneous mixes lie in the third
region, the intersection of the sets.

The colorbar shows the percentage of allocation intervals
that suffered a quality-of-service degradation for a pair of task
streams; this data is collected through simulation with parame-
ters found in §4. For the workloads in this experiment, the two
homogeneous configurations violate quality-of-service agree-
ments at least 6% of the time. ! As some high-performance,
power-hungry nodes are replaced by a larger number of low-
power processors, datacenter heterogeneity improves quality-
of-service and reduces the frequency of violations to < 1%.

Indeed, ensuring service quality poses the greatest challenge
to heterogeneity in datacenters. Several design questions arise
when we consider how to populate a datacenter with diverse
processor types. First, what are the right core types for a
given set of applications? In this paper we trade-off efficiency
and performance by considering two existing processors: the
mobile-class Atom and the server-class Xeon (§4). Addition-
ally, we design and evaluate up to twelve cores that lie along
the efficiency-vs-performance spectrum (§5).

Second, how many of each processor type do we provision
in the datacenter? Using microarchitectural and datacenter
simulation, we evaluate performance and energy consumption
for mixes of Xeons and Atoms, and mixes of the twelve cores.

Third and equally important is the resource management
of heterogeneous components. How do we allocate heteroge-
neous processing resources to diverse applications? It turns

IThese are equal power datacenters, and there are more than five times
more mobile than server processors in the homogeneous configurations.

18%
High-performance Low-power [7%
16%
5%
14%
13%
12%
i1%
0%

Figure 1: Venn diagram that illustrates a datacenter design

space for low-power and high-performance proces-

sors; the intersection harbors heterogeneous de-
sign options. Colored points depict QoS violations.

Heterogeneous
Homogeneous

out that we cannot answer the first two questions without
first designing a solution to the third. A policy for match-
ing applications to processing resources is vital to ensuring
quality-of-service guarantees for datacenter applications.

Our effort to differentiate preferences for heterogeneous
cycles is driven by a desire to exploit low-power cores when
possible. Small cores are efficient but exact a task-specific
performance penalty. Thus, we encounter a tension between
design and management in heterogeneous systems. When de-
signing for efficiency, we would prefer to tailor processor mix
to task mix. Each task would run only on the processor that is
most efficient for its computation, but datacenter dynamics pre-
clude such extreme heterogeneity and its brittle performance
guarantees. In contrast, when managing for performance, we
would favor today’s homogeneous systems and suffer their
inefficiencies.

We strike a balance by moderating heterogeneity and in-
creasing manager sophistication. Using the market as a man-
agement mechanism, we explore types and ratios of heteroge-
neous processors as a coordinated study of this novel design
space. Balancing allocative efficiency loss against computa-
tional speed, our approach approximates complex heteroge-
neous hardware allocations by simpler, canonical ones. Doing
this well requires microarchitectural insight that properly cap-
tures software preferences for hardware. With such insight,
the market can quickly trade-off performance and efficiency
across heterogeneous processors.

2.2. Accommodating Architectural Heterogeneity

Up to 5x more efficient than big ones, small processor cores
are increasingly popular for datacenter computation [32].
Small cores are well balanced for the modest computational
intensity of simple web search queries, distributed memory
caching, and key-value stores [3, 32, 53]. Such research in

unconventional datacenter hardware has spurred broader com-
mercial interest [4, 12] and analogous research in other tech-
nologies, such as DRAM [45, 66].

Performance variations across processor types are well-
studied in architecture, yet such detail is abstracted away in
markets for systems. Since Sutherland’s market for a shared
PDP-1 [61], allocators have considered simple, exchangeable
slots of computer or network time. This limited model of
the architecture has persisted despite large strides in computa-
tional economies during the past two decades, most notably by
Waldspurger in 1992 [64], by Chase in 2001 [10], and Lubin
in 2009 [44]. Simply counting cycles is insufficient when the
value of each hardware cycle depends on software-specific
preferences.

The heterogeneity required for the largest efficiency gains
demands sophisticated architectural insight. For heteroge-
neous processors, performance differences depend on com-
puter architecture’s classical equation:

Tasks
Inst

Tasks Cycles o Insts

ey

X
Sec Sec Cycle

Cycles

To scale =5 —, we must consider software compute-memory
ratios and sensitivity to processor frequency. To scale (I:;iiz ,
we must consider software instruction-level parallelism and
its exploitation by hardware datapaths. And, if code is tuned
or re-compiled, we must also scale 1252,

Heterogeneous Processors and Hard Constraints. Some
processors may be incapable of providing the desired service.
By obtaining application performance characteristics, a re-
source manager can account for machine restrictions. For
example, the manager might determine the suitability of small
cores based on memory, network, or I/O activity. The mar-
ket uses profiling information to determine if an application
derives no value from certain processors. These hard restric-
tions are enforced by constraints when we clear the market by

solving a mixed integer program.

Heterogeneous Cycles and Soft Constraints. Suppose a
processor is suited to execute a task. Then service rate and
queueing delay are determined by core microarchitecture. For
compute-bound workloads, a cycle on a superscalar, out-of-
order core is worth more than one from an in-order core. How
much more depends on the task’s instruction-level parallelism.
Memory-bound tasks are indifferent to heterogeneous cycles.

To account for cycles that are not fungible, we introduce
scaling factors that translate task performance on heteroge-
neous cores into its performance on a canonical one. Appli-
cations constrained by memory or I/O will not necessarily
benefit from the additional compute resources of a big, out-of-
order core. On the other hand, a big core might commit 3 x
more instructions per cycle than a small core for applications
with high instruction-level parallelism.

We differentiate cycles from each core type with a vector
of scaling factors, K = (Kpig, Ksmaiz), that accounts for the

Market
(Datacenter Manager)

(Activity,, Valuen) Appa —| r«— Procy (Costy)

t«— Procy (Costy)

(Activitys, Valueg) Apps —*|

(Activityc, Valuec) Appc — - t«— Procy (Costy)

Bids (Proxy)
(493uddR3RQ) SYSY

(Activityp, Valuep) Appp —>| t«— Proc; (Cost;)

J

Figure 2: Market Overview.

application-specific performance variation of the two core
types. For example, an agent sets x = (1, %) for the application
with high ILP, and ¥ = (1, 1) for the memory-intensive job.

To calculate scaling factors, we rely on application profiling
data. In this paper, we assume that existing profilers provide
this data (see §7 for a survey of related work). Although more
advances are needed, existing profilers are sophisticated and
allow us to focus on the allocation mechanism.

3. The Market Mechanism

To ensure quality-of-service, we introduce a novel market
in which proxies, acting on behalf of applications, possess
microarchitectural insight. Heterogeneous system design al-
lows us to tailor resources to task mixes for efficiency. Yet
specialization increases performance risk and demands sophis-
ticated resource allocation. In this work, we balance efficiency
and risk by identifying datacenter designs that provide robust
performance guarantees within the market framework.

