
oCTobEr 2011 | voL. 54 | No. 10 | communications of the acm 85

Doi:10.1145/2001269.2001291

Understanding Sources
of Inefficiency in
General-Purpose Chips
By Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz

abstract
Scaling the performance of a power limited processor
requires decreasing the energy expended per instruction
executed, since energy/op * op/second is power. To better
understand what improvement in processor efficiency is
possible, and what must be done to capture it, we quantify
the sources of the performance and energy overheads of a
720p HD H.264 encoder running on a general-purpose four-
processor CMP system. The initial overheads are large: the
CMP was 500× less energy efficient than an Application
Specific Integrated Circuit (ASIC) doing the same job. We
explore methods to eliminate these overheads by transform-
ing the CPU into a specialized system for H.264 encoding.
Broadly applicable optimizations like single instruction,
multiple data (SIMD) units improve CMP performance by
14× and energy by 10×, which is still 50× worse than an ASIC.
The problem is that the basic operation costs in H.264 are
so small that even with a SIMD unit doing over 10 ops per
cycle, 90% of the energy is still overhead. Achieving ASIC-
like performance and efficiency requires algorithm-specific
optimizations. For each subalgorithm of H.264, we create a
large, specialized functional/storage unit capable of execut-
ing hundreds of operations per instruction. This improves
energy efficiency by 160× (instead of 10×), and the final cus-
tomized CMP reaches the same performance and within 3×
of an ASIC solution’s energy in comparable area.

1. intRoDuction
Most computing systems today are power limited, whether
it is the 1 W limit of a cell phone system on a chip (SoC), or
the 100 W limit of a processor in a server. Since power is ops/
second * energy/op, we need to decrease the energy cost of
each op if we want to continue to scale performance at con-
stant power. Traditionally, chip designers were able to make
increasingly complex designs both by increasing the system
power, and by leveraging the energy gains from technology
scaling. Historically each factor of 2 in scaling made each
gate evaluation take 8× less energy.7 However, technology
scaling no longer provides the energy savings it once did,9 so
designers must turn to other techniques to scale energy cost.
Most designs use processor-based solutions because of their
flexibility and low design costs, however, these are usually not
the most energy-efficient solutions. A shift to multi-core sys-
tems has helped improve the efficiency of processor systems
but that approach is also going to hit a limit pretty soon.8

On the other hand, using hardware that has been customized
for a specific application (an Application Specific Integrated
Circuit or ASIC) can be three orders of magnitude better than
a processor in both energy/op and ops/area.6 This paper com-
pares ASIC solutions to processor-based solutions, to try to
understand the sources of inefficiency in general-purpose
processors. We hope this information will prove to be use-
ful both for building more energy-efficient processors and
understanding why and where customization must be used
for efficiency.

To build this understanding, we start with a single video
compression application, 720p HD H.264 video encode,
and transform the hardware it runs on from a generic mul-
tiprocessor to a custom multiprocessor with ASIC-like spe-
cialized hardware units. On this task, a general-purpose
software solution takes 500× more energy per frame and
500× more area than an ASIC to reach the same perfor-
mance. We choose H.264 because it demonstrates the large
energy advantage of ASIC solutions (500×) and because
there exist commercial ASICs that can serve as a benchmark.
Moreover, H.264 contains a variety of computational motifs,
from highly data-parallel algorithms (motion estimation) to
control intensive ones (Context Adaptive Binary Arithmetic
Coding [CABAC]).

To better understand the potential of producing general-
purpose chips with better efficiency, we consider two broad
strategies for customized hardware. The first extends the
current trend of creating general data-parallel engines on
our processors. This approach mimics the addition of SSE
instructions, or the recent work in merging graphic proces-
sors on die to help with other applications. We claim these
are similar to general functional units since they typically
have some special instructions for important applications,
but are still generally useful. The second approach creates
application-specific data storage fused with functional
units. In the limit this should be an ASIC-like solution. The
first has the advantage of being a programmable solution,
while the second provides potentially greater efficiency.

The results are striking. Starting from a 500× energy pen-
alty, adding relatively wide SSE-like parallel execution engines
and rewriting the code to use them improves performance/

A previous version of this paper was published in
Proceedings of the 37th Annual International Symposium on
Computer Architecture (2010), ACM, NY.

86 communications of the acm | oCTobEr 2011 | voL. 54 | No. 10

research�highlights�

area by 14 × and energy efficiency by 10 ×. Despite these cus-
tomizations, the resulting solution is still 50 × less energy
efficient than an ASIC. An examination of the energy break-
down in the paper clearly demonstrates why. Basic arithmetic
operations are typically 8–16 bits wide, and even when per-
forming more than 10 such operations per cycle, arithmetic
unit energy comprises less than 10% of the total. One must
consider the energy cost of the desired operation compared
with the energy cost of one processor cycle: for highly efficient
machines, these energies should be similar.

The next section provides the background needed to
understand the rest of the paper. Section 3 then presents
our experimental methodology, describing our baseline,
generic H.264 implementation on a Tensilica CMP. The per-
formance and efficiency gains are described in Section 4,
which also explores the causes of the overheads and differ-
ent methods for addressing them. Using the insight gained
from our results, Section 5 discusses the broader implica-
tions for efficient computing and supporting application
driven design.

