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abstract
Scaling the performance of a power limited processor 
requires decreasing the energy expended per instruction 
executed, since energy/op * op/second is power. To better 
understand what improvement in processor efficiency is 
possible, and what must be done to capture it, we quantify 
the sources of the performance and energy overheads of a 
720p HD H.264 encoder running on a general-purpose four-
processor CMP system. The initial overheads are large: the 
CMP was 500× less energy efficient than an Application 
Specific Integrated Circuit (ASIC) doing the same job. We 
explore methods to eliminate these overheads by transform-
ing the CPU into a specialized system for H.264 encoding. 
Broadly applicable optimizations like single instruction, 
multiple data (SIMD) units improve CMP performance by 
14× and energy by 10×, which is still 50× worse than an ASIC. 
The problem is that the basic operation costs in H.264 are 
so small that even with a SIMD unit doing over 10 ops per 
cycle, 90% of the energy is still overhead. Achieving ASIC-
like performance and efficiency requires algorithm-specific 
optimizations. For each subalgorithm of H.264, we create a 
large, specialized functional/storage unit capable of execut-
ing hundreds of operations per instruction. This improves 
energy efficiency by 160× (instead of 10×), and the final cus-
tomized CMP reaches the same performance and within 3× 
of an ASIC solution’s energy in comparable area.

1. intRoDuction
Most computing systems today are power limited, whether 
it is the 1 W limit of a cell phone system on a chip (SoC), or 
the 100 W limit of a processor in a server. Since power is ops/
second * energy/op, we need to decrease the energy cost of 
each op if we want to continue to scale performance at con-
stant power. Traditionally, chip designers were able to make 
increasingly complex designs both by increasing the system 
power, and by leveraging the energy gains from technology 
scaling. Historically each factor of 2 in scaling made each 
gate evaluation take 8× less energy.7 However, technology 
scaling no longer provides the energy savings it once did,9 so 
designers must turn to other techniques to scale energy cost. 
Most designs use processor-based solutions because of their 
flexibility and low design costs, however, these are usually not 
the most energy-efficient solutions. A shift to multi-core sys-
tems has helped improve the efficiency of processor systems 
but that approach is also going to hit a limit pretty soon.8 

On the other hand, using hardware that has been customized 
for a specific application (an Application Specific Integrated 
Circuit or ASIC) can be three orders of magnitude better than 
a processor in both energy/op and ops/area.6 This paper com-
pares ASIC solutions to processor-based solutions, to try to 
understand the sources of inefficiency in general-purpose 
processors. We hope this information will prove to be use-
ful both for building more energy-efficient processors and 
understanding why and where customization must be used 
for efficiency.

To build this understanding, we start with a single video 
compression application, 720p HD H.264 video encode, 
and transform the hardware it runs on from a generic mul-
tiprocessor to a custom multiprocessor with ASIC-like spe-
cialized hardware units. On this task, a general-purpose 
software solution takes 500× more energy per frame and 
500× more area than an ASIC to reach the same perfor-
mance. We choose H.264 because it demonstrates the large 
energy advantage of ASIC solutions (500×) and because 
there exist commercial ASICs that can serve as a benchmark. 
Moreover, H.264 contains a variety of computational motifs, 
from highly data-parallel algorithms (motion estimation) to 
control intensive ones (Context Adaptive Binary Arithmetic 
Coding [CABAC]).

To better understand the potential of producing general-
purpose chips with better efficiency, we consider two broad 
strategies for customized hardware. The first extends the 
current trend of creating general data-parallel engines on 
our processors. This approach mimics the addition of SSE 
instructions, or the recent work in merging graphic proces-
sors on die to help with other applications. We claim these 
are similar to general functional units since they typically 
have some special instructions for important applications, 
but are still generally useful. The second approach creates 
application-specific data storage fused with functional 
units. In the limit this should be an ASIC-like solution. The 
first has the advantage of being a programmable solution, 
while the second provides potentially greater efficiency.

The results are striking. Starting from a 500× energy pen-
alty, adding relatively wide SSE-like parallel execution engines 
and rewriting the code to use them improves performance/

A previous version of this paper was published in 
Proceedings of the 37th Annual International Symposium on 
Computer Architecture (2010), ACM, NY.