We present a market for heterogeneous processors that
builds on two prior efforts. Chase et al. manage homoge-
neous servers by asking users to bid on performance [10].
Lubin et al. extend this formulation with processor frequency
scaling, a novel modeling and bidding language, and a mixed
integer program to clear the market [44]. We start from the
latter market, which assumes fungible processor cycles, and
extend it to account for architectural heterogeneity.

Figure 2 illustrates such market mechanism with three op-
erations:: (i) hardware performance is evaluated to calculate
bids for each user application (buyer proxy), (ii) hardware effi-
ciency is used to calculate costs (seller proxy), (iii) a welfare
maximizing allocation is found (mixed integer program).

This approach has several advantages in our setting with
non-fungible cycles. First, proxies are made to account for
performance variation across heterogeneous cycles based on
instruction-level parallelism in the datapath. Second, proxies
will bid for complex, heterogeneous combinations of cores,
while hiding the complexity of the heterogeneous hardware
from users who are ill-equipped to reason about it. Lastly, an
optimizer maximizes welfare according to the submitted bids
when clearing the market and allocating resources.

PROXY INPUTS PROXY ANALYSIS
historical demand predict demand
/\t—l-,---a/\t—h)\t = f()\tfl,...,)\t,h)
-]
c
©
£ predict latency
[
T
¢ A¢ =TI #
time —In(1 - p)

T(p; Aty p) = e,

service level agreement
vV

AT T, predict utility
T,
F - U ()= (V oT)(n)
g (7 ,
o |
time - bids

Figure 3: Proxy Bids
3.1. Proxies and Value Analysis

In this paper, we present extensions for our novel setting, em-
bedding greater hardware insight into the market. Buyers are
task streams with diverse requirements and valuations. Sellers
are datacenters with processors that differ in performance and
energy efficiency. Proxies infer hardware preferences and bid
for candidate hardware allocations. Figure 3 summarizes the
role of the proxy.

Resource allocations are optimized periodically. Prior to
each period, each application’s proxy anticipates task arrivals
and estimates the value of candidate hardware assignments.
The bidding process has several steps: (i) estimate task arrival
distribution, (ii) estimate task service rates, (iii) estimate task
latency, and (iv) translate latency into bid.

Estimate Task Arrival Distribution. At the start of an
allocation period ¢, the proxy has historical task arrival rates
for h prior periods: Ay = (4_1,...,A—p). To estimate the
current period’s rate A;, the proxy fits a Gaussian distribu-
tion to the history and estimates task arrival rate by sampling
from N(E[Ay],Var(Ag)). Thus, we drive the market with a
predicted distribution of arrivals as in prior work [44].

Estimate Task Service Rate. To serve these arriving tasks,
an optimizer searches an allocation space of heterogeneous
cores. Prior efforts assume fungible processor cycles [10, 44],
an assumption that breaks under microarchitectural hetero-
geneity. In contrast, we scale each candidate allocation into a
canonical one based on application-architecture interactions.

Suppose we have n core types. Let ¢ = (¢1,...,qn) de-
note a heterogeneous allocation of those cores and let Kk =
(Kki1,...,K,) denote their task-specific performance relative
to a canonical core. Let Q denote an equivalent, homoge-
neous allocation of canonical cores. Finally, P denotes task
performance (i.e., throughput) on the canonical core. In this
notation, the canonical allocation is Q = x” ¢, which provides
task service rate 4 = PQ.

The system can determine P and x with little effect on
performance. The proxy profiles a new task on the canonical
core to determine P and initializes k; = 1, i€[1,n] to reflect
initial indifference to heterogeneity. As allocations are made
and as tasks are run, the proxies accrue insight and update x.
In steady state, k will reflect task preferences for hardware.
With many tasks, sub-optimal hardware allocations to a few
tasks for the sake of profiling have no appreciable impact on
latency percentiles.

Estimate Task Latency. Service rate determines task la-
tency. Agents estimate M/M/1 queueing effects, which is
sufficiently accurate in our setting because the coefficients of
variation for inter-arrival and service times are low; see $6 for
details. We estimate latency percentiles with Equation (2) and
use the 95" percentile as the figure of merit, p = 0.95.

T=-In(1-p)/(u—-2) (@)
| =24 —In(1-p)/T 3)

p-th latency percentile |

service rate inflections

Translate Latency into Bid. Latency determines user
value. To faithfully represent their users, proxies must create
a chain of relationships between hardware allocation, service
rate, response time, and dollar value (Equations (4)—(6)).

datacenter profiler | Py : {Aw,} — {service rate} 4)

datacenter queves | T : {service rate} — {latency} ®)

wservalwe | V:{latency} — {dollars} (6)

marketwetrwe | W =Y (V oTo Pa(hwa)) — C(hw)(7)
a€A

A profile P, maps proxy a’s hardware allocation to an
application-specific service rate. A queueing model T maps
service rate to latency. Finally, the user provides a value func-
tion V, mapping latency to dollars. Note that only V requires
explicit user input.

These functions are composed when proxy a bids for a
candidate hardware allocation: Vo T o P, (hw,). To compose
Vo T, the proxy identifies inflections in the piecewise-linear
value function V. Then, the proxy translates each inflection
in time 7" into an inflection in service rate fI by inverting the
queueing time equation (Equation (3)). Thus, service rate
maps to dollar value. Note that service rate inflections depend
on the arrival rate A, of tasks. To accommodate load changes,
the proxy determines new inflection points for each period.

3.2. Seller Cost Analysis

For an accurate estimate of electricity use, the market requires
information about server and processor power modes from
the datacenter [47, 48]. For example, we model server power
modes as three possible states: active, idle (but in an active
power mode), and sleep.

In Equation (8), the datacenter accounts for the number of
servers (n*) in each mode and power (P*) dissipated over the
allocation time period (A) [44]. Servers that transition between

[I Xeon [Atom | [[Xeon [Atom | [[[Proc Sensitive (PS) [Proc Insensitive (-PS) |
Number of Nodes 0—160 0—225 Core sleep oW P — task profile 70 50
Number of Cores 4 16 Core idle 7.8 W 0.8 W (Mcycles/task)
Frequency 2.5 GHz 1.6 GHz Core active 156 W 1.6 W A — peak load 1000 500
Pipeline 14 stages 16 stages Platform sleep 25 W (Ktasks/min)
Superscalar 4 inst issue 2 inst issue Platform idle 65 W V - value $5000 if T<10ms $4500 if T<10ms
Execution out-of-order in-order Platform active 65 W ($/month) $0 if T>80ms $0 if T>80ms
L1 I/D Cache 32/32KB 32/24KB Sleep — Active 8 secs, $0.05 K — scaling factor kx = 1.0 kx = 1.0
L2 Cache 12MB, 24-way | 4MB, 8-way Active — Sleep 6 secs, $0.05 Ka =0.33 Ky =1.0

Table 1: Architecture parameters with for Table 2: Power modes and pa- Table 3: Application Characteristics. = For a task

Xeons, Atoms [20, 21, 31]. rameters [32]. stream, T is 95th percentile queueing time.

