
Decoupling Loads for Nano-Instruction Set Computers

Ziqiang Huang, Andrew D. Hilton, Benjamin C. Lee
Electrical and Computer Engineering

Duke University
{ziqiang.huang, andrew.hilton, benjamin.c.lee}@duke.edu

Abstract—We propose an ISA extension that decouples the
data access and register write operations in a load instruction.
We describe system and hardware support for decoupled loads.
Furthermore, we show how compilers can generate better static
instruction schedules by hoisting a decoupled load’s data access
above may-alias stores and branches. We find that decoupled
loads improve performance with geometric mean speedups of
8.4%.

I. INTRODUCTION

Architects who design out-of-order (OoO) processors
accept higher costs in return for performance. By aggres-
sively scheduling instructions out of program order during
execution, OoO processors exploit instruction level paral-
lelism to a greater degree than in-order (IO) ones. However,
dynamic scheduling requires sophisticated control and nu-
merous bookkeeping structures—e.g., reorder buffer, load-
store queue, register alias table—that increase complexity,
area, and power. Faced with these costs, designers may
ask whether alternative (micro)architectures could deliver
a significant portion of OoO’s performance without its
hardware overheads.

OoO derives most of its performance from a better in-
struction schedule, not the ability to react to dynamic events.
One insightful study finds that better schedules account for
88% of OoO’s advantage over IO [1]. Large windows permit
aggressive re-ordering and register renaming ensures that
schedules are constrained only by true dependencies. In
contrast, compilers are constrained by memory aliasing and
anti-/output dependencies when scheduling statically. Static
and dynamic scheduling have been studied extensively [2],
[3]. However, the discovery that dynamic schedules are
the key to OoO performance [1], not reactive mechanisms
that mitigate variable-latency operations and wrong-path
execution, motivates new architectures that permit better
static schedules and produce OoO-competitive performance
on IO hardware.

A compiler produces better static schedules when the
instruction set defines simple operations. As argued in the
case for RISC [4], simplicity benefits code generation since
the compiler need not find the rare opportunities to use
complex instructions that bundle multiple operations. More-
over, simplicity benefits code motion since the compiler has
more flexibility when re-ordering finer-grained computation

and pursuing good static schedules. Thus, RISC gives the
compiler fewer challenges and more opportunities.

In this paper, we note that even RISC bundles multiple
basic operations into an instruction and breaking these
bundles could further improve static scheduling – a strategy
we call Nano Instruction Set Computing (NISC). The most
promising candidates for NISC include branches and loads,
instructions that disproportionately impact performance and
are amenable to separation into nano-instructions. Indeed,
prior work decouples branches into prediction and resolution
to improve schedules [5]. In contrast, we decouple function-
ality in loads and perform code motion to hide their long
latencies.

Scheduling decoupled loads is complicated by stores and
branches. Loads cannot be hoisted before a may-alias store
without jeopardizing program correctness. Loads cannot
be moved across basic block boundaries without ensuring
exception safety, which is frequently quite difficult. Existing
techniques such as data speculation [6], [7], [8] and su-
perblock formation [9], [10] mitigate constraints imposed by
stores and branches. However, such speculative techniques
incur overheads when recovering from misspeculation.

We study non-speculative approaches to circumvent the
constraints posed by stores and branches, and show how
decoupled loads produce better schedules. Specifically, we
make the following contributions:

• We propose decoupled loads, which separate a load
instruction into data access and register writeback. We
describe instruction semantics and support required
from the operating system and microarchitecture. (§II)

• We modify a compiler to exploit decoupled loads and
produce high-quality, static instruction schedules. The
compiler hoists loads’ data accesses and schedules
independent instructions to hide latency. (§III)

• We evaluate performance gains using cycle-level sim-
ulations for varied IO processor configurations and
SPEC2006 benchmarks. Decoupled loads offer a ge-
ometric mean speedup of 8.4% (§IV)

Collectively, our results show the potential of NISC archi-
tectures. Decoupling an instruction’s constituent operations
produces better static schedules and brings us a step closer
to OoO performance on IO design.



II. DECOUPLED LOADS

Architects have long known that load instructions present
performance challenges. In this paper, we seek performance
by extending a RISC instruction set with decoupled loads
that separate data accesses and register writebacks. To sup-
port the instruction extension, the microarchitecture must
hold new state – data supplied by the cache hierarchy but
not yet written to registers. Moreover, the system must ac-
commodate new load semantics for consistency/coherence,
exception handling, and context switches. With such support,
decoupled loads meet key design objectives such as hiding
load-to-use latency without expensive software speculation
or hardware overhead.

