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Specialization of datacenter resources brings performance and energy improvements in response to the
growing scale and diversity of cloud applications. Yet heterogeneous hardware adds complexity and volatility
to latency-sensitive applications. A resource allocation mechanism that leverages architectural principles
can overcome both of these obstacles.

We integrate research in heterogeneous architectures with recent advances in multi-agent systems. Em-
bedding architectural insight into proxies that bid on behalf of applications, a market effectively allocates
hardware to applications with diverse preferences and valuations. Exploring a space of heterogeneous dat-
acenter configurations, which mix server-class Xeon and mobile-class Atom processors, we find an optimal
heterogeneous balance that improves both welfare and energy-efficiency. We further design and evaluate
twelve design points along the Xeon-to-Atom spectrum, and find that a mix of three processor architectures
achieves a 12× reduction in response time violations relative to equal-power homogeneous systems.
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1. INTRODUCTION

As datacenters proliferate and access to them is democratized, increasingly diverse
cloud applications will demand computation. To accommodate the rise in demand,
traditional datacenter servers have relied on Moore’s Law. Yet this strategy is insuffi-
cient as Dennard scaling ends and constrains the power efficiency of processor servers
[Horowitz et al. 2005].

This article extends “Navigating heterogeneous processors with market mechanisms” in Proceedings of the
19th International Symposium on High Performance Computer Architecture [Guevara et al. 2013].
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Instead of relying on process technology for datacenter efficiency, we turn to new sys-
tem architectures and microarchitectures. Recent research and industry trends high-
light opportunities for building servers with lightweight processors that were originally
designed for mobile and embedded platforms [Andersen et al. 2009; Lim et al. 2008;
Moor Insights and Strategy 2013; Seamicro 2011]. These small cores are several times
more energy-efficient than high performance processors.

However, lightweight cores have limited applicability. While memory- or IO-intensive
applications benefit from small core efficiency, the era of big data is introducing more
sophisticated computation into datacenters. Tasks may launch complex analytical or
machine learning algorithms with strict targets for service quality [Janapa Reddi et al.
2010]. To guarantee service, high-performance cores must continue to play a role. To
this end, heterogeneous datacenter servers can balance big core performance and small
core efficiency.

Not only must we design heterogeneous hardware, we must deploy it in large, dy-
namic systems. Doing so successfully requires mitigating performance risk and un-
certainty as diverse applications contend for heterogeneous hardware. Additionally,
datacenters must shield increasingly non-expert users from the complexity of underly-
ing heterogeneity.

To address these challenges, we coordinate the design of heterogeneous architectures
with recent advances in multi-agent systems. We present a market where diverse
applications bid for heterogeneous architectures. On behalf of users, a proxy profiles
hardware-software interactions, infers preferences for heterogeneous hardware, and
translates preferences into bids.

Both early research [Sutherland 1968] and more recent markets [Lubin et al. 2009;
Chase et al. 2001] assume fungible processor cycles, an assumption that no longer
holds given processor heterogeneity. Ours is the first to incorporate microarchitectural
preferences of the applications into an economic mechanism for hardware allocation.
In particular, we make the following contributions.

—Processor Heterogeneity in the Datacenter (Section 2). We identify a new design
space where heterogeneous processor architectures allow a datacenter to combine
the benefits of specialization with the performance guarantees of traditional high-
performance servers.

—Economic Mechanisms and Optimization (Section 3). We develop a market that man-
ages resources and navigates performance-efficiency tradeoffs due to microarchitec-
tural heterogeneity. Inferring application preferences for hardware, proxies compose
bids on behalf of applications within the market. A mixed integer program allocates
resources to maximize welfare, which is user value net datacenter cost.

—Application to Big/Small Cores (Section 4). We apply the economic mechanism to
explore a space of heterogeneous datacenters, varying the mix of server- and mobile-
class processors. We find an optimal heterogeneous balance that improves user value
and reduces energy. Moreover, 30% of tasks incur response time violations in homo-
geneous systems but not in heterogeneous ones.

—Application to Further Heterogeneity (Section 5). We further explore the microarchi-
tectural design space and tailor processor cores to application mixes. With processors
that differ in pipeline depth, superscalar width, and in-order versus out-of-order
execution, we find that a combination of three processor architectures can reduce
response time violations by 12× relative to a homogeneous system.

—Analytical Model for Quality-of-Service (Section 6). We evaluate our choice of queue-
ing models, describing the interactions between waiting and service times. The mar-
ket optimizes for waiting time, which in turn improves system utilization.
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Fig. 1. Venn diagram that illustrates a datacenter design space for low-power and high-performance pro-
cessors; the intersection harbors heterogeneous design options. Colored points depict QoS violations.

Thus, we present a management framework that allows datacenters to exploit the
efficiency of heterogeneous processors while mitigating its performance risk.

2. HETEROGENEITY – PRINCIPLES AND STRATEGIES

The largest datacenters today are equipped with high-performance processors. De-
spite diversity due to process technology or generations, these cores all reside at the
high-performance end of the design spectrum. Thus, we refer to the processors in state-
of-the-art datacenters as homogeneous by design. While such homogeneity can provide
near-uniform performance, it also keeps datacenters from exploiting recent advances in
energy-efficient hardware. For example, small processor cores are far more power effi-
cient than conventional, high-performance ones. Since only certain tasks are amenable
to small core execution, big cores must also remain as guarantors of service quality.

2.1. Heterogeneity as a Design Space

Server heterogeneity is efficient but requires sophisticated resource managers to bal-
ance performance risk and reward. This balance requires a novel type of design space
exploration to survey and appraise a variety of datacenter configurations. To illustrate
the challenge, Figure 1 depicts the design space for two core types: a high-performance,
server-class core and its low-power, mobile-class counterpart. Combinations of these
two processor types fall into three regions shown in the Venn diagram. Two regions rep-
resent homogeneous configurations, where the datacenter is comprised of only server
or mobile cores. Heterogeneous mixes lie in the third region, the intersection of the sets.

The colorbar shows the percentage of allocation intervals that suffered a quality-of-
service degradation for a pair of task streams; this data is collected through simula-
tion with parameters found in Section 4. For the workloads in this experiment, the
two homogeneous configurations violate quality-of-service agreements at least 6% of
the time.1 As some high-performance, power-hungry nodes are replaced by a larger

1These are equal power datacenters, and there are more than five times more mobile than server processors
in the homogeneous configurations.
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number of low-power processors, datacenter heterogeneity improves quality-of-service
and reduces the frequency of violations to <1%.

Indeed, ensuring service quality poses the greatest challenge to heterogeneity in
datacenters. Several design questions arise when we consider how to populate a data-
center with diverse processor types. First, what are the right core types for a given set
of applications? In this article, we tradeoff efficiency and performance by considering
two existing processors: the mobile-class Atom and the server-class Xeon (Section 4).
Additionally, we design and evaluate up to twelve cores that lie along the efficiency-vs-
performance spectrum (Section 5).

Second, how many of each processor type do we provision in the datacenter? Using
microarchitectural and datacenter simulation, we evaluate performance and energy
consumption for mixes of Xeons and Atoms, and mixes of the twelve cores.

Third and equally important is the resource management of heterogeneous compo-
nents. How do we allocate heterogeneous processing resources to diverse applications?
It turns out that we cannot answer the first two questions without first designing a
solution to the third. A policy for matching applications to processing resources is vital
to ensuring quality-of-service guarantees for datacenter applications.

Our effort to differentiate preferences for heterogeneous cycles is driven by a desire to
exploit low-power cores when possible. Small cores are efficient but exact a task-specific
performance penalty. Thus, we encounter a tension between design and management
in heterogeneous systems. When designing for efficiency, we would prefer to tailor pro-
cessor mix to task mix. Each task would run only on the processor that is most efficient
for its computation, but datacenter dynamics preclude such extreme heterogeneity and
its brittle performance guarantees. In contrast, when managing for performance, we
would favor today’s homogeneous systems and suffer their inefficiencies.

We strike a balance by moderating heterogeneity and increasing manager sophisti-
cation. Using the market as a management mechanism, we explore types and ratios
of heterogeneous processors as a coordinated study of this novel design space. Balanc-
ing allocative efficiency loss against computational speed, our approach approximates
complex heterogeneous hardware allocations by simpler, canonical ones. Doing this
well requires microarchitectural insight that properly captures software preferences
for hardware. With such insight, the market can quickly tradeoff performance and
efficiency across heterogeneous processors.