E = (napact +niPia’le +nsPsleep) A+I’lis (Pidle(sis +Psleep(A7 5is>) +n (Pact6sa +Pact (A . 6sa)) (8)

sleep—active

no power transition idle—sleep

modes incur a latency (0*). For example, a server that enters
a sleep mode will dissipate P/ over 8* as it transitions and
dissipate P*/“P for the remaining A — §%. Similarly, a server
that wakes from sleep will require 6% during which P is
dissipated but no useful work is done. Energy is multiplied
by datacenter power usage effectiveness (PUE) and then by
electricity costs [6].

3.3. Welfare Optimization

Proxies submit complex bids for candidate hardware allo-
cations on behalf of users. Sellers submit machine profiles
and their cost structure. The market then allocates processor
cores to maximize welfare, or buyer value minus seller cost
(Equation (7)). Welfare optimization is formulated as a mixed
integer program (MIP), which determines the number and
type of cores each user receives. For MIP details, see Lubin’s
formulation [44]. Allocations are optimized at core granu-
larity but each core is ultimately mapped to processors and
servers in post-processing. For example, active and sleeping
cores cannot map to the same server if machines implement
server-level sleep modes.

Heterogeneity increases optimization difficulty. In a naive
approach, value is a multi-dimensional function of hetero-
geneous quantities ¢ = (q1,...,q,). However, the proxies
would need to construct piecewise approximations for multi-
dimensional bids, which is increasingly difficult as n grows.
Each new core type would add a dimension to the problem.

Scaling to a canonical resource type improves tractability
by imposing an abstraction between user proxies and data-
center hardware. By encapsulating this complexity, the proxy
determines the relative performance of heterogeneous quanti-
ties k = (k1,..., ;) and computes Q = k' q. Bids for Q are
one-dimensional.

4. Managing Heterogeneous Processors

For a heterogeneous datacenter with big Xeon and small Atom
cores, we exercise three key aspects of the economic mech-
anism. First, heterogeneous microarchitectures are well rep-
resented by Xeons and Atoms. Cycles from in-order and

out-of-order datapaths are not fungible. Second, heteroge-
neous tasks contend for these cycles with different preferences
and valuations. Third, large processor power differences are
representative of trends in heterogeneity and specialization.

4.1. Experimental Setup

Our evaluation uses an in-house datacenter simulator. A proxy
predicts demand from history, predicts latency using a closed-
form response time model, and constructs a bid. The frame-
work then clears the market, identifying welfare-maximizing
allocations by invoking CPLEX to solve a MIP. The MIP so-
lution is an allocation for the next 10-minute interval. For
this interval, the simulator uses response time models, cost
models, application demand, and the allocation to compute
value produced and energy consumed. The simulator does ex-
actly what a real cluster manager would do, providing hints at
future prototype performance. The simulator does not perform
per-task microarchitectural simulation, which is prohibitively
expensive.

Tables 1-2 summarize platform parameters. The hypo-
thetical sixteen-core Atom integrates many cores per chip to
balance the server organization and amortize platform com-
ponents (e.g., motherboard, memory) over more compute re-
sources [32, 59]. Xeon core power is 10X Atom core power.
Servers transition from active to sleep mode in 6 secs and from
sleep to active in 8 secs, powering off everything but the mem-
ory and network interface [1, 18]. Power usage effectiveness
(PUE) for the datacenter is 1.6, an average of industry stan-
dards [15, 62]. Energy costs are $0.07 per kWh, an average of
surveyed energy costs from prior work [56].

We explore a range of heterogeneous configurations, vary-
ing the ratio of Xeons and Atoms. The initial system has 160
Xeon servers, a number determined experimentally to accom-
modate the load of the evaluated applications. We sweep the
Atom to Xeon ratio by progressively replacing a Xeon with the
number of Atom servers that fit within a Xeon power budget.
A 20kW datacenter accommodates 160 Xeons, 225 Atoms, or
some combination thereof.

Workloads. We study tasks that are generated to follow
a time series, which is detailed in Table 3 and illustrated in

N

®

e

o))
N

Transition Cost ($)

N

n

800
1000 0:160
10 Minute Interval

Load per Period (cycles/period)

2

200 400 600 800 1000
Simulation Time (10 min intervals)

(a) Transition Cost

Figure 5: Seller costs due to (a) energy and (b) transition penalty, as the ratio of Atom:Xeon
processors varies. Energy cost corresponds closely to application behavior
across datacenter configurations. Ridges in transition cost are due to a $0.05

Figure 4: Demand for processor
sensitive (PS) and in-
sensitive (—PS) appli-

112:80 600
56:120

Atom:Xeon Ratio

3

o
o

Energy Cost ($)

I

200

168:40 400

225:0
168:40

112:80

800 56:1
1000 0:160

10 Minute Interval Atom:Xeon Ratio

(b) Energy

cations. penalty per transition that accounts for increased system wear-out [24].
N N n
E 80 — —PS Eso —PS Eso —psS
.d§, 70 E ""_\PS .q§> 70 ""_|PS lg 70 ""_|PS
60 E F 60 F 60
<] © ©
= 50 . i = 50 = 50 i
2 401 | | 2 40 " 2 40 |
’g 30t E, 30 E 30

] Il

529 i'@l 520 J 520 :
= 0% T 1o A
§ 0 1 ot § Qlecse _f "“L. g 0 eea? W

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

10 Minute Interval
(a) 0 Atoms::160 Xeons

10 Minute Interval
(b) 147 Atoms::55 Xeons

10 Minute Interval
(c) 225 Atoms::0 Xeons

Figure 6: 95th percentile waiting time for (a) only Xeons, (b) mix of Atoms and Xeons, and (c) only Atoms. Heterogeneous system
(b) violates performance targets less often than homogeneous configurations (a), (c).

Figure 4. We simulate a week of task load that is a composite
of two sinusoids, one with a week-long period and one with a
day-long period. The sinusoid determines the average arrival
rate around which we specify a Gaussian distribution to reflect
load randomness. Such patterns are representative of real-
world web services [47].

Applications specify value (SLA) as a function of 95™ per-
centile response time. Value degrades linearly up to a cut-off
of 80ms, after which computation has no value. The value
functions express priorities for applications. Since the market
maximizes welfare, users with higher value per requested cycle
are more likely to receive hardware. The economic mechanism
does not accommodate under-bidding and valuations must at
least cover the cost of computation.

4.2. Architectural Preferences

We consider two workloads that contend for Xeons and Atom
servers, yet value the cores differently. The first is a processor
sensitive (PS) application that prefers cycles from the high-
throughput Xeon and values an Atom cycle less, scaling its
value down by kK = % The second, on the other hand, is a
processor insensitive (—PS) application indifferent between
the two processor types.