A. Design Objectives

Hiding Latency. Decoupled loads help a compiler hide
load-to-use latency. Loads, with their long and variable
latencies, often occupy the critical path. However, if a load
is scheduled well before the first instruction that uses its
data, computation for intervening instructions hides the load
latency. By separating data access and register write, a
decoupled load increases scheduling flexibility. Because the
register is written separately, the compiler can hoist a load’s
data access higher and more often than it could have hoisted
a conventional load.

Although superficially similar, decoupling and hoisting a
load’s data access is orthogonal to data prefetching. Prefetch-
ers bring potentially useful data up the memory hierarchy
and into the data cache before a load is executed. Thus,
they reduce the probability of cache misses and average load
latency. Once data resides in the L1 data cache, however,
decoupled loads are needed to hide load-to-use latency.

Avoiding Speculation. We decouple load functionality
such that the compiler can hoist a load’s data access safely
and non-speculatively. When hoisting above an aliasing
store, the microarchitecture supplies the correct value to
the load. When hoisting across basic block boundaries, no
exception is generated if the branch resolves such that the
original load should not be executed.

Speculation permits aggressive code motion but requires
fix-up code to correct the effects of misspeculation. For ex-
ample, the Itanium employs two types of loads, speculative
and advanced, that allow the compiler to schedule loads
earlier [11]. Speculative loads can be moved before one or
more branches. Advanced loads can be moved before stores
even when the alias analysis is inconclusive. When either of
these loads are used and hoisted, the compiler inserts check
and branch instructions at the load’s original location to
detect misspeculation, and it inserts fix-up code that recovers
from misspeculation when necessary.

Correction and recovery code for misspeculation intro-
duces overheads. When the compiler misspeculates about the
code path or memory aliasing, the fix-up code re-executes
the computation correctly. Even when misspeculation is rare,

fix-up code increases register pressure as the compiler allo-
cates architected registers for the additional instructions. The
Itanium’s 128 registers might accommodate this pressure.
However, a RISC architect designing an IO core has a more
difficult choice – use 32 registers and spill to memory, or
use 128+ registers and incur hardware costs like those for
OoO physical register files.

Minimizing Hardware Overhead. We decouple loads to
improve the performance of static schedules on inexpensive
IO cores. Decoupled loads require modest microarchitectural
support – a small structure to hold values after data access
and before register write. Foreshadowing our experimental
findings, a small table is sufficient to realize the performance
potential for decoupled loads.

In contrast, other approaches to mitigate load latency re-
quire far more hardware. OoO’s dynamic schedules perform
well but require a physical register file, reorder buffer, and
load/store queue. Itanium’s speculative and advanced loads
require many architected registers to support re-execution
and fix-up code [11]. Sophisticated microarchitectures pro-
duce a load value earlier in the pipeline by enhancing the
front-end with instruction pre-decode, base register caching,
and fast address calculation [12]. Each of these approaches
require bookkeeping, control, and recovery mechanisms with
larger cost-benefit ratios than those for decoupled loads.

B. Instruction Semantics

A conventional load instruction – load rD, I(rA) –
has three significant pieces:
• Memory Hierarchy Access: The first piece of a load

instruction is the computation of its effective address
(I + rA), and the memory hierarchy access. Access
includes translation from virtual to physical address, the
L1 data cache read, etc.

• Ordering: The second piece of a load instruction is its
ordering relative to other memory operations. Ordering
specifies whether the load comes logically before or
after a store from the same or another thread.

• Register Write: The third piece of a load instruction
is writing the value to destination register rD.

Conventional loads constrain scheduling as all three pieces
are bundled together in a single instruction. In contrast, the
separation of these pieces into multiple instructions gives
greater flexibility. We focus on separating memory hierarchy
access from ordering. Doing so allows a load to perform
parts of its work with longer latencies (i.e., load-to-use
latency of a data cache hit or the even longer latencies of a
miss) prior to the point at which it must be ordered relative
to other instructions. These separated instructions are linked
by a new architectural identifier that we call the load tag.

We consider splitting the load into two instructions. Note
that a load could be divided into three instructions, but
the additional split benefits performance only under heavy
register pressure:



Figure 1. In-order pipeline extended with load tag table (LTT).