2.2. Accommodating Architectural Heterogeneity

Up to 5× more efficient than big ones, small processor cores are increasingly popular
for datacenter computation [Janapa Reddi et al. 2010]. Small cores are well balanced
for the modest computational intensity of simple web search queries, distributed
memory caching, and key-value stores [Andersen et al. 2009; Janapa Reddi et al. 2010;
Ousterhout et al. 2010]. Such research in unconventional datacenter hardware
has spurred broader commercial interest [Anonymous 2012; Courtland 2012] and
analogous research in other technologies, such as DRAM [Malladi et al. 2012; Yoon
et al. 2012].

Performance variations across processor types are well-studied in architecture, yet
such detail is abstracted away in markets for systems. Since Sutherland’s market for
a shared PDP-1 [Sutherland 1968], allocators have considered simple, exchangeable
slots of computer or network time. This limited model of the architecture has persisted
despite large strides in computational economies during the past two decades, most
notably by Waldspurger et al. [1992], by Chase et al. [2001], and Lubin et al. [2009].
Simply counting cycles is insufficient when the value of each hardware cycle depends
on software-specific preferences.
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The heterogeneity required for the largest efficiency gains demands sophisticated
architectural insight. For heterogeneous processors, performance differences depend
on computer architecture’s classical equation:

Tasks

Sec
= Cycles

Sec
× Insts

Cycle
× Tasks

Inst
(1)

To scale Cycles

Sec
, we must consider software compute-memory ratios and sensitivity to

processor frequency. To scale Insts
Cycle

, we must consider software instruction-level paral-
lelism and its exploitation by hardware datapaths. And, if code is tuned or recompiled,
we must also scale Tasks

Inst
.

Heterogeneous Processors and Hard Constraints. Some processors may be incapable
of providing the desired service. By obtaining application performance characteristics,
a resource manager can account for machine restrictions. For example, the manager
might determine the suitability of small cores based on memory, network, or I/O activity.
The market uses profiling information to determine if an application derives no value
from certain processors. These hard restrictions are enforced by constraints when we
clear the market by solving a mixed integer program.

Heterogeneous Cycles and Soft Constraints. Suppose a processor is suited to execute
a task. Then service rate and queueing delay are determined by core microarchitecture.
For compute-bound workloads, a cycle on a superscalar, out-of-order core is worth more
than one from an in-order core. How much more depends on the task’s instruction-level
parallelism. Memory-bound tasks are indifferent to heterogeneous cycles.

To account for cycles that are not fungible, we introduce scaling factors that trans-
late task performance on heterogeneous cores into its performance on a canonical one.
Applications constrained by memory or I/O will not necessarily benefit from the ad-
ditional compute resources of a big, out-of-order core. On the other hand, a big core
might commit 3× more instructions per cycle than a small core for applications with
high instruction-level parallelism.

We differentiate cycles from each core type with a vector of scaling factors, κ =
(κbig, κsmall), that accounts for the application-specific performance variation of the two
core types. For example, an agent sets κ = (1, 1

3 ) for the application with high ILP, and
κ = (1, 1) for the memory-intensive job.

To calculate scaling factors, we rely on application profiling data. In this paper, we
assume that existing profilers provide this data (see Section 8 for a survey of related
work). Although more advances are needed, existing profilers are sophisticated and
allow us to focus on the allocation mechanism.

3. THE MARKET MECHANISM

To ensure quality-of-service, we introduce a novel market in which proxies, acting
on behalf of applications, possess microarchitectural insight. Heterogeneous system
design allows us to tailor resources to task mixes for efficiency. Yet specialization
increases performance risk and demands sophisticated resource allocation. In this
work, we balance efficiency and risk by identifying datacenter designs that provide
robust performance guarantees within the market framework.

We present a market for heterogeneous processors that builds on two prior efforts.
Chase et al. [2001] manage homogeneous servers by asking users to bid on performance.
Lubin et al. [2009] extend this formulation with processor frequency scaling, a novel
modeling and bidding language, and a mixed integer program to clear the market. We
start from the latter market, which assumes fungible processor cycles, and extend it to
account for architectural heterogeneity.
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Fig. 2. Market overview.

The Market and User Value. Figure 2 illustrates the market mechanism which per-
forms three operations: (i) hardware performance is evaluated to calculate bids for each
user application (buyer proxy), (ii) hardware efficiency is used to calculate costs (seller
proxy), (iii) a welfare maximizing allocation is found (mixed integer program).

This approach has several advantages in our setting with nonfungible cycles. First,
proxies are made to account for performance variation across heterogeneous cycles
based on instruction-level parallelism in the datapath. Second, proxies will bid for
complex, heterogeneous combinations of cores, while hiding the complexity of the het-
erogeneous hardware from users who are ill-equipped to reason about it. Lastly, an
optimizer maximizes welfare according to the submitted bids when clearing the mar-
ket and allocating resources.

Proxies require users who can express value for computation. This valuation includes
a response time target and a payment if the target is met. From this information, the
proxy defines a basic service-level agreement. Proxies translate the agreement into
bids for hardware, thereby assuming much of the burden for navigating heterogeneous
processors. Yet, in our market formulation, proxies cannot operate beyond parameters
set by the user.

We assume users express their true value for performance. Users have incentives
to deviate from their true value in two settings. In the first, the datacenter is under-
utilized. Since the datacenter has spare capacity, a user might report lower value for
performance yet receive her desired allocation. Taken to an extreme, a single user in
the datacenter could receive her desired hardware allocation by valuing performance
at the cost incurred by the datacenter to provide it.

Alternatively, suppose the datacenter is over-subscribed. In a datacenter with too
many users, some users may be denied service. Value for performance implicitly mea-
sures priority. Users that report lower value may starve as the market allocates hard-
ware to maximize welfare. Starving users must increase their reported value, wait for
periods of lower demand, or realize that the datacenter cannot provide the desired
service.

To act strategically in these two settings, users would require information on dat-
acenter utilization and outcomes from prior market allocations. In our framework,
proxies are best positioned to collect and communicate this information to users. Doing

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 3, Publication date: February 2014.



Market Mechanisms for Managing Datacenters with Heterogeneous Microarchitectures 3:7

Fig. 3. Proxy bids.

so would require a cleanly defined feedback loop that continues to hide system com-
plexity from users. Extending proxies in this manner is an avenue for future work.

3.1. Proxies and Value Analysis

We extend previously proposed markets to accommodate heterogeneous processors.
These extensions embed greater hardware insight into the market. Buyers are task
streams with diverse requirements and valuations. Sellers are datacenters with
processors that differ in performance and energy efficiency. Proxies infer hardware
preferences and bid for candidate hardware allocations. Figure 3 summarizes the role
of the proxy.

Resource allocations are optimized periodically. Prior to each period, each applica-
tion’s proxy anticipates task arrivals and estimates the value of candidate hardware
assignments. The bidding process has several steps: (i) estimate task arrival distri-
bution, (ii) estimate task service rates, (iii) estimate task latency, and (iv) translate
latency into bid.

Estimate Task Arrival Distribution. At the start of an allocation period t, the proxy
has historical task arrival rates for h prior periods: λH = (λt−1, . . . , λt−h). To estimate
the current period’s rate λt, the proxy fits a Gaussian distribution to the history and
estimates task arrival rate by sampling from N(E[λH], Var(λH)). Thus, we drive the
market with a predicted distribution of arrivals as in prior work [Lubin et al. 2009].
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Estimate Task Service Rate. To serve these arriving tasks, an optimizer searches
an allocation space of heterogeneous cores. Prior efforts assume fungible proces-
sor cycles [Chase et al. 2001; Lubin et al. 2009], an assumption that breaks under
microarchitectural heterogeneity. In contrast, we scale each candidate allocation into
a canonical one based on application-architecture interactions.

Suppose we have n core types. Let q = (q1, . . . , qn) denote a heterogeneous allocation
of those cores and let κ = (κ1, . . . , κn) denote their task-specific performance relative
to a canonical core. Let Q denote an equivalent, homogeneous allocation of canonical
cores. Finally, P denotes task performance (i.e., throughput) on the canonical core. In
this notation, the canonical allocation is Q = κT q, which provides task service rate
μ = PQ.