2. BackGRounD
We first review the basic ways one can analyze power, and
some previous work in creating energy-efficient processors.
With this background, we then provide an overview of H.264
encoding and its main compute stages. The section ends
by comparing existing hardware and software implementa-
tions of an H.264 encoder.

2.1. Power-constrained design and energy efficiency
Power is defined to be energy per second, which can be bro-
ken up into two terms, energy/op * ops/second. Thus there
are two primary means by which a designer can reduce
power consumption: reduce the number of operations
per second or reduce the energy per operation. The first
approach—reducing the operations per second—simply
reduces performance to save power. This approach is analo-
gous to slowing down a factory’s assembly line to save elec-
tricity costs; although power consumption is reduced, the
factory output is also reduced and the energy used (i.e., the
electricity bill) per unit of output remains unchanged. If, on
the other hand, a designer wishes to maintain or improve
the performance under a fixed power budget, a reduction
in the fundamental energy per operation is required. It is
this reduction in energy per operation—not power—that
represents real gains in efficiency.

This distinction between power and energy is an impor-
tant one. Even though designers typically face physical
power constraints, to increase efficiency requires that the
fundamental energy of operations be reduced. Although one
might be tempted to report power numbers when discussing
power efficiency, this can be misleading if the performance
is not also reported. What may seem like a power efficiency
gain may just be a modulation in performance. Using energy
per operation, however, is a performance-invariant met-
ric that represents the fundamental efficiency of the work
being done. Thus, even though the designer may be facing a
power constraint, it is energy per operation that the designer
needs to focus on improving.

Reducing the energy required for the basic operation
can be achieved through a number of techniques, all of
which fundamentally reduce the overhead affiliated with
the work being done. As one simple example, clock gating
improves energy efficiency by eliminating spurious activity
in a chip that otherwise causes energy waste.8 As another
example, customized hardware can increase efficiency by
eliminating overheads. The next section further discusses
the use of customization.

2.2. Related work in efficient computing
Processors are often customized to improve their efficiency
for specific application domains. For example, SIMD archi-
tectures achieve higher performance for multimedia and
other data-parallel applications, while DSP processors are
tailored for signal-processing tasks. More recently, ELM1
and AnySP24 have been optimized for embedded and mobile
signal processing applications, respectively, by reducing
processor overheads. While these strategies target a broad
spectrum of applications, special instructions are some-
times added to speed up specific applications. For example,
Intel’s SSE410 includes instructions to accelerate matrix
transpose and sum-of-absolute-differences.

Customizable processors allow designers to take the
next step, and create instructions tailored to applications.
Extensible processors such as Tensilica’s Xtensa provide
a base design that the designer can extend with custom
instructions and datapath units.15 Tensilica provides an
automated ISA extension tool,20 which achieves speedups
of 1.2× to 3× for EEMBC benchmarks and signal process-
ing algorithms.21 Other tools have similarly demonstrated
significant gains from automated ISA extension.4, 5 While
automatic ISA extensions can be very effective, manually
creating ISA extensions gives even larger gains: Tensilica
reports speedups of 40× to 300× for kernels such as FFT,
AES, and DES encryption.18, 19, 22

Recently researchers have proposed another approach
for achieving energy efficiency—reducing the cost of creat-
ing customized hardware rather than customizing a pro-
cessor. Examples of the latter include using higher levels of
abstraction (e.g., C-to-RTL13) and even full chip generators
using extensible processors.16 Independent of whether one
customizes a processor, or creates customized hardware, it
is important to understand in quantitative terms the types
and magnitudes of energy overheads in processors.

While previous studies have demonstrated significant
improvements in performance and efficiency moving from
general-purpose processors to ASICs, we explore the reasons
for these gains, which is essential to determine the nature
and degree of customization necessary for future systems.
Our approach starts with a generic CMP system. We incre-
mentally customize its memory system and processors to
determine the magnitude and sources of overhead elimi-
nated in each step toward achieving a high efficiency 720p
HD H.264 encoder. We explore the basic computation in
H.264 next.

2.3. h.264 computational motifs
H.264 is a block-based video encoder which divides each

oCTobEr 2011 | voL. 54 | No. 10 | communications of the acm 87

video frame into 16 × 16 macro-blocks and encodes each one
separately. Each block goes through five major functions:
 i. IME: Integer Motion Estimation
 ii. FME: Fractional Motion Estimation
 iii. IP: Intra Prediction
 iv. DCT/Quant: Transform and Quantization
 v. CABAC: Context Adaptive Binary Arithmetic Coding

IME finds the closest match for an image block versus a
previous reference image. While it is one of the most com-
pute intensive parts of the encoder, the basic algorithm
lends itself well to data-parallel architectures. On our base
CMP, IME takes up 56% of the total encoder execution time
and 52% of total energy.

The next step, FME, refines the initial match from
integer motion estimation and finds a match at quarter-
pixel resolution. FME is also data parallel, but it has some
sequential dependencies and a more complex compu-
tation kernel that makes it more difficult to parallelize.
FME takes up 36% of the total execution time and 40% of
total energy on our base CMP design. Since FME and IME
together dominate the computational load of the encoder,
optimizing these algorithms is essential for an efficient
H.264 system design.

IP uses previously encoded neighboring image blocks
within the current frame to form an alternate prediction for the
current image-block. While the algorithm is still dominated
by arithmetic operations, the computations are much less
regular than the motion estimation algorithms. Additionally,
there are sequential dependencies not only within the algo-
rithm but also with the transform and quantization function.