• Data Access [load.D$ ltD, I(rA)]: Data access
behaves much like a conventional load except that it
places the contents at memory address I(rA) into the
destination load tag ltD. If the instruction faults, the
exception is raised only when the load is ordered by a
subsequent instruction that uses the same load tag.

• Order and Write [load.wb rD, ltA)]: This in-
struction orders the load and writes the result back to
the register file. Writing the result copies the value from
the load tag ltA into the destination register rD. If
this value is not yet available, the instruction will stall.
Order and write preserves load semantics, causing the
decoupled load to behave as if the conventional load
were written at this point in program order.

Translating a conventional load into a decoupled one
is trivial.1 The compiler can freely hoist the data access
instruction above stores and branches to hide load-to-use
latency. However, the compiler must ensure that the ordering
instruction for the load remains at the conventional load’s
original position or at some place the compiler could have
safely moved the conventional load within the program.

load r2, 0(r1) → load.D$ lt0, 0(r1)

load.wb r2, lt0

C. Microarchitectural Support

We present an overview of a microarchitecture that sup-
ports decoupled loads. The primary microarchitectural ad-
dition is a table to maintain the state of decoupled loads
between its load.D$ and the load.wb instructions. We
call this structure the Load Tag Table (LTT) as it has one
entry per load tag. Each entry includes status bits, exception
information, addresses, and values.

1Loads from location declared volatile cannot be split.

Load Tag Table. Two status bits encode the state of an
entry. 00 indicates that the entry is invalid, which means that
no load.D$ has been executed since the load.wb com-
pleted for the previous load that used the entry. 01 indicates
that the memory hierarchy access is in progress. 10 indicates
that the memory hierarchy access has been completed, but
subsequently invalidated by coherence. Finally, 11 indicates
that the entry holds valid data.

Each entry holds exception information that tracks any
exception detected for a load that has not yet been ordered.
For example, load.D$ may have encountered an invalid
virtual address. Each entry tracks the virtual and physical
addresses specified and read by load.D$, respectively.
Finally, the entry holds the value retrieved by load.D$.

Figure 1 shows a 7-stage, in-order pipeline extended with
an LTT. The LTT is physically divided into three parts:
the virtual address (VA) in the decode stage; the status,
exception and value (S,E,V) in the execute stage; and the
physical address (PA) in the second memory stage. Decou-
pled load instructions, load.D$ and load.wb, index into
the table with their load tag. The structure that holds physical
addresses is a content-addressable memory (CAM), which is
searched by store instructions and coherence invalidations.

Operation and Example. We describe LTT operation
with a simple example. The compiler schedules a store
between a load’s data access and register writeback, high-
lighting the load’s interaction with a may-alias store.

load.D$ lt0, 4(r2)

st 4(r4), r3

load.wb r3, lt0

When load.D$ enters the execute stage (E), it sets the
corresponding LTT entry’s status to 01. Then, load.D$
updates the LTT entry with its virtual address in the first
memory stage (M1) and with its physical address in the



second memory stage (M2). After retrieving its data from
the cache hierarchy, load.D$ updates the LTT entry with
its value in the third and last memory stage (M3). Finally,
load.D$ sets status to 11 during normal execution and to
10 if an exception arises.

When store enters the second memory stage (M2), it
searches the LTT’s CAM. If it finds an LTT entry with
the same address, store updates the entry’s value in the
third memory stage (M3). Finally, when load.wb enters the
execute stage (E), it retrieves the entry’s value and sets status
to 00. Thus, the LTT ensures correctness in the presence
of aliasing stores while potentially shrinking load-to-use
latency from 4 cycles to 1.

Suppose load.wb executes and reads an entry with
status other than 11. If status is 00, the entry is invalid
and an invalid-instruction exception is raised. If status is
01, the data access is in progress and load.wb stalls until
the value returns from the memory hierarchy. If status is 10,
coherence invalidation requires load.wb to re-access the
memory hierarchy, as if it were a conventional load, using
the virtual address stored in the LTT.

Note that load.wb reads the LTT value two stages
earlier than store searches the LTT for possible aliases.
Even with bypassing, a load.wb that immediately follows
a store risks reading an outdated value from the LTT in the
execute stage (E). A conservative microarchitecture could
stall if any store is in flight.

An efficient alternative compares page offsets in virtual
addresses. The store’s offset is available after address
generation and the load.wb’s is read from the LTT during
decode. If offsets differ, load.wb and store may pro-
ceed in parallel. An aggressive alternative compares virtual
addresses early to bypass from store to load.wb. In the
event of synonyms (i.e., same physical but different virtual
addresses), the load.wb is squashed and re-executed.