86    communications of the acm   |   oCTobEr 2011  |   voL.  54  |   No.  10

research�highlights�

 

area by 14 × and energy efficiency by 10 ×. Despite these cus-
tomizations, the resulting solution is still 50 × less energy 
efficient than an ASIC. An examination of the energy break-
down in the paper clearly demonstrates why. Basic arithmetic 
operations are typically 8–16 bits wide, and even when per-
forming more than 10 such operations per cycle, arithmetic 
unit energy comprises less than 10% of the total. One must 
consider the energy cost of the desired operation compared 
with the energy cost of one processor cycle: for highly efficient 
machines, these energies should be similar.

The next section provides the background needed to 
understand the rest of the paper. Section 3 then presents 
our experimental methodology, describing our baseline, 
generic H.264 implementation on a Tensilica CMP. The per-
formance and efficiency gains are described in Section 4, 
which also explores the causes of the overheads and differ-
ent methods for addressing them. Using the insight gained 
from our results, Section 5 discusses the broader implica-
tions for efficient computing and supporting application 
driven design.

2. BackGRounD
We first review the basic ways one can analyze power, and 
some previous work in creating energy-efficient processors. 
With this background, we then provide an overview of H.264 
encoding and its main compute stages. The section ends 
by comparing existing hardware and software implementa-
tions of an H.264 encoder.

2.1. Power-constrained design and energy efficiency
Power is defined to be energy per second, which can be bro-
ken up into two terms, energy/op * ops/second. Thus there 
are two primary means by which a designer can reduce 
power consumption: reduce the number of operations 
per second or reduce the energy per operation. The first 
approach—reducing the operations per second—simply 
reduces performance to save power. This approach is analo-
gous to slowing down a factory’s assembly line to save elec-
tricity costs; although power consumption is reduced, the 
factory output is also reduced and the energy used (i.e., the 
electricity bill) per unit of output remains unchanged. If, on 
the other hand, a designer wishes to maintain or improve 
the performance under a fixed power budget, a reduction 
in the fundamental energy per operation is required. It is 
this reduction in energy per operation—not power—that 
represents real gains in efficiency.

This distinction between power and energy is an impor-
tant one. Even though designers typically face physical 
power constraints, to increase efficiency requires that the 
fundamental energy of operations be reduced. Although one 
might be tempted to report power numbers when discussing 
power efficiency, this can be misleading if the performance 
is not also reported. What may seem like a power efficiency 
gain may just be a modulation in performance. Using energy 
per operation, however, is a performance-invariant met-
ric that represents the fundamental efficiency of the work 
being done. Thus, even though the designer may be facing a 
power constraint, it is energy per operation that the designer 
needs to focus on improving.

Reducing the energy required for the basic operation 
can be achieved through a number of techniques, all of 
which fundamentally reduce the overhead affiliated with 
the work being done. As one simple example, clock gating 
improves energy efficiency by eliminating spurious activity 
in a chip that otherwise causes energy waste.8 As another 
example, customized hardware can increase efficiency by 
eliminating overheads. The next section further discusses 
the use of customization.

2.2. Related work in efficient computing
Processors are often customized to improve their efficiency 
for specific application domains. For example, SIMD archi-
tectures achieve higher performance for multimedia and 
other data-parallel applications, while DSP processors are 
tailored for signal-processing tasks. More recently, ELM1 
and AnySP24 have been optimized for embedded and mobile 
signal processing applications, respectively, by reducing 
processor overheads. While these strategies target a broad 
spectrum of applications, special instructions are some-
times added to speed up specific applications. For example, 
Intel’s SSE410 includes instructions to accelerate matrix 
transpose and sum-of-absolute-differences.

Customizable processors allow designers to take the 
next step, and create instructions tailored to applications. 
Extensible processors such as Tensilica’s Xtensa provide 
a base design that the designer can extend with custom 
instructions and datapath units.15 Tensilica provides an 
automated ISA extension tool,20 which achieves speedups 
of 1.2× to 3× for EEMBC benchmarks and signal process-
ing algorithms.21 Other tools have similarly demonstrated 
significant gains from automated ISA extension.4, 5 While 
automatic ISA extensions can be very effective, manually 
creating ISA extensions gives even larger gains: Tensilica 
reports speedups of 40× to 300× for kernels such as FFT, 
AES, and DES encryption.18, 19, 22

Recently researchers have proposed another approach 
for achieving energy efficiency—reducing the cost of creat-
ing customized hardware rather than customizing a pro-
cessor. Examples of the latter include using higher levels of 
abstraction (e.g., C-to-RTL13) and even full chip generators 
using extensible processors.16 Independent of whether one 
customizes a processor, or creates customized hardware, it 
is important to understand in quantitative terms the types 
and magnitudes of energy overheads in processors.