Next, in DCT/Quant, the difference between a current
and predicted image block is transformed and quantized
to generate coefficients to be encoded. The basic function
is relatively simple and data parallel. However, it is invoked
a number of times for each 16 × 16 image block, which calls
for an efficient implementation. For the rest of this paper,
we merge these operations into the IP stage. The combined
operation accounts for 7% of the total execution time and 6%
of total energy.

Finally, CABAC is used to entropy-encode the coeffi-
cients and other elements of the bit-stream. Unlike the
previous algorithms, CABAC is sequential and control
dominated. While it takes only 1.6% of the execution time
and 1.7% of total energy on our base design, CABAC often
becomes the bottleneck in parallel systems due to its
sequential nature.

2.4. current h.264 implementations
The computationally intensive H.264 encoding algorithm
poses a challenge for general-purpose processors, and is
typically implemented as an ASIC. For example, T. C. Chen
et al. implement a full-system H.264 encoder and demon-
strate that real-time HD H.264 encoding is possible in hard-
ware using relatively low power and area cost.2

H.264 software optimizations exist, particularly for
motion estimation, which takes most of the encoding time.
For example, sparse search techniques speed performance
of IME and FME by up to 10×.14, 25 Combining aggressive

algorithmic modifications with multiple cores and SSE
extensions leads to highly optimized H.264 encoders on
Intel processors.3, 12

Despite these optimizations, software implementations
of H.264 lag far behind dedicated ASICs. Table 1 compares
a software implementation of a 480p SD encoder12 to a 720p
HD ASIC implementation.2 The software implementation
employs a 2.8 GHz Intel Pentium 4 executing highly opti-
mized SSE code. This results in very high energy consump-
tion and low area efficiency. It is also worth noting that the
software implementation relies on various algorithmic sim-
plifications, which drastically reduce the computational
complexity, but result in a 20% decrease in compression
efficiency for a given SNR. The ASIC hardware, on the other
hand, consumes over 500× less energy and is far more effi-
cient in its use of silicon area and has a negligible drop in
compression efficiency.

3. eXPeRimentaL methoDoLoGY
To understand what is needed to gain ASIC level efficiency,
we use existing H.264 partitioning techniques, and modify
the H.264 encoder reference code JM 8.611 to remove depen-
dencies and allow mapping of the five major algorithmic
blocks to the four-stage macro-block (MB) pipeline shown
in Figure 1. This mapping exploits task level parallelism at
the macro-block level and significantly reduces the inter-
processor communication bandwidth requirements by
sharing data between pipeline stages.

Lu
m

a
R

ef
. P

el
s,

C
ur

.L
um

a
M

B

Luma Ref. Pels,
Cur. Luma MB

MV Info.
MV Info.,

MC Luma MB

Cur. Luma MB

C
hr

om
a

M
B

,
U

pp
er

 P
el

s

Residue
MB, QP,
Intra Flag

Upper Pels

Bitstream

MB0

MB1

MB2

MB3

FME IP ECIME

IME FME IP EC

IME FME IP EC

FMEIME IP EC

Read/Write to
main memory

Delayed main memory
data

Data produced in prev.
pipe stage

(a)

(b)

figure 1. four stage macroblock partition of h.264. (a) Data
flow between stages. (b) how the pipeline works on different
macroblocks. iP includes Dct + Quant. ec is caBac.

table 1. intel’s optimized h.264 encoder versus a 720p hD asic.

fPs area (mm2) energy/frame (mJ)

Intel (720 × 480 sD) 30 122 742
Intel (1280 × 720 hD) 11 122 2023
AsIC 30 8 4

The second row gives Intel’s sD data scaled to hD. AsIC data is scaled from 180 down
to 90nm.

88 communications of the acm | oCTobEr 2011 | voL. 54 | No. 10

research�highlights�

In the base system, we map this four-stage macro-block
partition to a four-processor CMP system where each pro-
cessor has 16KB 2-way set associative instruction and data
caches. Figure 2 highlights the large efficiency gap between
our base CMP and the reference ASIC for individual 720p
HD H.264 subalgorithms. The energy required for each
RISC instruction is similar and as a result, the energy
required for each task (shown in Figure 3) is related to the
cycles spent on that task. The RISC implementation of
IME, which is the major contributor to performance and
energy consumption, has a performance gap of 525× and
an energy gap of over 700× compared to the ASIC. IME
and FME dominate the overall energy and thus need to be
aggressively optimized. However, we also note that while IP,
DCT, Quant, and CABAC are much smaller parts of the total
energy/delay, even they need about 100× energy improve-
ment to reach ASIC levels.

At approximately 8.6B instructions to process 1 frame,
our base system consumes about 140 pJ per instruction—a
reasonable value for a general-purpose system. To further
analyze the energy efficiency of this base CMP imple-
mentation we break the processor’s energy into different
functional units as shown in Figure 4. This data makes it
clear how far we need to go to approach ASIC efficiency.
The energy spent in instruction fetch (IF) is an overhead
due to the programmable nature of the processors and is
absent in a custom hardware state machine, but eliminat-
ing all this overhead only increases the energy efficiency
by less than one third. Even if we eliminate everything but
the functional unit energy, we still end up with energy sav-
ings of only 20×—not nearly enough to reach ASIC levels.