Discussion. The LTT has some similarity to the load
queue in an OoO processor. Both structures hold physical
addresses in a CAM. Stores and invalidations must search
both. However, LTTs differ in several significant ways.

First, in the LTT, a CAM match either updates the entry’s
value to reflect the value stored or changes its status to
reflect an invalidation. In a load queue, a CAM match flushes
instructions because a load executed at the wrong time.
Second, the LTT holds only entries for decoupled loads
and is much smaller than a load queue. Third, the compiler
assigns LTT entries during register allocation whereas the
load queue is a FIFO structure.

Although one might view the LTT as additional “registers”
to mitigate register pressure, the performance benefits of
decoupled loads cannot be achieved by simply increasing
the register file size by the number of LTT entries. From
the compiler’s perspective, more registers reduces spilling
and mitigates anti/output dependencies. But they cannot help
loads circumvent constraints from stores and branches.

D. System Support

Decoupled load semantics are defined naturally by its
two instructions for data access (load.D$) and register
writeback (load.wb). Together, these instructions provide
the system enough information to order loads, handle ex-
ceptions, and switch contexts.

Load Ordering. The system must order decoupled loads
relative to loads and stores from other cores. The load.wb
is the ordering point of the decoupled load. Because the
compiler ensures that load.wb occupies the original load’s
location in the program, the decoupled load completes at the
same point in time as a conventional load would have. Thus,
load.D$ is not visible to other cores until load.wb com-
mits, guaranteeing the decoupled load’s correctness under
any consistency model.

However, the core responds to invalidation differently
to accommodate interaction between decoupled loads and
stores from other cores. When a load is decoupled, another
core’s store could be ordered after its data access but before
its register write. Thus, invalidation needs to associatively
search the LTT just as invalidation is required to search the
load queue in OoO cores. If a matching address is found,
invalidation updates the LTT entry’s status, forcing the
subsequent load.wb to re-access the memory hierarchy.

Exception Handling. When a decoupled load’s
load.D$ produces an exception, the system defers
handling until its ordering point at load.wb. With
deferred exception handling, decoupled loads provide the
same semantics as conventional loads. Exceptions are
precise with respect to the register write. Moreover, the
compiler can hoist load.D$ above branches without
risk of handling exceptions from unexecuted code paths
unnecessarily.

Context Switching. Load tags, like registers, are part of
a process or thread’s context. Recall that the LTT contains
valid bits, addresses, and values. When a thread is context
switched out, the operating system (OS) saves each valid
LTT entry’s virtual address, but not value, to memory.

When the thread is context switched in, the OS restores
each valid LTT entry by re-loading the value from its
saved address. To accomplish this reload, the OS re-executes
load.D$ for each decoupled load in flight. Re-execution is
necessary after a context switch because other threads may
have modified values residing at LTT-held addresses. Re-
execution may encounter page faults if the context switch
paged out LTT-held addresses. Page faults, like exceptions,
are deferred to the decoupled load’s ordering point.

III. COMPILER SUPPORT

Compiler support is essential when using decoupled loads
to produce high-performance schedules. First, the compiler
must determine which loads to decouple into data access
and register write. Naı̈vely decoupling every load would
increase pressure on the load tag table, which is small to



void saxpy (float *dest, float *x,
float *y, float a, int n) {

for (int i=0; i < n; i+=2) {
dest[i] = a*x[i]+y[i];
dest[i+1] = a*x[i+1]+y[i+1];

}
}

Figure 2. SAXPY code example

ensure single-cycle access, and constrain performance. Fur-
thermore, naı̈ve approaches would increase instruction cache
pressure and cause the program to execute more dynamic
instructions, harming performance and power efficiency.

Second, the compiler must hoist data access instructions,
often above may-alias stores and branches, to hide load-to-
use latency. We first describe scenarios in which schedul-
ing benefits from decoupled loads. Then, we propose two
compiler scheduling policies that exploit decoupled loads to
improve performance.

A. Hoisting Over (May-)Aliasing Stores

Alias analysis attempts to determine whether two pointers
to memory refer to the same address. Given a query with two
pointers, the analysis responds with one of three possible
answers—must, may, or no alias. The compiler uses alias
analysis conservatively and does not schedule conventional
loads above may-alias stores. With decoupled loads, the
compiler circumvents the constraints posed by memory
aliasing. We show how data access in decoupled loads can be
hoisted above may-alias stores for representative functions.