The system can determine P and κ with little effect on performance. The proxy
profiles a new task on the canonical core to determine P and initializes κi = 1, i ∈ [1, n]
to reflect initial indifference to heterogeneity. As allocations are made and as tasks
are run, the proxies accrue insight and update κ. In steady state, κ will reflect task
preferences for hardware. With many tasks, suboptimal hardware allocations to a few
tasks for the sake of profiling have no appreciable impact on latency percentiles.

Estimate Task Latency. Service rate determines task latency. Agents estimate M/M/1
queueing effects, which is sufficiently accurate in our setting because the coefficients
of variation for interarrival and service times are low; see Section 7 for details. We
estimate latency percentiles with Eq. (2) and use the 95th percentile as the figure of
merit, p = 0.95.

p-th latency percentile | T = −ln(1 − p)/(μ − λ) (2)

service rate inflections | μ̂t = λt − ln(1 − p)/T̂ (3)

Translate Latency into Bid. Latency determines user value. To faithfully represent
their users, proxies must create a chain of relationships between hardware allocation,
service rate, response time, and dollar value (Eqs. (4)–(6)).

datacenter profiler | Pa : {hwa} → {service rate} (4)
datacenter queues | T : {service rate} → {latency} (5)

user value | V : {latency} → {dollars} (6)

market welfare | W =
∑

a∈A

(
V ◦ T ◦ Pa(hwa)

) − C(hw) (7)

A profile Pa maps proxy a’s hardware allocation to an application-specific service rate.
A queueing model T maps service rate to latency. Finally, the user provides a value
function V, mapping latency to dollars. Note that only V requires explicit user input.

These functions are composed when proxy a bids for a candidate hardware allocation:
V◦T◦Pa(hwa). To compose V◦T, the proxy identifies inflections in the piecewise-linear
value function V. Then, the proxy translates each inflection in time T̂ into an inflection
in service rate μ̂ by inverting the queueing time equation (Eq. (3)).

Suppose the user derives some value given queueing time ≤T̂ and less value given
queueing time >T̂ . Equivalently, the user derives some value given service rate ≥μ̂
and less value given service rate <μ̂. Thus, service rate maps to dollar value. Note that
service rate inflections depend on the arrival rate λt of tasks. To accommodate load
changes, the proxy determines new inflection points for each period.

3.2. Seller Cost Analysis

For an accurate estimate of electricity use, the market requires information about
server and processor power modes from the datacenter [Meisner et al. 2011, 2009]. For
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example, we model server power modes as three possible states: active, idle (but in an
active power mode), and sleep.

In Eq. (8), the datacenter accounts for the number of servers (n∗) in each mode and
power (P∗) dissipated over the allocation time period (�) [Lubin et al. 2009]. Servers
that transition between modes incur a latency (δ∗). For example, a server that enters
a sleep mode will dissipate Pidle over δis as it transitions and dissipate Psleep for the
remaining � − δis. Similarly, a server that wakes from sleep will require δsa during
which Pact is dissipated but no useful work is done. Energy is multiplied by datacenter
power usage effectiveness (PUE) and then by electricity costs [Barroso and Hölzle
2007].

E = (
na Pact + ni Pidle + ns Psleep)�︸ ︷︷ ︸

no power transition

+ nis (
Pidleδis + Psleep(� − δis)

)
︸ ︷︷ ︸

idle→sleep

+ nsa (
Pactδsa + Pact (� − δsa)

)
︸ ︷︷ ︸

sleep→active

. (8)

3.3. Welfare Optimization

Proxies submit complex bids for candidate hardware allocations on behalf of users.
Sellers submit machine profiles and their cost structure. The market then allocates
processor cores to maximize welfare, or buyer value minus seller cost (Eq. (7)). Welfare
optimization is formulated as a mixed integer program (MIP), which determines the
number and type of cores each user receives. For MIP details, see Lubin’s formulation
[Lubin et al. 2009]. Allocations are optimized at core granularity but each core is
ultimately mapped to processors and servers in post-processing. For example, active
and sleeping cores cannot map to the same server if machines implement server-level
sleep modes.

Heterogeneity increases optimization difficulty. In a naı̈ve approach, value is a multi-
dimensional function of heterogeneous quantities q = (q1, . . . , qn). However, the proxies
would need to construct piecewise approximations for multi-dimensional bids, which
is increasingly difficult as n grows. Each new core type would add a dimension to the
problem.

Scaling to a canonical resource type improves tractability by imposing an abstraction
between user proxies and datacenter hardware. By encapsulating this complexity, the
proxy determines the relative performance of heterogeneous quantities κ = (κ1, . . . , κn)
and computes Q = κT q. Bids for Q are one-dimensional.

4. MANAGING HETEROGENEOUS PROCESSORS

For a heterogeneous datacenter with big Xeon and small Atom cores, we exercise three
key aspects of the economic mechanism. First, heterogeneous microarchitectures are
well represented by Xeons and Atoms. Cycles from in-order and out-of-order datapaths
are not fungible. Second, heterogeneous tasks contend for these cycles with different
preferences and valuations. Third, large processor power differences are representative
of trends in heterogeneity and specialization.

4.1. Experimental Setup

Market Simulator. The evaluation uses an in-house simulator for the datacenter
market. Simulator inputs include task-arrival patterns and hardware parameters,
which are drawn from previously validated studies and detailed here. Task arrivals
follow known diurnal patterns, which are accurately captured by sinusoids. Hardware
performance and power parameters are either measured from physical systems or
simulated using validated cycle-accurate models.
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Table I. Architecture Parameters for Xeons, Atoms.
[George et al. 2007; Gerosa et al. 2009; Intel 2011]

Xeon Atom

Number of Nodes 0−160 0−225
Number of Cores 4 16
Frequency 2.5 GHz 1.6 GHz
Pipeline 14 stages 16 stages
Superscalar 4 inst issue 2 inst issue
Execution out-of-order in-order
L1 I/D Cache 32/32KB 32/24KB
L2 Cache 12MB, 24-way 4MB, 8-way

Table II. Power Modes and Parameters.
[Janapa Reddi et al. 2010]

Xeon Atom

Core sleep 0 W
Core idle 7.8 W 0.8 W
Core active 15.6 W 1.6 W
Platform sleep 25 W
Platform idle 65 W
Platform active 65 W
Sleep → Active 8 secs, $0.05
Active → Sleep 6 secs, $0.05

With these inputs, we simulate proxy responsibilities. The simulator does exactly
what a real cluster manager would do. Indeed, to produce a system prototype, the
implementation would only need software interfaces to receive proxy inputs and to
transmit allocation decisions across the datacenter network. The computational costs
of the simulator accurately reflect management overheads of a deployed system.

Much of the current implementation focuses on proxy functions and welfare opti-
mization. The proxy predicts demand from history, predicts latency using a closed-form
response time model, and constructs a bid. These bids are compared against hardware
costs, identifying welfare-maximizing hardware allocations by invoking CPLEX to solve
a mixed integer linear program (MIP). The MIP solution is the allocation for the next
10-minute interval.

To evaluate an allocation, the simulator computes the sum of users’ values and
subtracts hardware cost. An allocation provides computational cycles, which are scaled
to reflect potential performance penalties from heterogeneous processors. Collectively,
cycles determine task service rate. Given task arrival and service rates, queueing
models estimate waiting time, which determines user value. Costs simply reflect energy
consumed by allocated hardware.

Processor Parameters. Tables I–II summarize platform parameters [George et al.
2007; Gerosa et al. 2009; Intel 2011]. Xeon core power is 10× Atom core power. The
hypothetical sixteen-core Atom integrates many cores per chip to balance the server
organization and amortize platform components (e.g., motherboard, memory) over more
compute resources [Grot et al. 2012; Janapa Reddi et al. 2010; Seamicro 2011]. We
estimate server power by increasing core power in proportion to the number of cores
per processor while leaving platform power unchanged.

Servers transition from active to sleep mode in 6 seconds and from sleep to active in
8 secs, powering off everything but the memory and network interface [Agarwal et al.
2009; Gandhi et al. 2011]. Power usage effectiveness (PUE) for the datacenter is 1.6, an
average of industry standards [Facebook 2011; U.S. Environmental Protection Agency
2007]. Energy costs are $0.07 per kWh, an average of surveyed energy costs from prior
work [Qureshi et al. 2009].