The next section explores what customizations are needed
to reach the efficiency goals.

4. customization ResuLts
At first, we restrict our customizations to datapath exten-
sions inspired by GPUs and Intel’s SSE instructions. Such
extensions are relatively general-purpose data-parallel
optimizations and consist of single instruction, multiple
data (SIMD) and multiple instruction issue per cycle (we
use long instruction word, or LIW), with a limited degree
of algorithm-specific customization coming in the form
of operation fusion—the creation of new instructions that
combine frequently occurring sequences of instructions.
However, much like their SSE and GPU counterparts, these
new instructions are constrained to the existing instruc-
tion formats and datapath structures. This step represents
the datapaths in current state-of-the-art optimized CPUs. In
the next step, we replace these generic datapaths by custom
units, and allow unrestricted tailoring of the datapath by
introducing arbitrary new compute operations as well as by
adding custom register file structures.

The results of these customizations are shown in
Figures 5 through 7. The rest of this section describes these
results in detail and evaluates the effectiveness of these
three customization strategies. Collectively, these results
describe how efficiencies improve by 170× over the base-
line of Section 3.

figure 2. the performance and energy gap for base cmP
implementation when compared to an equivalent asic. intra
combines iP, Dct, and Quant.

100

1000

1

10

IME FME Intra CABAC

Performance gap Energy gap

figure 3. Processor energy breakdown for base implementation, over
the different h.264 subalgorithms. intra combines iP, Dct, and Quant.

figure 4. Processor energy breakdown for base implementation.
if is instruction fetch/decode. D-$ is data cache. P Reg includes the
pipeline registers, buses, and clocking. ctrl is miscellaneous control.
Rf is register file. fu is the functional units.

figure 5. each set of bar graphs represents energy consumption (mJ)
at each stage of optimization for ime, fme, iP and caBac respectively.
the first bar in each set represents base Risc energy; followed by
Risc augmented with sse/GPu style extensions; and then Risc
augmented with “magic” instructions. the last bar in each group
indicates energy consumption by the asic.

100,000

1,000,000

10,000,000

100

1,000

10,000

IME FME IP CABAC Total

RISC SSE/GPU Magic ASIC

oCTobEr 2011 | voL. 54 | No. 10 | communications of the acm 89

energy-efficient hardware implementations of the fused
operations, e.g., multiplication implemented using shifts
and adds. The reductions due to operation fusion are less
than 2× in energy and less than 2.5× in performance.

With SIMD, LIW and Op Fusion support, IME, FME and
IP processors achieve speedups of around 15×, 30× and 10×,
respectively. CABAC is not data parallel and benefits only
from LIW and op fusion with a speedup of merely 1.1× and
almost no change in energy per operation. Overall, the appli-
cation gets an energy efficiency gain of almost 10×, but still
uses greater than 50× more energy than an ASIC. To reach
ASIC levels of efficiency, we need a different approach.

4.2. algorithm specific instructions
The root cause of the large energy difference is that the
basic operations in H.264 are very simple and low energy.
They only require 8–16 bit integer operations, so the funda-
mental energy per operation bound is on the order of hun-
dreds of femtojoules in a 90 nm process. All other costs in a
 processor—IF, register fetch, data fetch, control, and pipe-
line registers—are much larger (140 pJ) and dominate over-
all power. Standard SIMD and simple fused instructions
can only go so far to improve the performance and energy
efficiency. It is hard to aggregate more than 10–20 opera-
tions into an instruction without incurring growing ineffi-
ciencies, and with tens of operations per cycle we still have
a machine where around 90% of the energy is going into
overhead functions. It is now easy to see how an ASIC can
be 2–3 orders of magnitude lower energy than a processor.
For computationally limited applications with low-energy
operations, an ASIC can implement hardware which both
has low overheads, and is a perfect structural match to the
application. These features allow it to exploit large amounts
of parallelism efficiently.

To match these results in a processor we must amortize
the per-instruction energy overheads over hundreds of these

100

1000

0.1

1

10

IME FME IP CABAC Total

RISC SSE/GPU Magic ASIC

figure 6. speedup at each stage of optimization for ime, fme, iP and
caBac.

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

RISC SSE/GPU Magic RISC SSE/GPU Magic RISC SSE/GPU Magic RISC SSE/GPU Magic

CABACIPFMEIME

FU

RF

Ctl

Pip

D-$

IF

figure 7. Processor energy breakdown for h.264. if is instruction fetch/decode. D-$ is data cache. Pip is the pipeline registers, buses, and
clocking. ctl is random control. Rf is the register file. fu is the functional elements. only the top bar or two (fu, Rf) contribute useful work in
the processor. for this application it is hard to achieve much more than 10% of the power in the fu without adding custom hardware units.

4.1. sse/GPu style enhancements
Using Tensilica’s TIE extensions we add LIW instructions
and SIMD execution units with vector register files of cus-
tom depths and widths. A single SIMD instruction performs
multiple operations (8 for IP, 16 for IME, and 18 for FME),
reducing the number of instructions and consequently
reducing IF energy. LIW instructions execute 2 or 3 opera-
tions per cycle, further reducing cycle count. Moreover,
SIMD operations perform wider register file and data cache
accesses which are more energy efficient compared to nar-
rower accesses. Therefore all components of instruction
energy depicted in Figure 4 get a reduction through the use
of these enhancements.