While previous studies have demonstrated significant 
improvements in performance and efficiency moving from 
general-purpose processors to ASICs, we explore the reasons 
for these gains, which is essential to determine the nature 
and degree of customization necessary for future systems. 
Our approach starts with a generic CMP system. We incre-
mentally customize its memory system and processors to 
determine the magnitude and sources of overhead elimi-
nated in each step toward achieving a high efficiency 720p 
HD H.264 encoder. We explore the basic computation in 
H.264 next.

2.3. h.264 computational motifs
H.264 is a block-based video encoder which divides each 
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video frame into 16 × 16 macro-blocks and encodes each one 
separately. Each block goes through five major functions:
 i. IME: Integer Motion Estimation
 ii. FME: Fractional Motion Estimation
 iii. IP: Intra Prediction
 iv. DCT/Quant: Transform and Quantization
 v. CABAC: Context Adaptive Binary Arithmetic Coding

IME finds the closest match for an image block versus a 
previous reference image. While it is one of the most com-
pute intensive parts of the encoder, the basic algorithm 
lends itself well to data-parallel architectures. On our base 
CMP, IME takes up 56% of the total encoder execution time 
and 52% of total energy.

The next step, FME, refines the initial match from 
integer motion estimation and finds a match at quarter-
pixel resolution. FME is also data parallel, but it has some 
sequential dependencies and a more complex compu-
tation kernel that makes it more difficult to parallelize. 
FME takes up 36% of the total execution time and 40% of 
total energy on our base CMP design. Since FME and IME 
together dominate the computational load of the encoder, 
optimizing these algorithms is essential for an efficient 
H.264 system design.

IP uses previously encoded neighboring image blocks 
within the current frame to form an alternate prediction for the 
current image-block. While the algorithm is still dominated 
by arithmetic operations, the computations are much less 
regular than the motion estimation algorithms. Additionally, 
there are sequential dependencies not only within the algo-
rithm but also with the transform and quantization function.

Next, in DCT/Quant, the difference between a current 
and predicted image block is transformed and quantized 
to generate coefficients to be encoded. The basic function 
is relatively simple and data parallel. However, it is invoked 
a number of times for each 16 × 16 image block, which calls 
for an efficient implementation. For the rest of this paper, 
we merge these operations into the IP stage. The combined 
operation accounts for 7% of the total execution time and 6% 
of total energy.

Finally, CABAC is used to entropy-encode the coeffi-
cients and other elements of the bit-stream. Unlike the 
previous algorithms, CABAC is sequential and control 
dominated. While it takes only 1.6% of the execution time 
and 1.7% of total energy on our base design, CABAC often 
becomes the bottleneck in parallel systems due to its 
sequential nature.

2.4. current h.264 implementations
The computationally intensive H.264 encoding algorithm 
poses a challenge for general-purpose processors, and is 
typically implemented as an ASIC. For example, T. C. Chen 
et al. implement a full-system H.264 encoder and demon-
strate that real-time HD H.264 encoding is possible in hard-
ware using relatively low power and area cost.2

H.264 software optimizations exist, particularly for 
motion estimation, which takes most of the encoding time. 
For example, sparse search techniques speed performance 
of IME and FME by up to 10×.14, 25 Combining aggressive 

algorithmic modifications with multiple cores and SSE 
extensions leads to highly optimized H.264 encoders on 
Intel processors.3, 12

Despite these optimizations, software implementations 
of H.264 lag far behind dedicated ASICs. Table 1 compares 
a software implementation of a 480p SD encoder12 to a 720p 
HD ASIC implementation.2 The software implementation 
employs a 2.8 GHz Intel Pentium 4 executing highly opti-
mized SSE code. This results in very high energy consump-
tion and low area efficiency. It is also worth noting that the 
software implementation relies on various algorithmic sim-
plifications, which drastically reduce the computational 
complexity, but result in a 20% decrease in compression 
efficiency for a given SNR. The ASIC hardware, on the other 
hand, consumes over 500× less energy and is far more effi-
cient in its use of silicon area and has a negligible drop in 
compression efficiency.