We explore a range of heterogeneous configurations, varying the ratio of Xeons and
Atoms. The initial system has 160 Xeon servers, a number determined experimentally
to accommodate the load of the evaluated applications. We sweep the Atom to Xeon
ratio by progressively replacing a Xeon with the number of Atom servers that fit within
a Xeon power budget. A 20kW datacenter accommodates 160 Xeons, 225 Atoms, or some
combination thereof.

Workloads. We study tasks that are generated to follow a time series, which is detailed
in Table III and illustrated in Figure 4(a). We simulate a week of task load that is a
composite of two sinusoids, one with a week-long period and one with a day-long period.
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Table III. Application Characteristics. For a task stream, T is 95th
percentile queueing time

Proc Sensitive (PS) Proc Insensitive (¬PS)

P–task profile 70 50
(Mcycles/task)
λ–peak load 1000 500
(Ktasks/min)
V–value $5000 if T ≤ 10ms $4500 if T ≤ 10ms
($/month) $0 if T ≥ 80ms $0 if T ≥ 80ms
κ–scaling factor κX = 1.0 κX = 1.0

κA = 0.33 κA = 1.0

Fig. 4. (a) Demand for processor sensitive (PS) and insensitive (¬PS) applications. (b) Increasing the number
of Atoms improves welfare. Both applications are better serviced during traffic peaks (e.g., intervals 130–380).

The sinusoid determines the average arrival rate around which we specify a Gaussian
distribution to reflect load randomness. Such patterns are representative of real-world
web services [Meisner et al. 2011].

Applications specify value (SLA) as a function of 95th percentile response time. Value
degrades linearly up to a cut-off of 80ms, after which computation has no value. The
value functions express priorities for applications. Since the market maximizes welfare,
users with higher value per requested cycle are more likely to receive hardware. The
economic mechanism does not accommodate under-bidding and valuations must at
least cover the cost of computation.

4.2. Architectural Preferences

We consider two workloads that contend for Xeons and Atom servers, yet value the
cores differently. The first is a processor sensitive (PS) application that prefers cycles
from the high-throughput Xeon and values an Atom cycle less, scaling its value down
by κ = 1

3 . The second, on the other hand, is a processor insensitive (¬PS) application
indifferent between the two processor types.

The architecture scaling factors κ are consistent with prior datacenter workload
characterizations. Reddi et al. find Inst

Cycle
on Atom is 33% of that on Xeon for Microsoft

Bing web search [Janapa Reddi et al. 2010]. Lim et al. find performance on the mobile-
class Intel Core 2 Turion is 34% of that on the Intel Xeon [Lim et al. 2008]. These
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applications exhibit instruction-level parallelism, which benefits from wider pipelines
and out-of-order execution in server-class cores: κX = 1, κA = 1

3 .
In contrast, ¬PS does not benefit from extra capabilities in server-class processors

and is representative of web, file, or database servers [Davis et al. 2005; Kongetira and
Aingaran 2005]. Andersen et al. [2009] propose embedded processors for distributed
key-value store servers. Servers that deliver YouTube-like traffic can run on small cores
with negligible performance penalties [Lim et al. 2008]. Higher processor performance
does not benefit such workloads. ¬PS applications are indifferent to Xeons and Atoms:
κX = κA = 1.

PS and ¬PS computation is valued at $1.16 and $1.04 per period, respectively, as-
suming performance targets are met. The cost of allocating all resources in the most
expensive Xeon-only datacenter configuration is less than $0.30. Thus, valuations cover
the cost of computation.

4.3. Improving Welfare

A heterogeneous mix of Xeons and Atoms enhances welfare, which is value minus cost.
Figure 4(b) illustrates welfare for a variety of datacenter configurations. The vertical
axis presents various datacenter configurations that differ in the number of Xeons
and Atoms that fit within a given power budget. For example, the datacenter can
accommodate 160 Xeons, 225 Atoms, or some other configuration in between.

The market periodically allocates datacenter cores. The horizontal axis shows time
intervals that span one week of activity. Each interval demands a different level of ac-
tivity as shown in Figure 4(a). For these varying ratios of processor cores and activity
levels, Figure 4(b) quantifies system welfare delivered by the market. We find that a
heterogeneous mix of Xeons and Atoms enhances welfare. To understand this advan-
tage, we study homogeneity’s limitations on both sides of the ledger: value and cost.

Value. A Xeon-only system provides less value because it cannot meet performance
targets during traffic spikes. Users derive no value when latencies violate the target
(waiting time ≤ 80ms), which happens in more than a third of the allocation periods.
Periods of low welfare arise directly from periods of poor service quality; in Figure 5(a)
see periods 130–380.

As we replace Xeons with Atoms, we increase system capacity within the 20kW bud-
get. Each four-core Xeon server can be replaced by 1.4 sixteen-core Atom servers. Equiv-
alently, each Xeon core is replaced by 5.6 Atom cores. And if we account for the frequency
difference, each Xeon cycle is replaced by 3.6 Atom cycles. This extra capacity enhances
value and welfare during traffic peaks even after scaling down core capability by κ.

Moreover, applications successfully bid for preferred architectures. As Xeons become
scarce, PS receives more of its preferred Xeons at the expense of ¬PS, which is
indifferent between Xeons and Atoms. As Xeons are replaced by Atoms, Figure 6(a)
shows the market allocating a larger fraction of the remaining Xeons to PS thus
improving its response time. Simultaneously, Figure 6(c) shows the market allocating
fewer Xeons to ¬PS.

Cost. On the other side of the ledger, energy costs degrade welfare. Cores incur
transition costs when they change power modes. During a transition, cores dissipate
power but do not add value. As shown in Figure 7(a), a charge is imposed for every
transition to account for increased wear and reduced mean-time-to-failure as machines
power-cycle [Guenter et al. 2011].

Per server, Xeons and Atoms incur the same transition cost. Yet the Atom-only sys-
tem incurs larger transition costs than alternate systems as it manages more servers.
Since an Atom system contributes fewer cycles and less value than a Xeon server,
such costs reduce allocation responsiveness. This inertia of the Atom-only system
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Fig. 5. 95th percentile waiting time for (a) only Xeons, (b) only Atoms, and (c) a mix of Xeons and Atoms.

causes a response time spike at the first load peak (period 200) but not the second
(Figure 5(b)).

4.4. Balancing Atoms and Xeons

Number of Atoms. Given a mix of applications and hardware preferences, there exists
a maximum number of Atoms that can be usefully substituted into the system. Beyond
this number, additional Atoms are not useful to either application, leaving the absolute
number of allocated Atoms unchanged.

In our datacenter, the maximum number of useful Atom servers is 147. This maxi-
mum marks a point of diminishing marginal returns for substituting Atoms. Beyond
this point, additional Atoms are put to sleep (Figure 6(f)) and the fraction of Atoms
allocated to PS and ¬PS decline (Figure 6(b) and Figure 6(d), respectively). In fact,
adding Atoms beyond this point can harm welfare as transition costs are incurred to
turn them off. This cost produces the highest ridge of Figure 7(a), where spare Atom
servers are transitioned to sleep.

Number of Xeons. A related conclusion can be made for Xeons: there exists a mini-
mum number of Xeons necessary to provide the PS application adequate performance.
Beyond this point, as Atoms are added and Xeons are removed, the number of Xeons
available to be allocated to PS steadily decreases – Atoms are used for part of the
processor-sensitive computation (Figure 6(a) and Figure 6(b), respectively), decreasing
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Fig. 6. Allocation measured in fraction of configured nodes as Atom:Xeon ratio varies. For example, a 50%
Atom allocation in a A:X = 168:48 configuration maps to 84 Atom nodes. Atom and Xeon cores at each
datacenter configuration may be allocated to the processor sensitive (PS), processor insensitive (¬PS), or
neither (sleep) application.

performance. As we replace most of the Xeons in the system with Atoms, the few Xeons
remaining in the system are either allocated to PS or put to sleep during PS activity
troughs (Figure 6(a) and Figure 6(e), respectively). Clearly, as they become scarce, the
remaining Xeons are increasingly precious to PS.