We further augment these enhancements with opera-
tion fusion, in which we fuse together frequently occurring
complex instruction sub-graphs for both RISC and SIMD
instructions. To prevent the register file ports from increas-
ing, these instructions are restricted to use up to two input
operands and can produce only one output. Operation
fusion improves energy efficiency by reducing the number
of instructions and also reducing the number of register file
accesses by internally consuming short-lived intermediate
data. Additionally, fusion gives us the ability to create more

90 communications of the acm | oCTobEr 2011 | voL. 54 | No. 10

research�highlights�

simple operations. To create instructions with this level of
parallelism requires custom storage structures with algo-
rithm-specific communication links to directly feed large
amounts of data to custom functional units without explicit
register accesses. These structures also substantially
increase data-reuse in the datapath and reduce communica-
tion bandwidth and power at all levels of the memory hierar-
chy (register, cache, and memory).

Once this hardware is in place, the machine can issue
“magic” instructions that accomplish large amounts of
computation at very low cost. This type of structure elimi-
nates almost all the processor overheads for these functions
by eliminating most of the communication overhead asso-
ciated with processors. We call these instructions “magic”
because they can have a large effect on both the energy and
performance of an application and yet they would be dif-
ficult to derive directly from the code. Such instructions
typically require an understanding of the underlying algo-
rithms, as well as the capabilities and limitations of exist-
ing hardware resources, thus requiring greater effort on the
part of the designer. Since the IP stage uses techniques sim-
ilar to FME, the rest of the section will focus on IME, FME,
and CABAC.
IME Strategy: To demonstrate the nature and benefit of
magic instructions we first look at IME, which determines
the best alignment for two image blocks. The best match is
defined by the smallest sum-of-absolute-differences (SAD) of
all of the pixel values. Since finding the best match requires
scanning one image block over a larger piece of the image,
one can easily see that while this requires a large number
of calculations, it also has very high data locality. Figure 8
shows the custom datapath elements added to the IME
processor to accelerate this function. At the core is a 16 × 16
SAD array, which can perform 256 SAD operations in 1 cycle.
Since our standard vector register files cannot fed enough
data to this unit per cycle, the SAD unit is fed by a custom
register structure, which allows parallel access to all 16-pixel
rows and enables this datapath to perform one 256-pixel
computation per cycle. In addition, the intermediate results
of the pixel operations need not be stored since they can be
reduced in place (summed) to create the single desired out-
put. Furthermore, because we need to check many possible

alignments, the custom storage structure has support for
parallel shifts in all four directions, thus allowing one to
shift the entire comparison image in only one cycle. This
feature drastically reduces the instructions wasted on loads,
shifts, and pointer arithmetic operations as well as data
cache accesses. “Magic” instructions and storage elements
are also created for other major algorithmic functions in
IME to achieve similar gains.

Thus, by reducing instruction overheads and by amortiz-
ing the remaining overheads over larger datapath widths,
this functional unit finally consumes around 40% of the
total instruction energy. The performance and energy effi-
ciency improve by 200–300× over the base implementation,
match the ASIC’s performance and come within 3× of ASIC
energy. This customized solution is 20–30× better than the
results using only generic data-parallel techniques.
FME Strategy: FME improves the output of the IME stage
by refining the alignment to a fraction of a pixel. To per-
form the fractional alignment, the FME stage interpolates
one image to estimate the values of a 4 × 4 pixel block at
fractional pixel coordinates. This operation is done by a
filter and upsample block, which again has high arithme-
tic intensity and high data locality. In H.264, upsampling
uses a six tap FIR filter that requires one new pixel per itera-
tion. To reduce IFs and register file transfers, we augment
the processor register file with a custom 8 bit wide, 6 entry
shift register structure which works like a FIFO: every time
a new 8 bit value is loaded, all elements are shifted. This
eliminates the use of expensive register file accesses for
either data shifting or operand fetch, which are now both
handled by short local wires. All six entries can now be
accessed in parallel and we create a six input multiplier/
adder which can do the calculation in a single cycle and
also can be implemented much more efficiently than the
composition of normal 2-input adders. Finally, since we
need to perform the upsampling in 2-D, we build a shift
register structure that stores the horizontally upsampled
data, and feeds its outputs to a number of vertical upsam-
pling units (Figure 9).

This transformation yields large savings even beyond
the savings in IF energy. From a pure datapath perspective
(register file, pipeline registers, and functional units), this
approach dissipates less than 1/30th the energy of a tradi-
tional approach.

A look at the FME SIMD code implementation highlights
the advantages of this custom hardware approach versus
the use of larger SIMD arrays. The SIMD implementation
suffers from code replication and excessive local memory
and register file accesses, in addition to not having the most
efficient functional units. FME contains seven different sub-
block sizes ranging from 16 × 16 pixel blocks to 4 × 4 blocks,
and not all of them can fully exploit the 18-way SIMD data-
path. Additionally, to use the 18-way SIMD datapath, each
sub-block requires a slightly different code sequence, which
results in code replication and more I-fetch power because
of the larger I-cache.