3. eXPeRimentaL methoDoLoGY
To understand what is needed to gain ASIC level efficiency, 
we use existing H.264 partitioning techniques, and modify 
the H.264 encoder reference code JM 8.611 to remove depen-
dencies and allow mapping of the five major algorithmic 
blocks to the four-stage macro-block (MB) pipeline shown 
in Figure 1. This mapping exploits task level parallelism at 
the macro-block level and significantly reduces the inter- 
processor communication bandwidth requirements by 
sharing data between pipeline stages.
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figure 1. four stage macroblock partition of h.264. (a) Data 
flow between stages. (b) how the pipeline works on different 
macroblocks. iP includes Dct + Quant. ec is caBac.

table 1. intel’s optimized h.264 encoder versus a 720p hD asic. 

fPs area (mm2) energy/frame (mJ)

Intel (720 × 480 sD) 30 122 742
Intel (1280 × 720 hD) 11 122 2023
AsIC 30 8 4

The second row gives Intel’s sD data scaled to hD. AsIC data is scaled from 180 down 
to 90nm.
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In the base system, we map this four-stage macro-block 
partition to a four-processor CMP system where each pro-
cessor has 16KB 2-way set associative instruction and data 
caches. Figure 2 highlights the large efficiency gap between 
our base CMP and the reference ASIC for individual 720p 
HD H.264 subalgorithms. The energy required for each 
RISC instruction is similar and as a result, the energy 
required for each task (shown in Figure 3) is related to the 
cycles spent on that task. The RISC implementation of 
IME, which is the major contributor to performance and 
energy consumption, has a performance gap of 525× and 
an energy gap of over 700× compared to the ASIC. IME 
and FME dominate the overall energy and thus need to be 
aggressively optimized. However, we also note that while IP, 
DCT, Quant, and CABAC are much smaller parts of the total 
energy/delay, even they need about 100× energy improve-
ment to reach ASIC levels.

At approximately 8.6B instructions to process 1 frame, 
our base system consumes about 140 pJ per instruction—a 
reasonable value for a general-purpose system. To further 
analyze the energy efficiency of this base CMP imple-
mentation we break the processor’s energy into different 
functional units as shown in Figure 4. This data makes it 
clear how far we need to go to approach ASIC efficiency. 
The energy spent in instruction fetch (IF) is an overhead 
due to the programmable nature of the processors and is 
absent in a custom hardware state machine, but eliminat-
ing all this overhead only increases the energy efficiency 
by less than one third. Even if we eliminate everything but 
the functional unit energy, we still end up with energy sav-
ings of only 20×—not nearly enough to reach ASIC levels. 

The next section explores what customizations are needed 
to reach the efficiency goals.

4. customization ResuLts
At first, we restrict our customizations to datapath exten-
sions inspired by GPUs and Intel’s SSE instructions. Such 
extensions are relatively general-purpose data-parallel 
optimizations and consist of single instruction, multiple 
data (SIMD) and multiple instruction issue per cycle (we 
use long instruction word, or LIW), with a limited degree 
of algorithm-specific customization coming in the form 
of operation fusion—the creation of new instructions that 
combine frequently occurring sequences of instructions. 
However, much like their SSE and GPU counterparts, these 
new instructions are constrained to the existing instruc-
tion formats and datapath structures. This step represents 
the datapaths in current state-of-the-art optimized CPUs. In 
the next step, we replace these generic datapaths by custom 
units, and allow unrestricted tailoring of the datapath by 
introducing arbitrary new compute operations as well as by 
adding custom register file structures.