The architecture scaling factors k are consistent with prior

datacenter workload characterizations. Reddi et al. find C:[;‘Cslte

on Atom is 33% of that on Xeon for Microsoft Bing web
search [32]. Lim et al. find performance on the mobile-class
Intel Core 2 Turion is 34% of that on the Intel Xeon [42].
These applications exhibit instruction-level parallelism, which
benefits from wider pipelines and out-of-order execution in
server-class cores: Ky = 1, k4 = %

In contrast, =PS does not benefit from extra capabilities in
server-class processors and is representative of web, file, or
database servers [13, 34]. Andersen et al. propose embedded
processors for distributed key-value store servers [3]. Servers
that deliver Youtube-like traffic can run on small cores with
negligible performance penalties [42]. Higher processor per-
formance does not benefit such workloads. —=PS applications
are indifferent to Xeons and Atoms: kxy = k3 = 1.

4.3. Improving Welfare

A heterogeneous mix of Xeons and Atoms enhances welfare.
To understand this advantage, we study homogeneity’s limita-
tions on both sides of the ledger: value and cost.

Value. A Xeon-only system provides less value because it
cannot meet performance targets during traffic spikes. Users
derive no value when latencies violate the target (waiting time
< 80ms), which happens in more than a third of the allocation
periods. Periods of low welfare arise directly from periods of
poor service quality; in Figure 6a see periods 130-380.

o
=]
o
=]

50

% of Xeons to PS
o
o

1000

o % of Xeons to -PS

n
a

0 0
225:0 800 :0
168:40 600 168:40
400 112:80

112:80
56:120
Atom:Xeon Ratio 0:160 10 Minute Interval

(a) Xeon Allocation for PS

Q
(=]

% of Atoms to PS

1000

no % of Atoms to -PS

0
25:0
600 168:40
400 112:80

800

56:120
10 Minute Interval

(d) Atom Allocation for PS

56:120
Atom:Xeon Ratio 0:160

(b) Xeon Allocation for —PS

Atom:Xeon Ratio 0:160

(e) Atom Allocation for —PS

o
=)

1000

% of Xeons to Sleep
(42
o

N

0 1000
5:0 0
600 168:40
400 112:80

600
400

10 Minute Interval

56:120
10 Minute Interval Atom:Xeon Ratio 0:160

(c) Xeon Sleep

i

no% of Atoms to Sleep

N

1000 0
0 5:0

600 168:40
400 112:80

1000
0

600
400
56:120

10 Minute Interval Atom:Xeon Ratio 0:160

10 Minute Interval

(f) Atom Sleep

Figure 7: Allocation measured in fraction of configured nodes as Atom:Xeon ratio varies. For example, a 50% Atom allocation
in a A:X=168:40 configuration maps to 84 Atom nodes. Atom and Xeon cores at each datacenter configuration may be
allocated to the processor sensitive (PS), processor insensitive (—PS), or neither (sleep) application.

As we replace Xeons with Atoms, we increase system ca-
pacity within the 20kW budget. Each four-core Xeon server
can be replaced by 1.4 sixteen-core Atom servers. Equiva-
lently, each Xeon core is replaced by 5.6 Atom cores. And
if we account for the frequency difference, each Xeon cycle
is replaced by 3.6 Atom cycles. This extra capacity enhances
value and welfare during traffic peaks even after scaling down
core capability by k.

Moreover, applications successfully bid for preferred archi-
tectures. As Xeons become scarce, PS receives more of its
preferred Xeons at the expense of —=PS, which is indifferent
between Xeons and Atoms. As Xeons are replaced by Atoms,
Figure 7a shows the market allocating a larger fraction of the
remaining Xeons to PS thus improving its response time. Si-
multaneously, Figure 7b shows the market allocating fewer
Xeons to =PS.

Cost. On the other side of the ledger, energy costs degrade
welfare. Cores incur transition costs when they change power
modes. During a transition, cores dissipate power but do not
add value. As shown in Figure 5a, a charge is imposed for
every transition to account for increased wear and reduced
mean-time-to-failure as machines power-cycle [24].

Per server, Xeons and Atoms incur the same transition cost.
Yet the Atom-only system incurs larger transition costs than
alternate systems as it manages more servers. Since an Atom
system contributes fewer cycles and less value than a Xeon
server, such costs reduce allocation responsiveness. This iner-
tia of the Atom-only system causes a response time spike at
the first load peak (period 200) but not the second (Figure 6c¢).

4.4. Balancing Atoms and Xeons

Number of Atoms. Given a mix of applications and hardware
preferences, there exists a maximum number of Atoms that can
be usefully substituted into the system. Beyond this number,
additional Atoms are not useful to either application, leaving
the absolute number of allocated Atoms unchanged.

In our datacenter, the maximum number of useful Atom
servers is 147. This maximum marks a point of diminishing
marginal returns for substituting Atoms. Beyond this point,
additional Atoms are put to sleep (Figure 7f) and the fraction
of Atoms allocated to PS and —PS decline (Figure 7d and
Figure 7e, respectively). In fact, adding Atoms beyond this
point can harm welfare as transition costs are incurred to turn
them off. This cost produces the highest ridge of Figure Sa,
where spare Atom servers are transitioned to sleep.

Number of Xeons. A related conclusion can be made for
Xeons: there exists a minimum number of Xeons necessary
to provide the PS application adequate performance. Beyond
this point, as Atoms are added and Xeons are removed, the
number of Xeons available to be allocated to PS steadily de-
creases — Atoms are used for part of the processor-sensitive
computation (Figure 7a and Figure 7d, respectively), decreas-
ing performance. As we replace most of the Xeons in the
system with Atoms, the few Xeons remaining in the system
are either allocated to PS or put to sleep during PS activity
troughs (Figure 7a and Figure 7c, respectively). Clearly, as
they become scarce, the remaining Xeons are increasingly
precious to PS.

Based on this, our datacenter should have at least 55 Xeon

servers. This minimum marks a point of increasing marginal
penalties incurred when removing Xeons. Strikingly, this
minimum occurs in a heterogeneous configuration with 55
Xeons and 147 Atoms, which coincides with our analysis for
the maximum number of Atoms.

Max/Min Heterogeneity. We refer to this balance of 147
Atom and 55 Xeon servers as the max/min configuration for
the datacenter. This heterogeneous configuration provides
better service quality and fewer SLA violations. As seen in
Figure 6b, this mix of Xeons and Atoms provide queueing
times that are stable and far below the 80ms cut-off.

For contrast, consider Figure 6a and Figure 6¢. 38% and
19% of allocation periods violate the 80ms cut-off for PS
queueing time in Xeon- and Atom-only systems, respectively.
In the Xeon-only system, —PS suffers longer waiting times
due to contention with PS for limited computational capacity.
In the Atom-only system, —PS experiences volatile waiting
times during time periods 147-217.

Thus, by replacing Xeon with Atom nodes within a fixed
power budget, the mixed configurations increase the system’s
computational capacity. This clear benefit of specialization
will play an important role towards sustaining the rapidly
growing demand on datacenters.