To avoid these issues, the custom hardware upsam-
pler processes 4 × 4 pixels. This allows it to reuse the same
computation loop repeatedly without any code replication,

128-bit
load

12
8-

bi
t

w
rit

e
po

rt

16
 r

ow
s

of
 r

ef
er

en
ce

 p
ix

el
 r

eg
is

te
rs

16-pixels 16-pixels 16-pixels16-SAD units

16-SAD units

16-SAD units

16-SAD units

Current pixel
registers

128-bit
load

figure 8. custom storage and compute for ime 4 × 4 saD. current
and ref-pixel register files feed all pixels to the 16 × 16 saD array
in parallel. also, the ref-pixel register file allows horizontal and
vertical shifts.

oCTobEr 2011 | voL. 54 | No. 10 | communications of the acm 91

which, in turn, lets us reduce the I-cache from a 16KB 4-way
cache to a 2KB direct-mapped cache. Due to the abundance
of short-lived data, we remove the vector register files and
replace them with custom storage buffers. The “magic”
instruction reduces the instruction cache energy by 54×
and processor fetch and decode energy by 14×. Finally, as
Figure 7 shows, 35% of the energy is now going into the func-
tional units, and again the energy efficiency of this unit is
close to an ASIC.
CABAC Strategy: CABAC originally consumed less than 2%
of the total energy, but after data-parallel components are
accelerated by “magic” instructions, CABAC dominates the
total energy. However, it requires a different set of optimi-
zations because it is control oriented and not data parallel.
Thus, for CABAC, we are more interested in control fusion
than operation fusion.

A critical part of CABAC is the arithmetic encoding stage,
which is a serial process with small amounts of computa-
tion, but complex control flow. We break arithmetic cod-
ing down into a simple pipeline and drastically change it
from the reference code implementation, reducing the
binary encoding of each symbol to five instructions. While
there are several if–then–else conditionals reduced to
single instructions (or with several compressed into one),
the most significant reduction came in the encoding loop,
as shown in Figure 10a. Each iteration of this loop may or
may not trigger execution of an internal loop that outputs
an indefinite number of encoded bits. By fundamentally
changing the algorithm, the while loop was reduced to a
single constant time instruction (ENCODE_PIPE_5) and a
rarely executed while loop, as shown in Figure 10b.

The other critical part of CABAC is the conversion of
non-binary-valued DCT coefficients to binary codes in the
binarization stage. To improve the efficiency of this step, we
create a 16-entry LIFO structure to store DCT coefficients.
To each LIFO entry, we add a single-bit flag to identify zero-
valued DCT coefficients. These structures, along with their

corresponding logic, reduce register file energy by bringing
the most frequently used values out of the register file and
into custom storage buffers. Using “magic” instructions we
produce Unary and Exponential-Golomb codes using sim-
ple operations, which help reduce datapath energy. These
modifications are inspired by the ASIC implementation
described in Shojania and Sudharsanan.17 CABAC is opti-
mized to achieve the bit rate required for H.264 level 3.1 at
720p video resolution.
Magic Instructions Summary: To summarize, the magic
instructions perform up to hundreds of operations each
time they are executed, so the overhead of the instruction
is better balanced by the work performed. Of course this is
hard to do in a general way, since bandwidth requirements
and utilization of a larger SIMD array would be problematic.
Therefore we solved this problem by building custom stor-
age units tailored to the application, and then directly con-
necting the necessary functional units to these storage units.
These custom storage units greatly amplified the register
fetch bandwidth, since data in the storage units is used for
many different computations. In addition, since the intra-
storage and functional unit communications were fixed and
local, they can be managed at ASIC-like energy costs.

After this effort, the processors optimized for data-par-
allel algorithms have a total speedup of up to 600 × and an
energy reduction of 60–350 × compared to our base CMP. For
CABAC total performance gain is 17 × and energy gain is 8 ×.
Figure 7 provides the final energy breakdowns. The efficien-
cies found in these custom datapaths are impressive, since,
in H.264 at least, they take advantage of data sharing pat-
terns and create very efficient multiple-input operations.
This means that even if researchers are able to a create a pro-
cessor which decreases the instruction and data fetch parts
of a processor by more than 10×, these solutions will not be
as efficient as solutions with “magic” instructions.

Achieving ASIC-like efficiency required 2–3 special
hardware units for each subalgorithm, which is significant
customization work. Some might even say we are just build-
ing an ASIC in our processor. While we agree that creating
“magic” instructions requires a thorough understanding of

RFIR RFIR RFIR RFIR RFIR

Integer buffer Row half Buffer Column half Buffer

Ten integer pixels loaded from local memory

C
FIR

C
FIR

C
FIR

C
FIR

C
FIR

C
FIR

C
FIR

C
FIR

C
FIR

RFIR Row upsampling CFIR Column upsampling

C
FIR

C
FIR

figure 9. fme upsampling unit. customized shift registers, directly
wired to function logic, result in efficient upsampling. ten integer
pixels from local memory are used for row upsampling in RfiR
blocks. half upsampled pixels along with appropriate integer pixels
are loaded into shift registers. cfiR accesses six shift registers in
each column simultaneously to perform column upsampling.

Done?

Output 0's?

Output 1's?

Output Indefinite
Number of Bits

Output Indefinite
Number of Bits

STOP

START

N

Y

Y

Y

N

N

(a)

Output? Output 64 Bits

START

Y

ENCODE_PIPE_5

STOP

N

Seldom
Executed

(b)

figure 10. caBac arithmetic encoding Loop (a) h.264 reference
code. (b) after insertion of “magic” instructions. much of the control
logic in the main loop has been reduced to one constant time
instruction encoDe_PiPe_5.