Based on this, our datacenter should have at least 55 Xeon servers. This minimum
marks a point of increasing marginal penalties incurred when removing Xeons. Strik-
ingly, this minimum occurs in a heterogeneous configuration with 55 Xeons and 147
Atoms, which coincides with our analysis for the maximum number of Atoms.
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Fig. 7. Seller costs due to (a) energy and (b) transition penalty, as the ratio of Atom:Xeon processors varies.
Energy costs correspond to application behavior. Ridges in transition cost are due to $0.05 penalty per
transition that accounts for increased system wear.

Max/Min Heterogeneity. We refer to this balance of 147 Atom and 55 Xeon servers as
the max/min configuration for the datacenter. This heterogeneous configuration pro-
vides better service quality and fewer SLA violations. As seen in Figure 5(c), this mix of
Xeons and Atoms provide queueing times that are stable and far below the 80ms cut-off.

For contrast, consider Figure 5(a) and Figure 5(b). 38% and 19% of allocation periods
violate the 80ms cut-off for PS queueing time in Xeon- and Atom-only systems, respec-
tively. In the Xeon-only system, ¬PS suffers longer waiting times due to contention
with PS for limited computational capacity. In the Atom-only system, ¬PS experiences
volatile waiting times during time periods 147–217.

Thus, by replacing Xeon with Atom nodes within a fixed power budget, the mixed
configurations increase the system’s computational capacity. This clear benefit of spe-
cialization will play an important role towards sustaining the rapidly growing demand
on datacenters.

4.5. Saving Energy

The allocation mechanism activates servers only in response to demand. The data-
center saves energy by putting unneeded servers to sleep. As shown in Figure 8, a
homogeneous Xeon-only datacenter saves 900kWh over a week of simulated time.

When Atoms are first introduced, cycles become scarce and fewer servers exploit
sleep modes; the datacenter saves only 600kWh. Note, however, that the heterogeneous
datacenter saves this energy while simultaneously improving service quality (Figure 5).
Energy savings from server activation plateau at 1200kWh for most heterogeneous
systems, including the max/min configuration. While an Atom-only system could save
up to 1280kWh, it would sacrifice service quality and violate performance targets
during the PS activity trough.

Datacenters may prefer to schedule low-priority batch jobs rather than exploit sleep
states [Barroso and Hölzle 2009]. Presumably, the value of batch computation exceeds
servers’ operating and amortized capital costs. Spot prices for Amazon EC2 are one
measure of these costs. Given batch jobs with sufficient value, a policy that replaces
sleep modes with active batch computing will only increase welfare.

Even in such datacenters, heterogeneity improves efficiency. A mix of active Xeons
and Atoms consumes less energy (Figure 7(b)). The max/min configuration consumes
4.0kWh per allocation period. In contrast, the Xeon-only system consumes 5.4kWh yet
exhibits more volatile service quality.
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Fig. 8. Energy saved due to server activation. Fig. 9. CDF of time to solve MIP across all periods.

4.6. Evaluating Optimization Time

Given that the market and proxy implementation include all the elements required in
a real system, market clearing performance is important. Across allocation periods in
all datacenter configurations, solve time (wall clock) varies but is less than 800ms for
98% of allocation periods. All other periods clear the market in less than 10s as shown
in Figure 9. Solve time increases when resources are scarce and contention is high. And
contention is highest in a Xeon-only system, which provides the worst service quality.

We implement the market and proxy in Java as it would be in a real distributed
system. Inputs are task arrival history and user value functions. Outputs are resource
allocations, which maximize welfare. Welfare is optimized with a mixed integer pro-
gram, which is quickly solved to exact optimality by commercial CPLEX 12.1 MIP
solver codes despite the formally NP-Hard nature of the problem.

We obtain this computational speed by representing heterogeneous resources as
scaled canonical ones, and thus keeping the MIP tractable. Further, in our MIP for-
mulation the task arrival rate and the number of servers in the system simply affect
coefficients, not MIP computational complexity. However, the number of user applica-
tions and heterogeneous resource types does impact MIP complexity, and for sufficiently
complex data centers it is possible that CPLEX might solve only to approximate op-
timality within time allotted for computation. Fortunately, previous work has shown
that such approximate solutions are efficient with high probability [Lubin et al. 2009].

4.7. Assessing Demand Prediction

Figure 5 illustrates a response time spike, which corresponds to a trough in ¬PS load.
Although adding mobile-class Atoms to the datacenter improves PS waiting time, the
queueing time for ¬PS suffers during periods 165–185 across all mixes of Xeon and
Atom cores. These performance effects may be counter-intuitive as one might expect
low response times during periods of low activity.

However, demand prediction is particularly difficult to predict in this trough. And
poor predictions affect an agent’s value estimates and bids for resources. If an agent
underpredicts load during an interval, the market provides too few resources. Even
with low demand, the allocated cores may be insufficient for low response times.

Figure 10(a)–10(b) illustrates prediction errors broken into demand quartiles. For
example, 0–25% examines prediction errors for intervals with computational demand
in the lowest quartile. The boxplot illustrates the error distribution for predictions
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Fig. 10. Prediction error in demand: (a, b) percent error for each application at different quartiles of total
load. Using 6 time periods of load traffic history, the predictions are sufficiently accurate; (c) relative error.

made in that quartile. The horizontal lines indicate error quartiles. For example, the
red horizontal line shows the median error.

These figures indicate errors are larger at low levels of demand. This effect is most
noticeable in for ¬PS. At lowest quartile of load, Figure 10(a) indicates prediction errors
for ¬PS can be as high as 90%. Figure 10(b) indicates PS prediction error follows a
similar trend, yet the errors are not nearly as large as those for ¬PS. Thus, we attribute
the ridge in ¬PS waiting time to prediction error during time periods 165–185.

More generally, however, prediction errors are low. Figure 10(c) plots predicted de-
mand against actual demand, illustrating a strong correlation between the two. Larger
levels of demand are predicted to be larger and smaller levels of demand are predicted
to be smaller.

5. INCREASED PROCESSOR HETEROGENEITY

Increasing processor diversity allows for tailoring datacenter resources to the applica-
tion mix. In this section, we investigate the design space of sets of diverse processor
types, when the goal is to obtain an effective mix within a datacenter. To do so, we
cluster processor/core designs and identify representative individuals. We then study
combinations of these cores for datacenters that span a spectrum of heterogeneity.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 3, Publication date: February 2014.



3:18 M. Guevara et al.

Table IV. Parameters for the Twelve Cores
Simulated in gem5

Out-of-order InOrder

Clock 1.0GHz 2.4GHz 1.0 2.4
Width 2 6 8 1 2 4
ROB 192 320 342 –
RF 80 120 160 –
L1 I-$ 64 KB 4-way 32 KB 4-way
L1 D-$ 64 KB 4-way 32 KB 4-way
L2 $ 4 MB 8-way 1 MB 8-way

Table V. Application Characteristics

libq lbm

P – task profile (Mcycles/task) 67 149
λ – peak load (Ktasks/min) 480 80
V – value ($/month)

if T ≤ 20ms $5000 $2500
if T ≥ 160ms $0 $0

κ – scaling factor
κio1w10 0.50 1.45
κio1w24 0.40 1.09
κio4w24 0.56 1.26
κoo6w24 1.00 1.00

5.1. Experimental Setup

Atom efficiency is derived from three key design elements: static instruction scheduling,
narrower issue width, and lower frequency. We define a space around these elements,
producing twelve designs with parameters in Table IV. We simulate these designs with
the gem5 cycle-accurate simulator in syscall emulation mode [Binkert et al. 2011].

For this experiment, we consider the preferences of SPEC CPU2006 applications
on heterogeneous processors. These benchmarks are sensitive to processor choice, and
we study the opportunity of using low-power cores even for applications with high
instruction-level parallelism. We simulate 100M instructions from gobmk, hmmer,
h264ref, mcf, libquantum, bzip2, sjeng, gcc, xalancbmk, milc, gromacs, namd, calculix,
deallII, soplex, and lbm. Applications are cross-compiled into ALPHA with level -O2
optimizations.

These architectures and applications offer a wide range of performance scaling fac-
tors for evaluating heterogeneity. The market allocates resources for streams of com-
putational tasks. We define a stream for each SPEC application with service-level
agreements defined in Table V which shares parameters from Section 4 where possible.