4.5. Saving Energy

The allocation mechanism activates servers only in response
to demand. The datacenter saves energy by putting unneeded
servers to sleep. As shown in Figure 8, a homogeneous Xeon-
only datacenter saves 900kWh over a week of simulated time.

When Atoms are first introduced, cycles become scarce and
fewer servers exploit sleep modes; the datacenter saves only
600kWh. Note, however, that the heterogeneous datacenter
saves this energy while simultaneously improving service qual-
ity (Figure 6). Energy savings from server activation plateau
at 1200kWh for most heterogeneous systems, including the
max/min configuration. While an Atom-only system could
save up to 1280kWh, it would sacrifice service quality and
violate performance targets during the PS activity trough.

Datacenters may prefer to schedule low-priority batch jobs
rather than exploit sleep states [7]. Presumably, the value of
batch computation exceeds servers’ operating and amortized
capital costs. Spot prices for Amazon EC2 are one measure
of these costs. Given batch jobs with sufficient value, a policy
that replaces sleep modes with active batch computing will
only increase welfare.

Even in such datacenters, heterogeneity improves efficiency.
A mix of active Xeons and Atoms consumes less energy (Fig-
ure 5b). The max/min configuration consumes 4.0kWh per
allocation period. In contrast, the Xeon-only system consumes
5.4kWh yet exhibits more volatile service quality.

4.6. Evaluating Optimization Time

Given that the market and proxy implementation include all
the elements required in a real system, market clearing perfor-
mance is important. Across allocation periods in all datacenter

1300, s 7

= 1200 sosasseretee® oeny ee,
0.75[]

Z 1100 -
o

1000
H ‘ 0.5
@ 900}s
3 .

@ 800 0.25 — Atom
a0 T e Max/min
700} e ——Xeon

.
600760 561120 112:80_168:40 225:0 % 10

4 6
Atom:Xeon Ratio Solve Time (sec)

Figure 8: Energy saved
from sleep modes.

Figure 9: Solve time CDF
across all periods.

configurations, solve time (wall clock) varies but is less than
800ms for 98% of allocation periods. All other periods clear
the market in less than 10s as shown in Figure 9. Solve time in-
creases when resources are scarce and contention is high. And
contention is highest in a Xeon-only system, which provides
the worst service quality.

We implement the market and proxy in Java as it would
be in a real distributed system. Inputs are task arrival history
and user value functions. Outputs are resource allocations,
which maximize welfare. Welfare is optimized with a mixed
integer program, which is quickly solved to exact optimality
by commercial CPLEX 12.1 MIP solver codes despite the
formally NP-Hard nature of the problem.

We obtain this computational speed by representing hetero-
geneous resources as scaled canonical ones, and thus keeping
the MIP tractable. Further, in our MIP formulation the task ar-
rival rate and the number of servers in the system simply affect
coefficients, not MIP computational complexity. However, the
number of user applications and heterogeneous resource types
does impact MIP complexity, and for sufficiently complex
data centers it is possible that CPLEX might solve only to
approximate optimality within time allotted for computation.
Fortunately, previous work has shown that such approximate
solutions are efficient with high probability [44].

5. Increased Processor Heterogeneity

Increasing processor diversity allows for tailoring datacenter
resources to the application mix. In this section we investigate
the design space of sets of diverse processor types, when the
goal is to obtain an effective mix within a datacenter. To do so,
we cluster processor/core designs and identify representative
individuals. We then study combinations of these cores for
datacenters that span a spectrum of heterogeneity.

5.1. Experimental Setup

Atom efficiency is derived from three key design elements:
static instruction scheduling, narrower issue width, and lower
frequency. We define a space around these elements, produc-
ing twelve designs with parameters in Table 4. We simulate
these designs with the gem5 cycle-accurate simulator in syscall
emulation mode [8].

For this experiment, we consider the preferences of SPEC
CPU2006 applications on heterogeneous processors. These

[[[iolwl0 [iolw24 [io4w24 [oo6w24 | | [[Tibg [Tom |

| [Ouworoder | Tower JLRem B8 [18 | B [6 J [P ok profle MeyelesTasy &7 [19

Clock [1.0GHz | 24GHz [10 [24 Area (mm’) e /month) -

Wi 5 ¢ s 1214 Core [[1231 | 1231 | 1731 | 3689 il O $5000 | $2500

ROB 102 | 320 | 342 - Die]| <22 if T>160ms $0 $0

RF 80 | 120 | 160 - Power (W) % scaling factor

LIL$ 64 KB 4-way 32 KB 4-way Core 1.10 263 [840 [2810 Kiotwio 0.50 1.45

LID-$ 64 KB 4-way 32 KB 4-way Sys 65.00 Kiolw24 0.40 1.09

2% 4 MB 8-way T MB 8-way Tot 85 [114] 168 [235 Kiodw24 0.56 1.26

Kootw24 1.00 1.00

Table 4: Parameters for the twelve Table 5: Area and power estimates for four

cores simulated in gem5. core types.
benchmarks are sensitive to processor choice, and we study
the opportunity of using low-power cores even for applications
with high instruction-level parallelism. We simulate 100M
instructions from gobmk, hmmer, h264ref, mcf, libquantum,
bzip2, sjeng, gcc, xalancbmk, milc, gromacs, namd, calculix,
deallll, soplex, and Ibm. Applications are cross-compiled into
ALPHA with level -O2 optimizations.

These architectures and applications offer a wide range of
performance scaling factors for evaluating heterogeneity. The
market allocates resources for streams of computational tasks.
We define a stream for each SPEC application with service-
level agreements defined in Table 6, which shares parameters
from §4 where possible.

5.2. Architectural Preferences

Only a subset of the twelve cores is necessary to reap the
efficiency of heterogeneity. To identify this subset, we cluster
cores with similar performance for the application suite. For
each core, we define an n-element vector specifing its per-
formance for n applications. We cluster these vectors with
multi-dimensional, hierarchical clustering [55]. In this for-
mulation, each application adds a dimension. Hierarchical
clustering constructs a dendrogram that quantifies similarity
using Euclidean distance. By examining this tree at different
levels, we choose results for a particular number of clusters k.

Figure 10b shows k = 4 clusters. The twelve original cores
are ordered by increasing power on the x-axis. For each core,
we plot the performance for various applications. Across the
application suite, cores in the same cluster provide similar
performance. From each cluster, we select the core with the
lowest variation in performance (Table 5). We refer to cores
with the tuple: [IO/OO][width][frequency]. For example,
101w10 denotes a 1-wide, in-order core with a 1.0GHz clock.

We organize these cores into servers that use equal-area
processors; area and power are estimated with McPAT models
[40], and calibrated to real Xeon and Atom measurements.
We normalize silicon area since it is the primary determinant
of a processor’s marginal cost. We align server power with
estimates from related work [32].

Finally, we determine the number of servers that fit in a
15KW datacenter. We explore a mix of heterogeneous pro-
cessors and servers. Because a full sweep of heterogeneous
combinations is prohibitively expensive for more than two
core types, we simulate datacenters comprised of %, %, %, or
entirely of each core type within the power budget.