The results of these customizations are shown in 
Figures 5 through 7. The rest of this section describes these 
results in detail and evaluates the effectiveness of these 
three customization strategies. Collectively, these results 
describe how efficiencies improve by 170× over the base-
line of Section 3.

figure 2. the performance and energy gap for base cmP 
implementation when compared to an equivalent asic. intra 
combines iP, Dct, and Quant.
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figure 3. Processor energy breakdown for base implementation, over 
the different h.264 subalgorithms. intra combines iP, Dct, and Quant.

figure 4. Processor energy breakdown for base implementation. 
if is instruction fetch/decode. D-$ is data cache. P Reg includes the 
pipeline registers, buses, and clocking. ctrl is miscellaneous control. 
Rf is register file. fu is the functional units.

figure 5. each set of bar graphs represents energy consumption (mJ) 
at each stage of optimization for ime, fme, iP and caBac respectively. 
the first bar in each set represents base Risc energy; followed by 
Risc augmented with sse/GPu style extensions; and then Risc 
augmented with “magic” instructions. the last bar in each group 
indicates energy consumption by the asic.
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energy-efficient hardware implementations of the fused 
operations, e.g., multiplication implemented using shifts 
and adds. The reductions due to operation fusion are less 
than 2× in energy and less than 2.5× in performance.

With SIMD, LIW and Op Fusion support, IME, FME and 
IP processors achieve speedups of around 15×, 30× and 10×, 
respectively. CABAC is not data parallel and benefits only 
from LIW and op fusion with a speedup of merely 1.1× and 
almost no change in energy per operation. Overall, the appli-
cation gets an energy efficiency gain of almost 10×, but still 
uses greater than 50× more energy than an ASIC. To reach 
ASIC levels of efficiency, we need a different approach.

4.2. algorithm specific instructions
The root cause of the large energy difference is that the 
basic operations in H.264 are very simple and low energy. 
They only require 8–16 bit integer operations, so the funda-
mental energy per operation bound is on the order of hun-
dreds of femtojoules in a 90 nm process. All other costs in a 
 processor—IF, register fetch, data fetch, control, and pipe-
line registers—are much larger (140 pJ) and dominate over-
all power. Standard SIMD and simple fused instructions 
can only go so far to improve the performance and energy 
efficiency. It is hard to aggregate more than 10–20 opera-
tions into an instruction without incurring growing ineffi-
ciencies, and with tens of operations per cycle we still have 
a machine where around 90% of the energy is going into 
overhead functions. It is now easy to see how an ASIC can 
be 2–3 orders of magnitude lower energy than a processor. 
For computationally limited applications with low-energy 
operations, an ASIC can implement hardware which both 
has low overheads, and is a perfect structural match to the 
application. These features allow it to exploit large amounts 
of parallelism efficiently.

To match these results in a processor we must amortize 
the per-instruction energy overheads over hundreds of these 
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figure 6. speedup at each stage of optimization for ime, fme, iP and 
caBac.
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clocking. ctl is random control. Rf is the register file. fu is the functional elements. only the top bar or two (fu, Rf) contribute useful work in 
the processor. for this application it is hard to achieve much more than 10% of the power in the fu without adding custom hardware units.

4.1. sse/GPu style enhancements
Using Tensilica’s TIE extensions we add LIW instructions 
and SIMD execution units with vector register files of cus-
tom depths and widths. A single SIMD instruction performs 
multiple operations (8 for IP, 16 for IME, and 18 for FME), 
reducing the number of instructions and consequently 
reducing IF energy. LIW instructions execute 2 or 3 opera-
tions per cycle, further reducing cycle count. Moreover, 
SIMD operations perform wider register file and data cache 
accesses which are more energy efficient compared to nar-
rower accesses. Therefore all components of instruction 
energy depicted in Figure 4 get a reduction through the use 
of these enhancements.

We further augment these enhancements with opera-
tion fusion, in which we fuse together frequently occurring 
complex instruction sub-graphs for both RISC and SIMD 
instructions. To prevent the register file ports from increas-
ing, these instructions are restricted to use up to two input 
operands and can produce only one output. Operation 
fusion improves energy efficiency by reducing the number 
of instructions and also reducing the number of register file 
accesses by internally consuming short-lived intermediate 
data. Additionally, fusion gives us the ability to create more 
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simple operations. To create instructions with this level of 
parallelism requires custom storage structures with algo-
rithm-specific communication links to directly feed large 
amounts of data to custom functional units without explicit 
register accesses. These structures also substantially 
increase data-reuse in the datapath and reduce communica-
tion bandwidth and power at all levels of the memory hierar-
chy (register, cache, and memory).