5.2. Architectural Preferences

Only a subset of the twelve cores is necessary to reap the efficiency of heterogeneity.
To identify this subset, we cluster cores with similar performance for the application
suite. For each core, we define an n-element vector specifying its performance for n
applications. We cluster these vectors with multidimensional, hierarchical clustering
[Phansalkar et al. 2007]. In this formulation, each application adds a dimension. Hier-
archical clustering constructs a dendrogram that quantifies similarity using Euclidean
distance. By examining this tree at different levels, we choose results for a particular
number of clusters k.

Figure 11(b) shows k = 4 clusters. The twelve original cores are ordered by increas-
ing power on the x-axis. For each core, we plot the performance for various applica-
tions. Across the application suite, cores in the same cluster provide similar perfor-
mance. From each cluster, we select the core with the lowest variation in performance
(Table VI). We refer to cores with the tuple: [IO/OO][width][frequency]. For example,
io1w10 denotes a 1-wide, in-order core with a 1.0GHz clock.

We organize these cores into servers that use equal-area processors. We normalize
processor designs by silicon area since it is the primary determinant of a processor’s
marginal cost. Area is estimated with McPAT models [Li et al. 2009]. Power is also es-
timated with McPAT and calibrated to real Xeon and Atom measurements. In addition
to processor core power, we consider power dissipated by platform components (e.g.,
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Fig. 11. gem5 simulation results, cores on the horizontal axis are in order of increasing peak dynamic power.

Table VI. Area and Power Estimates for Four Core Types

io1w10 io1w24 io4w24 oo6w24

Num 18 18 12 6

Area (mm2)
Core 12.31 12.31 17.31 36.89
Die <225

Power (W)
Core 1.10 2.63 8.40 28.10
Sys 65.00
Tot 85 114 168 235

motherboard, memory), drawing on numbers reported in prior work [Janapa Reddi
et al. 2010].

Finally, we determine the number of servers that fit in a 15KW datacenter. We explore
a mix of heterogeneous processors and servers. Because a full sweep of heterogeneous
combinations is prohibitively expensive for more than two core types, we simulate
datacenters comprised of 1

4 , 1
2 , 3

4 , or entirely of each core type within the power budget.

5.3. Improving Service Quality

Increased processor diversity benefits service quality. Figure 12 compares the number
of allocation periods where response time exceeds target cutoffs on each datacenter
configuration, which are ordered by increasing computational capacity on the x-axis.
Data is shown for libquantum and lbm, which are representative of diversity in the
broader application suite (Figure 11(a)).

As in the Xeon and Atom case, a homogeneous system that uses the highest per-
forming core provides the fewest number of these cores within a limited power budget.
In fact, homogeneous systems of any core type violate performance targets for 20% or
more of the allocation periods.

Replacing the oo6w24 core with io*w** cores produces a configuration with strictly
more compute cycles available per unit time. However, these cycles do not necessarily
translate into better performance. Cycles are scaled by diverse factors that reflect
heterogeneous preferences for hardware.
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Fig. 12. Number of 95th percentile waiting time violations. The horizontal axis indicates the number of
servers of each type as the tuple [io1w10].[io1w24].[io4w24].[oo6w24]. Prepended letters mark the corre-
sponding region in Figure 13.

On its own, each core type is inadequate. But as part of a heterogeneous mix, diverse
cores can improve service quality. Specifically, the worst of the homogeneous systems
uses only oo6w24 cores. Yet oo6w24 cores are included in more than half of the most
effective heterogeneous mixes, which produce the fewest service violations.

This observation showcases the complexity of navigating a heterogeneous design
space. Had oo6w24 been discarded as a candidate design due to its poor performance
in a homogeneous setting, several heterogeneous systems that include this core type
would remain undiscovered.

More generally, combinations of io1w24, io4w24, and oo6w24 provide the best service
quality for libquantum and lbm. For example, a system with 33 io1w24 cores and 67
io4w24 cores (00.33.67.0 in Figure 12) has the fewest response time violations. Our
applications prefer designs with deeper pipelines and higher frequencies. However, if
applications had exhibited complex control flow and poorly predicted branches, shal-
lower pipelines would have been preferred.

5.4. Balancing Core Types

Figure 13 depicts the datacenter design space for four processor types. Colored dots
show the percentage of allocation intervals that incurred waiting time violations for a
system servicing libquantum and lbm task streams. Configurations in regions A–D are
homogeneous. And those in regions E–J, K–N, and O are heterogeneous combinations
of two, three, and four core types, respectively.

Microarchitectural Heterogeneity. Various combinations of io1w24, io4w24, and
oo6w24 provide attractive service quality. Heterogeneity with design elements that
span instruction scheduling and superscalar width are best suited to accommodate the
diversity of libquantum and lbm. In contrast, despite the power savings, the decreased
performance of a shallower pipeline is unattractive for these applications.

The design space has a few unambiguous conclusions. A mix of io4w24 and io1w24
cores performs well. This intersection, region G, contains the configuration with the best
service quality, incurring quality-of-service violations for 1.6% of the time intervals. The
two other points in this region are almost as good at 1.7%.

Also clear, configurations that include io1w10 unanimously provide poor service qual-
ity. Its ellipse is solely populated by light colored points, marking waiting time viola-
tions for up to 15.5% of the experiment. Datacenter configurations within this ellipse
can likely be trimmed from a subsequent, fine-grained sweep of remaining regions. In
general, discarding core combinations is not straightforward because of inconsistent
trends like those in regions E and L.
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Fig. 13. Sum of libq and lbm waiting time violations, shown on a Venn diagram.

Number of Heterogeneous Microarchitectures. Heterogeneous design space explo-
ration is iterative and expensive. For tractability, this study has assumed four het-
erogeneous core types but this choice might also be parameterized to produce subtle
effects.

If we had chosen k = 3 clusters, io1w10 would have been absorbed into the io1w24
cluster. Moreover, io1w10 would have replaced io1w24 as the representative core from
this cluster since we select cores to minimize performance variation.2 In this scenario,
regions E, G and L of Figure 13 would not have been explored. Missing the oppor-
tunity to explore G is particularly unfortunate since its heterogeneous configurations
produced the best service quality.

Choosing more clusters k > 4 might have produced other tradeoffs. But related work
in heterogeneous microarchitectures have illustrated diminishing marginal returns,
which coincidentally arise as heterogeneity increases beyond four designs [Lee and
Brooks 2007]. Moreover, datacenters with more than four core types may produce
impractical capital and maintenance costs.

This complex design space and its sophisticated tradeoffs call for further innovation
in the heuristics and metrics that guide optimization. The benefits to specialization
of datacenter resources are manifold, and the market mechanism provides necessary
abstractions and management capabilities.

6. MODELING QUALITY-OF-SERVICE

The market mechanism acts on predictions from M/M/1 queueing models. Queueing
dynamics affect quality-of-service via waiting time. The time a task spends in the queue
determines an allocation’s value. But user-perceived response time also includes service
time, which begins when a task exits the queue and ends when the task completes.
We analytically consider the interaction between waiting and service times for Xeons
and Atoms. In doing so, we acquire intuition and justify the use of waiting time as a
quality-of-service measure.

2Alternatively, we could limit the clustering methodology to microarchitecture alone and apply dynamic
frequency scaling to include both designs.
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Fig. 14. For three datacenter configurations, response time as a function of utilization, broken into (a) queu-
ing time and (b) service time.

Amdahl’s Law. Prior applications of the M/M/1 queue assume an application accu-
mulates its allocated resources, such as cores and Cycle

Sec
[Chase et al. 2001; Lubin et al.

2009]. For a fixed task arrival rate λ, M/M/1 would estimate lower response time T
as service rate μ increases—precisely the effect we desire. But response time has two
components: wait time TW and service time TS. According to queuing theory, expected
service time is 1/μ, assuming a single server that accumulates all allocated hardware
to provide service rate μ.

Yet we know from Amdahl’s Law that execution time, TS, will eventually be bound
by the non-parallel fraction of execution. For large μ, the M/M/1 model alone may
optimistically estimate lower TS. For this reason, we use queuing models for TW and
instrument the proxy to enforce TS in Section 3. Allocation decisions that seek to
guarantee a given response time should foremost be wary of TW , which is affected by
load variability.

Optimizing for Waiting Time. Utilization, ρ = μ

/
λ, is a measure of the traffic intensity.