Table 6: Application characteristics.

g Q libg [Ibm + SPEC average Q1i2+3%x4

g N XX

225 &0 35 ¥ X

g, + 3 XXX

©

3 + ©2.5 +. X % i ;

a's % g X X

s +. 7T i 2 % NxX o

o i z ud

g +<> o $¢ '$"‘I’ 1.5 T = %-x-%%

o

£05 $ X X

3 Q¢ 6 1 L ¢

2]

g PSP «\"’“.x\'sé‘%‘”.xf" 054\ «\’P SESEESS S

_é‘q’oo’é"éﬁx"' *’Q’q’ o"o'veoc’oo Sﬁxé’ L L
P $ R A ~ 0 0" O

(a) IPC scaling factors (b) Core clustering k=4

Figure 10: gem5 simulation results, cores on the horizontal
axis are in order of increasing peak dynamic power.

5.3. Improving Service Quality

Increased processor diversity benefits service quality. Figure
11 compares the number of allocation periods where response
time exceeds target cutoffs on each datacenter configuration,
which are ordered by increasing computational capacity on
the x-axis. Data is shown for libquantum and Ibm, which
are representative of diversity in the broader application suite
(Figure 10a).

As in the Xeon and Atom case, a homogeneous system
that uses the highest performing core provides the fewest
number of these cores within a limited power budget. In fact,
homogeneous systems of any core type violate performance
targets for 20% or more of the allocation periods.

Replacing the 006w24 core with io*w** cores produces a
configuration with strictly more compute cycles available per
unit time. However, these cycles do not necessarily translate
into better performance. Cycles are scaled by diverse factors
that reflect heterogeneous preferences for hardware.

On its own, each core type is inadequate. But as part of a
heterogeneous mix, diverse cores can improve service quality.
Specifically, the worst of the homogeneous systems uses only
006w24 cores. Yet 006w24 cores are included in more than
half of the most effective heterogeneous mixes, which produce
the fewest service violations.

This observation showcases the complexity of navigating a
heterogeneous design space. Had oo6w24 been discarded as
a candidate design due to its poor performance in a homoge-
neous setting, several heterogeneous systems that include this
core type would remain undiscovered.

More generally, combinations of iolw24, i04w24, and
006w24 provide the best service quality for libquantum and

& O @
o © o
S o o

Num RT Violations
n
(=}
(=]

(=]

io4dw24

iolw24
Il libq
[Jibm 18%
16%
14%

12%

RPN AR A
W0 000, ¥ 0]
%‘%59 R

3

Figure 11: Number of 95t percentile waiting time violations. The horizon-
tal axis indicates the number of servers of each type as the tuple

D> D D AON

0 A 20 ;O 50 0

DN AN O AN
ARl
&8

10%
8%

A 6%

4%

2%

[io1w10].[io1w24].[io4w24].[oo6w24]. Prepended letters mark the Figure 12: Sum of libq and Ibm waiting time vio-

corresponding region in Figure 12.

Ibm. For example, a system with 33 iolw24 cores and 67
i04w24 cores (00.33.67.0 in Figure 11) has the fewest re-
sponse time violations. Our applications prefer designs with
deeper pipelines and higher frequencies. However, if applica-
tions had exhibited complex control flow and poorly predicted
branches, shallower pipelines would have been preferred.

5.4. Balancing Core Types

Figure 12 depicts the datacenter design space for four pro-
cessor types. Colored dots show the percentage of allocation
intervals that incurred waiting time violations for a system
servicing libquantum and lbm task streams. Configurations in
regions A-D are homogeneous. And those in regions E-J, K-N,
and O are heterogeneous combinations of two, three, and four
core types respectively.

Microarchitectural Heterogeneity. Various combinations
of iolw24, i04w24, and 0o6w24 provide attractive service
quality. Heterogeneity with design elements that span in-
struction scheduling and superscalar width are best suited to
accommodate the diversity of libquantum and Ibm. In contrast,
despite the power savings, the decreased performance of a
shallower pipeline is unattractive for these applications.

The design space has a few unambiguous conclusions. A
mix of i04w24 and iolw?24 cores performs well. This intersec-
tion, region G, contains the configuration with the best service
quality, incurring quality-of-service violations for 1.6% of the
time intervals. The two other points in this region are almost
as good at 1.7%.

Also clear, configurations that include iolw10 unanimously
provide poor service quality. Its ellipse is solely populated by
light colored points, marking waiting time violations for up to
15.5% of the experiment. Datacenter configurations within this
ellipse can likely be trimmed from a subsequent, fine-grained
sweep of remaining regions. In general, discarding core com-
binations is not straightforward because of inconsistent trends
like those in regions E and L.

Number of Heterogeneous Microarchitectures. Hetero-
geneous design space exploration is iterative and expensive.
For tractability, this study has assumed four heterogeneous
core types but this choice might also be parameterized to pro-
duce subtle effects.

If we had chosen k = 3 clusters, i01w10 would have been
absorbed into the io1w24 cluster. Moreover, iolw10 would

10

lations, shown on a Venn diagram.

have replaced io1w24 as the representative core from this clus-
ter since we select cores to minimize performance variation.?
In this scenario, regions E, G and L of Figure 12 would not
have been explored. Missing the opportunity to explore G is
particularly unfortunate since its heterogeneous configurations
produced the best service quality.

Choosing more clusters k > 4 might have produced other
trade-offs. But related work in heterogeneous microarchi-
tectures have illustrated diminishing marginal returns, which
coincidentally arise as heterogeneity increases beyond four
designs [38]. Moreover, datacenters with more than four core
types may produce impractical capital and maintenance costs.

This complex design space and its sophisticated trade-offs
call for further innovation in the heuristics and metrics that
guide optimization. The benefits to specialization of datacenter
resources are manifold, and the market mechanism provides
necessary abstractions and management capabilities.

6. Qualifications and Assumptions

We assume users submit jobs that are comprised of tasks.
For these tasks, we assume the 95" percentile response time
determines service quality. This task stream model does not
extend naturally to batch jobs with deadlines. Accommodating
such workloads requires further research, especially since a
single job offers no representative task to profile.

In our case studies, the k vectors collected from simulation
do not account for performance degradation due to task co-
location. Mars et al. [46] propose a technique for mapping
applications to machine groups such that co-located tasks
incur minimal interference. With such schemes, contention is
modest and profiling k vectors is straight-forward. Without
such schemes, more sophisticated profilers to accommodate
contention effects will be needed.

We also assume M/M/1 queues are sufficient approxima-
tions for datacenter dynamics. M/M/1 models make three
assumptions: (i) inter-arrival times are distributed exponen-
tially; (ii) service times are distributed exponentially; (iii) a
single server executes tasks. The first two assumptions break
when the coefficient of variation C, = ¢/ is large. However,
we find C, to be small for inter-arrival times. Although C,

2 Alternatively, we could limit the clustering methodology to microarchi-
tecture alone and apply dynamic frequency scaling to include both designs.

increases with job and task heterogeneity, our framework uses
different queues for different jobs to limit task heterogeneity.
Thus, C, ~ 1 for inter-arrival times. Moreover, inter-arrival
times for university datacenter services and Google queries
follow a near-exponential distribution [49, 47].