Once this hardware is in place, the machine can issue 
“magic” instructions that accomplish large amounts of 
computation at very low cost. This type of structure elimi-
nates almost all the processor overheads for these functions 
by eliminating most of the communication overhead asso-
ciated with processors. We call these instructions “magic” 
because they can have a large effect on both the energy and 
performance of an application and yet they would be dif-
ficult to derive directly from the code. Such instructions 
typically require an understanding of the underlying algo-
rithms, as well as the capabilities and limitations of exist-
ing hardware resources, thus requiring greater effort on the 
part of the designer. Since the IP stage uses techniques sim-
ilar to FME, the rest of the section will focus on IME, FME, 
and CABAC.
IME Strategy: To demonstrate the nature and benefit of 
magic instructions we first look at IME, which determines 
the best alignment for two image blocks. The best match is 
defined by the smallest sum-of-absolute-differences (SAD) of 
all of the pixel values. Since finding the best match requires 
scanning one image block over a larger piece of the image, 
one can easily see that while this requires a large number 
of calculations, it also has very high data locality. Figure 8 
shows the custom datapath elements added to the IME 
processor to accelerate this function. At the core is a 16 × 16 
SAD array, which can perform 256 SAD operations in 1 cycle. 
Since our standard vector register files cannot fed enough 
data to this unit per cycle, the SAD unit is fed by a custom 
register structure, which allows parallel access to all 16-pixel 
rows and enables this datapath to perform one 256-pixel 
computation per cycle. In addition, the intermediate results 
of the pixel operations need not be stored since they can be 
reduced in place (summed) to create the single desired out-
put. Furthermore, because we need to check many possible 

alignments, the custom storage structure has support for 
parallel shifts in all four directions, thus allowing one to 
shift the entire comparison image in only one cycle. This 
feature drastically reduces the instructions wasted on loads, 
shifts, and pointer arithmetic operations as well as data 
cache accesses. “Magic” instructions and storage elements 
are also created for other major algorithmic functions in 
IME to achieve similar gains.

Thus, by reducing instruction overheads and by amortiz-
ing the remaining overheads over larger datapath widths, 
this functional unit finally consumes around 40% of the 
total instruction energy. The performance and energy effi-
ciency improve by 200–300× over the base implementation, 
match the ASIC’s performance and come within 3× of ASIC 
energy. This customized solution is 20–30× better than the 
results using only generic data-parallel techniques.
FME Strategy: FME improves the output of the IME stage 
by refining the alignment to a fraction of a pixel. To per-
form the fractional alignment, the FME stage interpolates 
one image to estimate the values of a 4 × 4 pixel block at 
fractional pixel coordinates. This operation is done by a 
filter and upsample block, which again has high arithme-
tic intensity and high data locality. In H.264, upsampling 
uses a six tap FIR filter that requires one new pixel per itera-
tion. To reduce IFs and register file transfers, we augment 
the processor register file with a custom 8 bit wide, 6 entry 
shift register structure which works like a FIFO: every time 
a new 8 bit value is loaded, all elements are shifted. This 
eliminates the use of expensive register file accesses for 
either data shifting or operand fetch, which are now both 
handled by short local wires. All six entries can now be 
accessed in parallel and we create a six input multiplier/
adder which can do the calculation in a single cycle and 
also can be implemented much more efficiently than the 
composition of normal 2-input adders. Finally, since we 
need to perform the upsampling in 2-D, we build a shift 
register structure that stores the horizontally upsampled 
data, and feeds its outputs to a number of vertical upsam-
pling units (Figure 9).

This transformation yields large savings even beyond 
the savings in IF energy. From a pure datapath perspective 
(register file, pipeline registers, and functional units), this 
approach dissipates less than 1/30th the energy of a tradi-
tional approach.

A look at the FME SIMD code implementation highlights 
the advantages of this custom hardware approach versus 
the use of larger SIMD arrays. The SIMD implementation 
suffers from code replication and excessive local memory 
and register file accesses, in addition to not having the most 
efficient functional units. FME contains seven different sub-
block sizes ranging from 16 × 16 pixel blocks to 4 × 4 blocks, 
and not all of them can fully exploit the 18-way SIMD data-
path. Additionally, to use the 18-way SIMD datapath, each 
sub-block requires a slightly different code sequence, which 
results in code replication and more I-fetch power because 
of the larger I-cache.