92 communications of the acm | oCTobEr 2011 | voL. 54 | No. 10

research�highlights�

the application as well as hardware, we feel that adding this
hardware in an extensible processor framework has many
advantages over just designing an ASIC. These advantages
come from the constrained processor design environment
and the software, compiler, and debugging tools available in
this environment. Many of the low-level issues, like interface
design and pipelining, are automatically handled. In addi-
tion, since all hardware is wrapped in a general-purpose pro-
cessor, the application developer retains enough flexibility
in the processor to make future algorithmic modifications.

5. eneRGY-efficient comPuteRs
It is important to remember that the “overhead” of using a
processor depends on the energy required for the desired
operation. Floating point (FP) energy costs are about 10×
the small integer ops we have explored in this paper, so
machines with 10 wide FP units will not be far from the
maximum efficiency possible for that class of applica-
tions. Similarly, customizing the hardware will not have
a large impact on the energy efficiency of an application
dominated by memory costs; an ASIC and a processor’s
energy will not be that different. For these applications,
optimization that restructures the algorithm and/or the
memory system is needed to reduce energy, and can yield
large savings.23

Unfortunately, as we drive to more energy-efficient solu-
tions, we will find ways to transform FP code to fixed point
operations, and restructure our algorithms to minimize the
memory fetch costs. Said differently, if we want ASIC-like
energy efficiencies—100× to 1000× more energy efficient
than general-purpose CPUs—we will have to transform
our algorithms to be dominated by the simple, low-energy
operations we have been studying in this paper. Since the
energy of these operations is very low, any overhead, from
the register fetch to the pipeline registers in a processor, is
likely to dominate energy costs. The good news is that this
large overhead per instruction makes estimating the energy
savings easy—you simply look at the performance gains—
but the bad news is that adding state-of-the art data-parallel
hardware like wide SIMD units and media extensions will
still leave you far from the desired efficiency.

It is encouraging that we were able to achieve ASIC
energy levels in a customized processor by creating custom-
ized hardware that easily fit inside a processor framework.
Extending a processor instead of building an ASIC seems
like the correct approach, since it provides a number of
software development advantages and the energy cost of
this option seems small. However, building such custom
datapaths still requires a significant effort and thus the key
challenge now is to build a design system that lets applica-
tion designers create and exploit such customizations with
much greater ease. The key is to find a parameterization of
the space which makes sense to application designers in a
specific application domain.

For example, often a number of algorithms in a domain
share similar data flow and computation structures. In
H.264 a common computational motif is based on a convo-
lution-like data flow: apply a function to all the data, then
perform a reduction, then shift the data and add a small

amount of new data, and repeat. A similar pattern of con-
volution-like computations also exists in a number of other
image processing and media processing algorithms. While
the exact computation is going to be different for each par-
ticular algorithm, we believe that by exploiting the com-
mon data-flow structure of these algorithms we can create
a generalized convolution abstraction which application
designers can customize. If this abstraction is useful for
application designers, one can imagine implementing it by
creating a flexible hardware unit that is significantly more
efficient than a generic SIMD/SSE unit. We also believe that
similar patterns exist in other domains that may allow us to
create a set of customized units for each domain.

Even if we could come up with such a set of custom-
ized functional units, it is likely that some degree of per
algorithm configurability will be required. For example,
in a convolution engine, the convolution size and result-
ing datapath size could vary from algorithm to algorithm
and thus potentially needs to be tuned on a per proces-
sor basis. This leads to the idea of creating a two-step
design process. The first step is when a set of chip experts
design a processor generator platform. This is a meta-level
design which “knows” about the special functional units
and control optimization, and provides the application
designer an application-tailored interface. The applica-
tion designers can then co-optimize their code and the
interface parameters to meet their requirements. After
this co-optimization, an optimized implementation based
on these parameters is automatically generated. In fact,
such a platform will also help in building the more generic
domain customized functional units mentioned earlier by
facilitating the process of rapidly creating and evaluating
new designs.

A reconfigurable processor generator alone is not a suf-
ficient solution, since one still needs to take one or more
of these processors and create a working chip system.
Designing and validating a chip is an extremely hard and
expensive task. If application customization will be needed
for efficiency—and our data indicates it will be—we need to
start creating systems that will efficiently allow savvy appli-
cation experts to create these optimized chip level solutions.
This will require extending the ideas for extensible proces-
sors to full chip generation systems. We are currently work-
ing on creating this type of system.16

acknowledgments
This work would have not been possible without great
support and cooperation from many people at Tensilica
including Chris Rowen, Dror Maydan, Bill Huffman, Nenad
Nedeljkovic, David Heine, Govind Kamat, and others. The
authors acknowledge the support of the C2S2 Focus Center,
one of six research centers funded under the Focus Center
Research Program (FCRP), a Semiconductor Research
Corporation subsidiary, and earlier support from DARPA.
This material is based upon work partially supported
under a Sequoia Capital Stanford Graduate Fellowship.
The National Science Foundation under Grant #0937060
to the Computing Research Association also supports this
material for the CIFellows Project. Any opinions, findings,

oCTobEr 2011 | voL. 54 | No. 10 | communications of the acm 93

and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the view of the National Science Foundation or the
Computing Research Association.

the 41st Annual Design Automation
Conference (2004), 692–697.