For service times, we compare an exponential distribution
(M) against a general distribution (G). A standard queueing
time approximation indicates that M/M/1 is close to M/G/1
when C, =~ 1.3 Assumptions of exponential distributions break
when C, is large (e.g., 20 or 100) [25]. However, in our simu-
lations of heterogeneous processor cores with more realistic
hyperexponential distributions, we find that C, for service
times is often near 1 and well below 2, indicating M/M/1 is a
good approximation for M/G/1, at least in expectation. More-
over, exponentially distributed service times have been applied
in prior computing markets [10, 44].

Finally, the number of parallel servers (M/M/k versus
M/M/1) affects the probability that a task must wait in the
queue. We assume a single server whose capability (i.e.,
throughput) increases with the hardware allocation. However,
with only one server, tasks queue with high probability. This
assumption means our queueing time estimates are pessimistic,
which lead to conservative hardware allocations where the
market may over-provision resources. A more accurate model
with parallel servers would only reduce queueing times and
further improve our market’s efficiency.

7. Related Work

Since the advent of chip multiprocessors, small and efficient
processor cores have been studied for datacenters. Piranha,
Niagara, and scale-out processors integrate many small cores
for throughput [5, 13, 34, 43]. Server efficiency also benefits
from re-purposing processors originally designed for mobile
platforms [32, 33, 42]. These efforts illustrate small-core ef-
ficiency for memory- and I/O-bound tasks, and warn about
performance penalties for more complex computation. In-
deed, microarchitecture increasingly affects datacenter com-
putation [16]. Our market is a step toward managing heteroge-
neous microarchitectures in datacenters.

Heterogeneity. Our treatment of heterogeneity focuses on
diverse core microarchitectures and their mix in datacenters.
Prior work studied core heterogeneity in chip multiproces-
sors [11, 35, 36, 38, 41] but does not identify the optimal
number of cores for each type in a large system as we do.
Other studies accommodate differences in serial and parallel
code portions [26, 60] or devote an efficient core to the operat-
ing system [50]. In contrast, we consider a more general mix
of datacenter computation.

Prior work in heterogeneous datacenters studied high-
performance processors from different design generations or
running at different clock frequencies [46, 51]. In contrast,
our heterogeneous cores occupy very different corners of the

11

design space. Efficiency gains are larger but so is performance
risk. Mitigating risk, we make novel contributions in coordi-
nating core design, core mix, and resource allocation.

In distributed systems and grid/cloud computing, prior work
emphasized virtual machine (VM) and/or software hetero-
geneity. CloudSim simulates federated datacenters with local,
shared, and public VMs that might differ in core count or
memory capacity [2, 9, 63]. And prior work matched hetero-
geneous software demands (e.g., from Hadoop tasks) with
heterogeneous VMs [22, 39]. Such work occupies a differ-
ent abstraction layer, neglects the processor microarchitecture,
and complements this work.

Resource Allocation. Early computational economies fo-
cused on maximizing performance in shared, distributed sys-
tems [17, 29, 61, 64]. Chase et al. extended these mechanisms
to account for energy costs [10]. Lubin et al. further accom-
modated dynamic voltage/frequency scaling in datacenter mar-
kets [44]. This prior work is agnostic of microarchitectural
differences and their effect on instruction-level parallelism.
Addressing this limitation, we present a multi-agent market
that navigates non-fungible processor cycles.

Prior studies relied on greedy solvers, allocating cores to
tasks in their queued order and provisioning heterogeneous
cores in a deterministic fashion (e.g., low-power cores first)
[19, 51, 58]. Both Chase and Lubin show greedy solvers
are less effective than markets for improving service time
and reducing cost. Like Lubin [44], we use a mixed integer
program to find exactly optimal allocations, but approximate
methods like gradient ascent [10, 46] may also apply.

We optimize welfare and neglect fairness, which is increas-
ingly important in federated clouds. Dominant resource fair-
ness accommodates heterogeneous demands for multiple, com-
plementary resources (e.g,. processors and memory) in a
shared datacenter [22]. However, maximizing welfare and
fairness in this setting are mutually exclusive [54]. Navigating
conflicting optimization objectives is important future work.

Profiling. Obtaining application preferences is trivial if
users explicitly request particular hardware resources. Clouds
offer a menu of heterogeneous virtual machine types, which
differ in the number of compute units and memory capacity [2].
Similarly, recent efforts in datacenter management assume that
users explicitly request processors and memory [22, 27].

As heterogeneity increases, users or agents acting on their
behalf rely on profiling tools that measure software sensitiv-
ity to hardware differences. These tools include gprof [23],
VTune [30], or OProfile [52]. At datacenter scale, profiling
every application on every node is infeasible and sampling
is required. For example, the Google-Wide Profiling infras-
tructure periodically activates profilers on randomly selected
machines and collects results for integrated analysis [57].

Given samples, inferred statistical machine learning models
might predict scaling factors as a function of software char-
acteristics and hardware parameters [65]. Such models might
be trained with profile databases, like Google’s, to produce

scaling factors. Such a capability requires integrating two
bodies of related work in microarchitecturally-independent
software characteristics and statistical inference [14, 37].

8. Conclusion

Collectively, our results motivate new directions in heteroge-
neous system design and management. Within datacenters, we
find opportunities to mix server- and mobile-class processors
to increase welfare while reducing energy cost. Architects may
design heterogeneous systems but they cannot ignore their de-
ployment. Market mechanisms are well suited to allocating
heterogeneous resources to diverse users. As we continue to
build bridges between computer architecture and economic
and multi-agent systems, enhancing allocation procedures with
greater architectural insight is imperative.

Acknowledgements

This work is supported, in part, by NSF grant CCF-1149252
(CAREER), a Google Faculty Research Award, and the Duke
Wannamaker Foundation. This work is also supported by
STARnet, a Semiconductor Research Corporation program,
sponsored by MARCO and DARPA. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of these sponsors.

References

[1] Y. Agarwal et al. Somniloquy : Augmenting Network Interfaces to Reduce PC
Energy Usage. In NSDI, 2009.

Amazon. Elastic cloud computing. http://aws.amazon.com/ec2/.

D. G. Andersen et al. FAWN : A Fast Array of Wimpy Nodes. In SOSP, 2009.
Anonymous. Space invaders. The Economist, 2012.

L. Barroso et al. Piranha: A Scalable Architecture Based On Single-Chip Multi-
processing. ISCA, 2000.

L. A. Barroso and U. Holzle. The Case for Energy-Proportional Computing. Com-
puter, Dec. 2007.

L. A. Barroso and U. Holzle. The Datacenter as a Computer. Synthesis Lectures
on Computer Architecture, Jan. 2009.

N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer Architecture
News, 39(2):1, Aug. 2011.