To avoid these issues, the custom hardware upsam-
pler processes 4 × 4 pixels. This allows it to reuse the same 
computation loop repeatedly without any code replication, 
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which, in turn, lets us reduce the I-cache from a 16KB 4-way 
cache to a 2KB direct-mapped cache. Due to the abundance 
of short-lived data, we remove the vector register files and 
replace them with custom storage buffers. The “magic” 
instruction reduces the instruction cache energy by 54× 
and processor fetch and decode energy by 14×. Finally, as 
Figure 7 shows, 35% of the energy is now going into the func-
tional units, and again the energy efficiency of this unit is 
close to an ASIC.
CABAC Strategy: CABAC originally consumed less than 2% 
of the total energy, but after data-parallel components are 
accelerated by “magic” instructions, CABAC dominates the 
total energy. However, it requires a different set of optimi-
zations because it is control oriented and not data parallel. 
Thus, for CABAC, we are more interested in control fusion 
than operation fusion.

A critical part of CABAC is the arithmetic encoding stage, 
which is a serial process with small amounts of computa-
tion, but complex control flow. We break arithmetic cod-
ing down into a simple pipeline and drastically change it 
from the reference code implementation, reducing the 
binary encoding of each symbol to five instructions. While 
there are several if–then–else conditionals reduced to 
single instructions (or with several compressed into one), 
the most significant reduction came in the encoding loop, 
as shown in Figure 10a. Each iteration of this loop may or 
may not trigger execution of an internal loop that outputs 
an indefinite number of encoded bits. By fundamentally 
changing the algorithm, the while loop was reduced to a 
single constant time instruction (ENCODE_PIPE_5) and a 
rarely executed while loop, as shown in Figure 10b.

The other critical part of CABAC is the conversion of 
non-binary-valued DCT coefficients to binary codes in the 
binarization stage. To improve the efficiency of this step, we 
create a 16-entry LIFO structure to store DCT coefficients. 
To each LIFO entry, we add a single-bit flag to identify zero-
valued DCT coefficients. These structures, along with their 

corresponding logic, reduce register file energy by bringing 
the most frequently used values out of the register file and 
into custom storage buffers. Using “magic” instructions we 
produce Unary and Exponential-Golomb codes using sim-
ple operations, which help reduce datapath energy. These 
modifications are inspired by the ASIC implementation 
described in Shojania and Sudharsanan.17 CABAC is opti-
mized to achieve the bit rate required for H.264 level 3.1 at 
720p video resolution.
Magic Instructions Summary: To summarize, the magic 
instructions perform up to hundreds of operations each 
time they are executed, so the overhead of the instruction 
is better balanced by the work performed. Of course this is 
hard to do in a general way, since bandwidth requirements 
and utilization of a larger SIMD array would be problematic. 
Therefore we solved this problem by building custom stor-
age units tailored to the application, and then directly con-
necting the necessary functional units to these storage units. 
These custom storage units greatly amplified the register 
fetch bandwidth, since data in the storage units is used for 
many different computations. In addition, since the intra-
storage and functional unit communications were fixed and 
local, they can be managed at ASIC-like energy costs.

After this effort, the processors optimized for data-par-
allel algorithms have a total speedup of up to 600 × and an 
energy reduction of 60–350 × compared to our base CMP. For 
CABAC total performance gain is 17 × and energy gain is 8 ×. 
Figure 7 provides the final energy breakdowns. The efficien-
cies found in these custom datapaths are impressive, since, 
in H.264 at least, they take advantage of data sharing pat-
terns and create very efficient multiple-input operations. 
This means that even if researchers are able to a create a pro-
cessor which decreases the instruction and data fetch parts 
of a processor by more than 10×, these solutions will not be 
as efficient as solutions with “magic” instructions.

Achieving ASIC-like efficiency required 2–3 special 
hardware units for each subalgorithm, which is significant 
customization work. Some might even say we are just build-
ing an ASIC in our processor. While we agree that creating 
“magic” instructions requires a thorough understanding of 
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the application as well as hardware, we feel that adding this 
hardware in an extensible processor framework has many 
advantages over just designing an ASIC. These advantages 
come from the constrained processor design environment 
and the software, compiler, and debugging tools available in 
this environment. Many of the low-level issues, like interface 
design and pipelining, are automatically handled. In addi-
tion, since all hardware is wrapped in a general-purpose pro-
cessor, the application developer retains enough flexibility 
in the processor to make future algorithmic modifications.