 16. shacham, o., azizi, o., Wachs, M.,
Qadeer, W., asgar, Z., Kelley, K.,
stevenson, J., solomatnikov, a.,
firoozshahian, a., lee, b., richardson,
s., horowitz, M. Why design must
change: rethinking digital design. IEEE
Micro 30, 6 (Nov.–dec. 2010), 9–24.

 17. shojania, h., sudharsanan, s.
a vlsi architecture for high
performance cabac encoding. in
Visual Communications and Image
Processing (2005).

 18. tensilica inc. implementing the
advanced encryption standard on Xtensa
processors. Application Notes (2009).

 19. tensilica inc. implementing the fast
fourier transform (fft). Application
Notes (2005).

 20. tensilica inc. the what, why, and how
of configurable processors (2008).

 21. tensilica inc. Xtensa lX2
benchmarks (2005).

 22. tensilica inc. Xtensa processor
extensions for data encryption standard
(des). Application Notes (2008).

 23. Williams, s., oliker, l., vuduc, r., shalf,
J., yelick, K., demmel, J. optimization
of sparse matrix-vector multiplication
on emerging multicore platforms. in
Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing (2007).

 24. Woh, M., seo, s., Mahlke, s., Mudge,
t., chakrabarti, c., flautner, K. anysp:
anytime anywhere anyway signal
processing. SIGARCH Comp. Arch.
News 37, 3 (2009), 128–139.

 25. yin, p., tourapis, h.-y.c., tourapis,
a.M., boyce, J. fast mode decision
and motion estimation for Jvt/h.264.
in Proceedings of IEEE International
Conference on Image Processing
(2003).

References
 1. balfour, J., dally, W., black-schaffer,

d., parikh, v., park, J. an energy-
efficient processor architecture for
embedded systems. Comput. Archit.
Lett. 7,1 (2007), 29–32.

 2. chen, t.c. analysis and architecture
design of an hdtv720p 30 frames/s
h.264/avc encoder. IEEE Trans.
Circuits Syst. Video Technol. 16, 6
(2006), 673–688.

 3. chen, y.-K., li, e.Q., Zhou, X., ge, s.
implementation of h.264 encoder
and decoder on personal computers.
J Vis. Commun. Image Represent. 17
(2006), 509–532.

 4. clark, N., Zhong, h., Mahlke, s.
automated custom instruction
generation for domain-specific
processor acceleration. IEEE Trans.
Comput. 54, 10 (2005), 1258–1270.

 5. cong, J., fan, y., han, g., Zhang, Z.
application-specific instruction
generation for configurable processor
architectures. in 12th International
Symposium on Field Programmable
Gate Arrays (2004), 183–189.

 6. davis, W., Zhang, N., camera, K., chen,
f., Markovic, d., chan, N., Nikolic, b.,
brodersen, r. a design environment
for high throughput, low power,
dedicated signal processing systems.
in Custom Integrated Circuits
Conference (CICC) (2001).

 7. dennard, r., gaensslen, f., yu, h.,
rideout, v., bassous, e., leblanc, a.

design of ion-implanted Mosfet’s
with very small physical dimensions.
Proc. IEEE (reprinted from IEEE
J Solid-State Circuits, 1974), 87, 4
(1999), 668–678.

 8. esmaeilzadeh, h., blem, e., amant,
r.s., sankaralingam, K., burger, d.
dark silicon and the end of multicore
scaling. in Proceedings of the
38th International Symposium on
Computer Architecture (June 2011).

 9. horowitz, M. scaling, power and the
future of cMos. in Proceedings of
the 20th International Conference
on VLSI Design, 2007. Held jointly
with 6th International Conference on
Embedded Systems (2007), 23–23.

 10. intel corporation. Motion estimation
with intel streaming siMd
extensions 4 (intel sse4) (2008).

 11. itu-t. Joint video team reference
software JM8.6 (2004).

 12. iverson, v., Mcveigh, J., reese, b.
real-time h.264/avc codec on intel
architectures. in IEEE International
Conference on Image Processing
ICIP’04 (2004).

 13. Kathail, v. creating power-efficient
application engines for soc design.
SOC Central (2005).

 14. Mpeg, i., vceg, i.-t. fast integer pel
and fractional pel motion estimation
for Jvt. JVT-F017 (2002).

 15. rowen, c., leibson, s. flexible
architectures for engineering
successful socs. in Proceedings of

Rehan hameed (rhameed@stanford.edu),
stanford university, stanford, ca.

Wajahat Qadeer (wqadeer@stanford.edu),
stanford university. stanford, ca.

Megan Wachs (wachs@stanford.edu),
stanford university, stanford, ca.

Omid Azizi (oazizi@gmail.com), hicamp
systems, Menlo park, ca.

Alex Solomatnikov (solomatnikov@gmail.
com), hicamp systems, Menlo park, ca.

Benjamin C. Lee (benjamin.c.lee@duke.
edu), duke university, durham, Nc.

Stephen Richardson (steveri@stanford.
edu), stanford university, stanford, ca.

Christos Kozyrakis (kozyraki@stanford.
edu), stanford university, stanford, ca.

Mark horowitz (horowitz@stanford.edu),
stanford university, stanford, ca.

© 2011 acM 0001-0782/11/10 $10.00