R. Calheiros et al. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Soft-
ware: Practice and Experience, 2011.

J. S. Chase et al. Managing Energy and Server Resources in Hosting Centers.
SIGOPS Operating Systems Review, 2001.

N. K. Choudhary et al. FabScalar. In ISCA, 2011.

[2]
[3]
[4]
[5]
[6]
(7]
[8]

[9]

[10]

[11]

[12] R. Courtland. The battle between ARM and Intel gets real. IEEE Spectrum, 2012.

[13] J. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Throughput With
Mediocre Cores. PACT, 2005.

[14] L. Eeckhout, S. Nussbaum, J. Smith, and K. D. Bosschere. Statistical simulation:
Adding efficiency to the computer designer’s toolbox. IEEE Micro, 2003.

[15] Facebook. More Effective Computing. Technical report, 2011.

[16] M. Ferdman et al. Clearing the clouds. In ASPLOS, 2012.

[17] D.F. Ferguson et al. Economic models for allocating resources in computer sys-
tems. In Market Based Control of Distributed Systems. 1996.

[18] A. Gandhi et al. The Case for Sleep States in Servers. In 4th Workshop on Power-
Aware Computing and Systems, 2011.

[19] S. Garg, S. Sundaram, and H. Patel. Robust heterogeneous data center design: A
principled approach. In SIGMETRICS, 2011.

[20] V. George et al. Penryn : 45-nm Next Generation Intel ® Core ™ 2 Processor.
In ISSCC, 2007.

[21] G. Gerosa et al. A Sub-2 W Low Power IA Processor for Mobile Internet Devices
in 45 nm High-k Metal Gate CMOS. [EEE Journal of Solid-State Circuits, Jan.
2009.

[22] A. Ghodsi et al. Dominant resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[23] S. Graham et al. Gprof: A call graph execution profiler. In CC, 1982.

12

[24]

[25]
[26]
[27]

[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]

[59]
[60]

[61]
[62]

[63]
[64]
[65]

[66]

B. Guenter, N. Jain, and C. Williams. Managing Cost, Performance, and Reliabil-
ity Tradeoffs for Energy-Aware Server Provisioning. In Information communica-
tions, 2011.

V. Gupta et al. On the inapproximability of M/G/k. Queueing Systems: Theory
and Applications, 2010.

M. Hill and M. Marty. Amdahl’s Law in the multi-core era. IEEE Computer,
2008.

B. Hindman et al. Mesos: A platform for fine-grained resource sharing in the data
center. In NSDI, 2011.

M. Horowitz et al. Scaling, power, and the future of CMOS. In Electron Devices
Meeting, 2005. IEDM Technical Digest. IEEE International, pages 7 pp. —15, dec.
2005.

T. Ibaraki and N. Katoh. Resource allocation problems: Algorithmic Approaches,
volume 45. MIT Press, Cambridge, MA, USA, Jan. 1988.

Intel. Vtune. http://software.intel.com/en-us/intel-vtune.

Intel. Intel ® 64 and IA-32 Architectures Software Developer’s Manual. Techni-
cal Report 326018, 2011.

V. Janapa Reddi et al. Web Search Using Mobile Cores. In ISCA, 2010.

L. Keys, S. Rivoire, and J. D. Davis. The Search for Energy-Efficient Building
Blocks for the Data Center System. In WEED, 2010.

P. Kongetira and K. Aingaran. Niagara: A 32-way multithreaded sparc processor.
Micro, IEEE, 2005.

R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures. In MICRO,
2003.

R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for
heterogeneous chip multiprocessors. In PACT, page 23, 2006.

B. Lee and D. Brooks. Accurate and efficient regression modeling for microarchi-
tectural performance and power prediction. In ASPLOS, 2006.

B. C. Lee and D. M. Brooks. Illustrative design space studies with microarchitec-
tural regression models. In HPCA, 2007.

G. Lee, B.-G. Chun, and R. Katz. Heterogeneity-aware resource allocation and
scheduling in the cloud. In HotCloud, 2011.

S. Li et al. McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In MICRO, 2009.

S. Li et al. System-level integrated server architectures for scale-out datacenters.
In MICRO, 2011.

K. Lim et al. Understanding and Designing New Server Architectures for Emerg-
ing Warehouse-Computing Environments. In ISCA, 2008.

P. Lotfi-Kamran et al. Scale-out processors. In ISCA, 2012.

B. Lubin et al. Expressive power-based resource allocation for data centers. In
1JCAI, 2009.

K. Malladi et al. Towards energy-proportional datacenter memory with mobile
DRAM. In ISCA, 2012.

J. Mars, L. Tang, and R. Hundt. Heterogeneity in "homogeneous" warehouse-
scale computers: A performance opportunity. CAL, 2011.

D. Meisner et al. Power Management of Online Data-Intensive Services. In ISCA,
2011.

D. Meisner, B. Gold, and T. Wenisch. PowerNap: eliminating server idle power.
ACM SIGPLAN Notices, 44, 2009.

D. Meisner and T. F. Wenisch. Stochastic Queuing Simulation for Data Center
Workloads. In WEERT, 2010.

J. Mogul et al. Using asymmetric Single-ISA CMPs to save energy on operating
systems. IEEE Computer, 2008.

R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for power
efficient data centers. In ICAC, 2007.

Open Source. OProfile. http://oprofile.sourceforge.net.

J. Ousterhout et al. The case for RAMCloud. CACM, 2011.

D. Parkes, A. Procaccia, and N. Shah. Beyond dominant resource fairness: Exten-
sions, limitations, and indivisibilities. In EC, 2012.

A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and application
balance in SPEC CPU 2006. In ISCA, 2007.

A. Qureshi et al. Cutting the Electric Bill for Internet-Scale Systems. SIGCOMM,
2009.

G. Ren et al. Google-wide profiling: A continuous profiling infrastructure for data
centers. IEEE Micro, 2010.

C. Rusu et al. Energy-efficient real-time heterogeneous server clusters. In RTAS,
2006.

Seamicro. SeaMicro Introduces the SM10000-64HD, 2011.

M. Suleman et al. Accelerating critical section execution with asymmetric multi-
core architectures. In ASPLOS, 2009.

I. Sutherland. A futures market in computer time. CACM, 1968.

U.S. Environmental Protection Agency. Report to Congress on Server and Data
Center Energy Efficiency. 2007.

C. Vecchiola et al. Deadline-driven provisioning of resources for scientific appli-
cations in hybrid clouds with aneka. FGCS, 2012.

C. Waldspurger et al. Spawn: A Distributed Computational Economy. IEEE
Transactions on Software Engineering, 18, 1992.

W. Wu and B. Lee. Inferred models for dynamic and sparse hardware-software
spaces. In MICRO, 2012.

D. Yoon et al. BOOM: Enabling mobile memory based low-power server DIMMs.
In ISCA, 2012.