Given a fixed size datacenter, ρ increases with λ. Figure 14 shows the 95th percentile
response time for three systems as utilization varies. The baseline (A:X = 0:160) is
comprised of Xeons only. The second system replaces all Xeon nodes with an equivalent
number of Atom nodes (A:X=160:0). Atom’s microarchitecture retires 3× fewer Inst

Cycle
.

Combined with Atom’s lower frequency, the second system causes an overall slowdown
of 4.7×. The third system has 225 Atom nodes, which fits in the first system’s Xeon-only
power budget.

Figure 14(a) compares the 95th percentile waiting time computed analytically for a
M/M/1 queue serviced by the three systems described here. Replacing 160 Xeons with
160 Atoms increases waiting time; tasks queue longer when served by Atoms that
provide less throughput. In fact, the second system violates waiting time constraints
in our service-level agreements. More alarming, Atom adoption shifts the knee of the
curve to lower values of ρ, making response time more vulnerable to sharp increases
in waiting time if ρ were to increase beyond the knee due to load variability.

The third configuration, where the number of Atoms is scaled to fit the power budget
of the Xeon system, improves waiting time and the utilization knee. Waiting time
improves beyond that of the Xeon system given the larger number of available Atoms.
The knee of the curve shifts outward as well; the system can provide low waiting times
at higher ρ. These are the effects we observe in our design space for heterogeneous
systems as we sweep combinations of Xeons and Atoms.
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Accounting for Service Time. Figure 14(b) provides a comparison of the 95th percentile
response time for the three systems, adding service time TS and accounting for single-
threaded tasks that suffer a 4.7× slowdown on Atoms (3× from Inst

Cycle
and 1.56× from

Cycle

Sec
). TS for tasks exiting the queue is shown by horizontal dotted lines. A PS task

that requires 70M canonical cycles has a TS of 28ms on the Xeon and a TS of 132ms
on the Atom. Each system’s curve sums fixed TS given the processor type and TW from
Figure 14(a).

TS is the larger component of response time at low utilization; in Figure 14(b), TS
is the vertical difference between the curves. However, a good datacenter resource
allocator would seek to maximize utilization subject to meeting waiting time targets
TS by shutting down under-utilized nodes and increasing utilization. At higher ρ, TW
dominates response time and load spikes may push ρ beyond the knee. At such high ρ,
almost any service-level agreement would be violated given the steep, almost vertical,
growth in response time.

Any mechanism aiming to right-size a datacenter for incoming load aims to operate
active servers at high ρ. Therefore, by guiding our allocator with a queuing time
estimate, our resulting allocations will be effective. In other words, these allocations
seek high system utilization while striving to ensure that response time lies before a
knee specified by the service-level agreement.

Waiting and Service Time Interactions. If the allocator were to emphasize waiting
time TW and neglect service time TS, a low-throughput core might violate the SLA even
with a near-zero TW . Our approach guards against this case as the proxy communicates
with the seller’s side of the market to determine which architectures can run a given
application with acceptable TS. The same proxy mechanisms that profile machine
scaling factors κ can profile application service time TS.

If a given application could not possibly meet response times on an Atom, even
with zero waiting time, the proxy will communicate this information to the seller side,
thereby restricting the optimization and allocation when the market is cleared. For the
PS and ¬PS applications in Section 4, the SLA allows for the 4.7x slowdown in TS that
PS experiences on the Atom, therefore Atoms can be allocated to PS.

By allocating to optimize waiting time and neglecting service time, the market pre-
cludes certain effects. End-to-end task response time is the sum of waiting time in the
queue and service time at the machine. In theory, an allocation might reduce service
time (e.g., faster machines) and consume that reduction with higher waiting time (e.g.,
fewer machines) without affecting response time.

These effects are modest. Consider two machines with service time TS2 = kTS1, k > 0;
machine 2 is slower. For equal response time, allocations need to provide service rates
μ1, μ2 so that 1

μ1−λ
+ TS1 = 1

μ2−λ
+kTS1. Experimentally, we find accounting for waiting

and service in an integrated way does not materially affect allocations μ1, μ2 for values
of k found in diverse, general-purpose processor design spaces. Moreover, accounting
for these second-order effects would force approximations elsewhere that would limit
the market (i.e., MIP solver) and its ability to quickly and comprehensively search the
space of heterogeneous hardware allocations.

7. QUALIFICATIONS AND ASSUMPTIONS

We assume users submit jobs that are comprised of tasks. For these tasks, we assume
the 95th percentile response time determines service quality. This task stream model
does not extend naturally to batch jobs with deadlines. Accommodating such workloads
requires further research, especially since a single job offers no representative task to
profile.
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In our case studies, the k vectors collected from simulation do not account for per-
formance degradation due to task co-location. Mars et al. [2011] propose a technique
for mapping applications to machine groups such that co-located tasks incur mini-
mal interference. With such schemes, contention is modest and profiling k vectors is
straightforward. Without such schemes, more sophisticated profilers to accommodate
contention effects will be needed.

We also assume M/M/1 queues are sufficient approximations for datacenter dynam-
ics. M/M/1 models make three assumptions: (i) interarrival times are distributed expo-
nentially; (ii) service times are distributed exponentially; (iii) a single server executes
tasks. The first two assumptions break when the coefficient of variation Cv = σ/μ is
large. However, we find Cv to be small for interarrival times. Although Cv increases
with job and task heterogeneity, our framework uses different queues for different jobs
to limit task heterogeneity. Thus, Cv ≈ 1 for interarrival times. Moreover, interarrival
times for university datacenter services and Google queries follow a near-exponential
distribution [Meisner and Wenisch 2010; Meisner et al. 2011].

For service times, we compare an exponential distribution (M) against a general
distribution (G). A standard queueing time approximation indicates that M/M/1 is close
to M/G/1 when Cv ≈ 1.3 Assumptions of exponential distributions break when Cv is
large (e.g., 20 or 100) [Gupta et al. 2010]. However, in our simulations of heterogeneous
processor cores with more realistic hyperexponential distributions, we find that Cv for
service times is often near 1 and well below 2, indicating M/M/1 is a good approximation
for M/G/1, at least in expectation. Moreover, exponentially distributed service times
have been applied in prior computing markets [Chase et al. 2001; Lubin et al. 2009].

Finally, the number of parallel servers (M/M/k versus M/M/1) affects the probability
that a task must wait in the queue. We assume a single server whose capability (i.e.,
throughput) increases with the hardware allocation. However, with only one server,
tasks queue with high probability. This assumption means our queueing time estimates
are pessimistic, which lead to conservative hardware allocations where the market
may over-provision resources. A more accurate model with parallel servers would only
reduce queueing times and further improve our market’s efficiency.

8. RELATED WORK

8.1. Power-Efficient Processors

Since the advent of chip multiprocessors, small and efficient processor cores have
been studied for datacenters. Piranha, Niagara, and scale-out processors integrate
many small cores for throughput [Barroso et al. 2000; Davis et al. 2005; Kongetira
and Aingaran 2005; Lim et al. 2008; Lotfi-Kamran et al. 2012]. Server efficiency also
benefits from re-purposing processors originally designed for mobile platforms.

Lim et al. [2008] and Janapa Reddi et al. [2010] deploy mobile-class processors for
web search and other datacenter workloads to quantify performance and efficiency
tradeoffs. Davis et al. [2005] evaluate the benefit of lightweight cores using equal area
as the cost constraint. Keys et al. [2012] evaluate the energy improvement of using
mobile, embedded, and low-power processors on single systems, and extrapolate these
findings to a data center. Our work is driven by these developments in lightweight
processors as our aim is to improve the energy proportionality of distributed systems
through power-efficient cores.

The SM10000 server from Seamicro [2011] is a production system that uses 512
Intel Atom cores to reduce power utilization while maintaining support for all x86
applications. This system is an example of the importance of power-efficient systems,

3 E[W M/G/1] ≈ C2
v +1
2 E[W M/M/1].
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yet our work identifies the need for true energy efficiency (which includes performance)
and thus makes use of heterogeneous processing cores.

The ability to satisfy complex requests using mobile cores is explored by Janapa Reddi
et al. [2010] using Microsoft Bing search as an example of upcoming data center work-
loads in which the requests themselves require a certain degree of single-thread perfor-
mance. One take-away from the work by Janapa Reddi et al. is that lower throughput
cores, in this case Atoms, will still be able to maintain quality of service guarantees for
simple tasks in future server applications.