5. eneRGY-efficient comPuteRs
It is important to remember that the “overhead” of using a 
processor depends on the energy required for the desired 
operation. Floating point (FP) energy costs are about 10× 
the small integer ops we have explored in this paper, so 
machines with 10 wide FP units will not be far from the 
maximum efficiency possible for that class of applica-
tions. Similarly, customizing the hardware will not have 
a large impact on the energy efficiency of an application 
dominated by memory costs; an ASIC and a processor’s 
energy will not be that different. For these applications, 
optimization that restructures the algorithm and/or the 
memory system is needed to reduce energy, and can yield 
large savings.23

Unfortunately, as we drive to more energy-efficient solu-
tions, we will find ways to transform FP code to fixed point 
operations, and restructure our algorithms to minimize the 
memory fetch costs. Said differently, if we want ASIC-like 
energy efficiencies—100× to 1000× more energy efficient 
than general-purpose CPUs—we will have to transform 
our algorithms to be dominated by the simple, low-energy 
operations we have been studying in this paper. Since the 
energy of these operations is very low, any overhead, from 
the register fetch to the pipeline registers in a processor, is 
likely to dominate energy costs. The good news is that this 
large overhead per instruction makes estimating the energy 
savings easy—you simply look at the performance gains—
but the bad news is that adding state-of-the art data-parallel 
hardware like wide SIMD units and media extensions will 
still leave you far from the desired efficiency.

It is encouraging that we were able to achieve ASIC 
energy levels in a customized processor by creating custom-
ized hardware that easily fit inside a processor framework. 
Extending a processor instead of building an ASIC seems 
like the correct approach, since it provides a number of 
software development advantages and the energy cost of 
this option seems small. However, building such custom 
datapaths still requires a significant effort and thus the key 
challenge now is to build a design system that lets applica-
tion designers create and exploit such customizations with 
much greater ease. The key is to find a parameterization of 
the space which makes sense to application designers in a 
specific application domain.

For example, often a number of algorithms in a domain 
share similar data flow and computation structures. In 
H.264 a common computational motif is based on a convo-
lution-like data flow: apply a function to all the data, then 
perform a reduction, then shift the data and add a small 

amount of new data, and repeat. A similar pattern of con-
volution-like computations also exists in a number of other 
image processing and media processing algorithms. While 
the exact computation is going to be different for each par-
ticular algorithm, we believe that by exploiting the com-
mon data-flow structure of these algorithms we can create 
a generalized convolution abstraction which application 
designers can customize. If this abstraction is useful for 
application designers, one can imagine implementing it by 
creating a flexible hardware unit that is significantly more 
efficient than a generic SIMD/SSE unit. We also believe that 
similar patterns exist in other domains that may allow us to 
create a set of customized units for each domain.

Even if we could come up with such a set of custom-
ized functional units, it is likely that some degree of per 
algorithm configurability will be required. For example, 
in a convolution engine, the convolution size and result-
ing datapath size could vary from algorithm to algorithm 
and thus potentially needs to be tuned on a per proces-
sor basis. This leads to the idea of creating a two-step 
design process. The first step is when a set of chip experts 
design a processor generator platform. This is a meta-level 
design which “knows” about the special functional units 
and control optimization, and provides the application 
designer an application-tailored interface. The applica-
tion designers can then co-optimize their code and the 
interface parameters to meet their requirements. After 
this co-optimization, an optimized implementation based 
on these parameters is automatically generated. In fact, 
such a platform will also help in building the more generic 
domain customized functional units mentioned earlier by 
facilitating the process of rapidly creating and evaluating 
new designs.

A reconfigurable processor generator alone is not a suf-
ficient solution, since one still needs to take one or more 
of these processors and create a working chip system. 
Designing and validating a chip is an extremely hard and 
expensive task. If application customization will be needed 
for efficiency—and our data indicates it will be—we need to 
start creating systems that will efficiently allow savvy appli-
cation experts to create these optimized chip level solutions. 
This will require extending the ideas for extensible proces-
sors to full chip generation systems. We are currently work-
ing on creating this type of system.16
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