But Janapa Reddi et al. also find some tasks may be more computationally intensive
than today’s typical workloads, ensuring a continuing role for server-class processors.
These efforts illustrate small-core efficiency for memory- and I/O-bound tasks, and warn
about performance penalties for more complex computation. Indeed, microarchitecture
increasingly affects datacenter computation [Ferdman et al. 2012]. Our market is a
step toward managing heterogeneous microarchitectures in datacenters.

8.2. Heterogeneity

Our treatment of heterogeneity focuses on diverse core microarchitectures and their
mix in datacenters. Prior work studied core heterogeneity in chip multiproces-
sors [Choudhary et al. 2011; Kumar et al. 2003, 2006; Lee and Brooks 2007; Li et al.
2011] but does not identify the optimal number of cores for each type in a large system as
we do. Other studies accommodate differences in serial and parallel code portions [Hill
and Marty 2008; Suleman et al. 2009] or devote an efficient core to the operating sys-
tem [Mogul et al. 2008]. In contrast, we consider a more general mix of datacenter
computation.

Prior work in heterogeneous datacenters studied high-performance processors from
different design generations or running at different clock frequencies [Mars et al. 2011;
Nathuji et al. 2007]. In contrast, our heterogeneous cores occupy very different corners
of the design space. Efficiency gains are larger but so is performance risk. Mitigating
risk, we make novel contributions in coordinating core design, core mix, and resource
allocation.

In distributed systems and grid/cloud computing, prior work emphasized virtual
machine (VM) and/or software heterogeneity. CloudSim simulates federated datacen-
ters with local, shared, and public VMs that might differ in core count or memory
capacity [Amazon 2009; Calheiros and Buyya 2011; Vecchiola et al. 2012]. And prior
work matched heterogeneous software demands (e.g., from Hadoop tasks) with het-
erogeneous VMs [Ghodsi et al. 2011; Lee et al. 2011]. Such work occupies a differ-
ent abstraction layer, neglects the processor microarchitecture, and complements this
work.

This article draws on prior measurements in energy proportionality and power
modes, which are subjects of on-going research. Barroso et al. motivate component-
level energy proportionality [Barroso and Hölzle 2007] while Meisner et al. [2011,
2009] study server-level sleep modes. Continuing research in power modes would ben-
efit economic mechanisms for computational resource management.

8.3. Resource Allocation

Research in allocating resources for a data center, grid, or other form of distributed
system has dealt with satisfying demand within the bounds of different constraints,
such as response time, execution time of the resource manager, heterogeneity in the
resources, and most recently power efficiency.

Early computational economies focused on maximizing performance in shared, dis-
tributed systems [Ferguson et al. 1996; Ibaraki and Katoh 1988; Sutherland 1968;
Waldspurger et al. 1992]. Resource allocators based on market mechanisms are
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attractive because they can respond to varying levels of demand and provide a bid-
ding mechanism that specifies resource requirements and/or preferences. The early
work of Ferguson et al. [1996] and Ibaraki and Katoh [1988] introduce the relationship
between computational resources and economic models. Stonebraker et al. [1996] im-
plement a resource allocator that uses economic principles for a distributed database
system in which traditional cost-based models encounter scalability challenges.

Lai et al. [2005] propose Tycoon, a market-based resource allocator, for a distributed
system due to its low-latency decisions and its ability to grant users the ability to differ-
entiate the importance of jobs. As opposed to previous work where market mechanisms
were used for resource allocation, Tycoon does not require the users to participate in
the actual bidding of resources, and instead users provide a priority for work that is
used by the system to automate the bidding process. Our work does not address the
problem of defining priorities using economic principles.

There is also research in observing bidding behavior in market-inspired resource
management. Byde [2006] explores bidding strategies in a distributed computation
environment where compute agents bid for resources on behalf of a CGI application, as
well as applying genetic algorithms to the development of these bidding agents [Byde
et al. 2003]. Senevirante et al. show the opportunity for improving bidding decisions
based on the quality of predicting the computational cost of a job [Seneviratne and Levy
2010]. Our work does not focus as closely on the actual bidding mechanism and would
thus benefit from research that improves the fairness or complexity of an auctioning
system.

These systems projects all exploit utility mechanisms that can adapt to incoming
computational demands. Broberg et al. [2007] provide a survey of market-inspired re-
source allocation techniques, and identify the benefits and limitations that much of the
research encounters. Broberg et al. identifies the growing popularity of flexible market
mechanisms over traditional resource allocators. But managing the resources becomes
more difficult when resources are scarce or allocations are made at too fine/coarse time
intervals. Byde [2002] discuss the importance of utility modeling for the effectiveness
of any market mechanism.

On the other hand, utility based systems are subject to the truthfulness of the bidding
agents. Bellagio attempts to address this limitation with a federated, market-based re-
source allocator for a distributed system of heterogeneous resources [Auyoung et al.
2004]. Bellagio provides better decisions during peak utilization by providing motiva-
tion for users to be truthful when prioritizing their jobs. Our work does not evaluate
fairness guarantees nor identify phenomena that result in undesirable allocation, but
these are directions of interest within the goal of allocating for energy efficiency.

Chase et al. [2001] extended many economic mechanisms to account for energy
costs. Lubin et al. [2009] further accommodated dynamic voltage/frequency scaling in
datacenter markets. This prior work is agnostic of microarchitectural differences and
their effect on instruction-level parallelism. Addressing this limitation, we present a
multi-agent market that navigates nonfungible processor cycles.

Early mechanisms relied on greedy solvers, allocating cores to tasks in their queued
order and provisioning heterogeneous cores in a deterministic fashion (e.g., low-power
cores first) [Garg et al. 2011; Nathuji et al. 2007; Rusu et al. 2006]. Both Chase and
Lubin show greedy solvers are less effective than markets for improving service time
and reducing cost. Like Lubin et al. [2009], we use a mixed integer program to find
exactly optimal allocations, but approximate methods like gradient ascent [Chase et al.
2001; Mars et al. 2011] may also apply.

We optimize welfare and neglect fairness, which is increasingly important in
federated clouds. Dominant resource fairness accommodates heterogeneous demands
for multiple, complementary resources (e.g., processors and memory) in a shared
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datacenter [Ghodsi et al. 2011]. However, maximizing welfare and fairness in this
setting are mutually exclusive [Parkes et al. 2012]. Navigating conflicting optimization
objectives is important future work.

8.4. Profiling

Obtaining application preferences is trivial if users explicitly request particular hard-
ware resources. Clouds offer a menu of heterogeneous virtual machine types, which
differ in the number of compute units and memory capacity [Amazon 2009]. Simi-
larly, recent efforts in datacenter management assume that users explicitly request
processors and memory [Ghodsi et al. 2011; Hindman et al. 2011].

As heterogeneity increases, users or agents acting on their behalf rely on profiling
tools that measure software sensitivity to hardware differences. These tools include
gprof [Graham et al. 1982], VTune [Intel 2009], or OProfile [Open Source 2010]. With a
combined analysis of software call graphs and hardware performance counters, agents
can scale factors in the architecture performance equation. At datacenter scale, profil-
ing every application on every node is infeasible and sampling is required. For example,
the Google-Wide Profiling infrastructure periodically activates profilers on randomly
selected machines and collects results for integrated analysis [Ren et al. 2010]. If these
samples are drawn from diverse hardware-software pairings, more sophisticated profile
analysis is required.

Given samples, inferred statistical machine learning models might predict scaling
factors as a function of software characteristics and hardware parameters [Wu and
Lee 2012]. Such models might be trained with profile databases, like Google’s, to
produce scaling factors. Such a capability requires integrating two bodies of related
work in microarchitecture-independent software characteristics and statistical infer-
ence [Eeckhout et al. 2003; Lee and Brooks 2006].

9. CONCLUSIONS AND FUTURE DIRECTIONS

Collectively, our results motivate new directions in heterogeneous system design and
management. Within datacenters, we find opportunities to mix server- and mobile-
class processors to increase welfare while reducing energy cost. Architects may design
heterogeneous systems but they cannot ignore their deployment. Market mechanisms
are well suited to allocating heterogeneous resources to diverse users. As we continue
to build bridges between computer architecture and economic and multi-agent systems,
enhancing allocation procedures with greater architectural insight is imperative.
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