Scheduling Example. The compiler makes assumptions
about machine parameters during instruction scheduling. In
our example, the compiler considers a two-wide, in-order
machine with two ALUs and one load/store unit. The load-
to-use latency is four cycles, which optimistically assumes
loads hit in the L1 cache and provides a challenging scenario
for decoupled loads. Multiplication requires four cycles and
all other instructions require one cycle. Each functional unit
is fully pipelined.

We consider single-precision, scalar multiplication and
vector addition (SAXPY). Figures 2–3 present the source
code and resulting static schedule. Instructions within the
same loop iteration are serialized by true data dependencies
such that these instructions cannot be reordered or scheduled
in the same cycle. In contrast, instructions across loop
iterations are not constrained by true dependencies.

Modern compilers extract instruction-level parallelism
across iterations by unrolling the loop. However, loop un-
rolling by a factor of two fails to improve SAXPY perfor-
mance. The compiler fails to find parallelism in the unrolled
loop because it cannot determine whether the store instruc-
tion at line 5 aliases the loads in lines 6-7. As a result, the
compiler conservatively specifies a may-alias dependence

Loop:

1 ld r9,0(r4)
2 ld r10,0(r5)
3 mul r9,9,r6
4 add r9,r9,r10
5 st 0(r3),r9
6 ld r9,4(r4)
7 ld r10,4(r5)
8 mul r9,r9,r6
9 add r9,r9,r10
10 st 4(r3),r9
11 addi r3,r3,8
12 addi r4,r4,8
13 addi r5,r5,8
14 addi r8,r8,2
15 bne r8,r7,Loop

Cycle Issue-1 Issue-2
1 1 14
2 2
3-4
5 3
6-8
9 4
10 5
11 6 12
12 7 13
13-14
15 8
16-18
19 9
20 10 11
21 15

Figure 3. SAXPY schedule with conventional loads

Loop:
1 ld r9,0(r4)
2 ld r10,0(r5)
3 mul r9,r9,r6
4 add r9,r9,r10
5 st 0(r3),r9
6 ld.D$ lt0,4(r4)
7 ld.D$ lt1,4(r5)
8 ld.wb r9,lt0
9 ld.wb r10,lt1
10 mul r9,r9,r6
11 add r9,r9,r10
12 st 4(r3),r9
13 addi r3,r3,8
14 addi r4,r4,8
15 addi r5,r5,8
16 addi r8,r8,2
17 bne r8,r7,Loop

Cycle Issue-1 Issue-2
1 1 16
2 2
3 6
4 7
5 3
6-8
9 4
10 5
11 8 9
12 10 14
16 11 15
17 12 13
18 17

Figure 4. SAXPY schedule with decoupled loads

between the store and its following loads, producing a static
schedule that spans 21 cycles.

Decoupled loads separate data access from register write,
allowing the compiler to hoist the data access. When
splitting a conventional load instruction, which it assumes
requires four cycles, the compiler generates a three-cycle
load.D$ and a one-cycle load.wb; most of the load’s
latency is attributed to data access. The compiler uses idle
issue slots to schedule data accesses in lines 6-7 earlier,
which reduces load-to-use latency from four cycles to one.
Because stores check and update the load tag table, the
schedule ensures program correctness regardless of aliasing.
The improved new static schedule spans only 18 cycles, as
shown in Figure 4.

SAXPY represents a broader class of codes for which
alias analysis must be conservative and thus restricts the
compiler’s ability to schedule code efficiently. We take
SAXPY as an example because it is simple and easy
to understand. More generally, SAXPY illustrates code in
which read-modify-write instructions are performed on data



void P7EmitterPosterior(
int L, struct plan7_s *hmm,
struct dpmatrix_s * forward,
struct dpmatrix+s * backward,
struct dpmatrix_s *mx) {
...
for (i = L; i>=1; i++) {
mx->xmx[i][XMC]=
forward->xmx[i-1][XMC]
+ hmm->xsc[XTC][LOOP]
+ backward->xmx[i][XMC]
-sc;

...
}

}

Figure 5. SPEC Hmmer Code Example.

structures indexed with variables. These codes are prevalent
and Figure 5 shows a similar loop pattern from hmmer in
the SPEC2006 benchmark suite.

B. Hoisting Over Branches

Compilers have difficulty hoisting a conventional load
instruction over a branch, primarily because the branch
could resolve in another direction. If a load is hoisted
from a basic block in an unexecuted code path, the load’s
destination register would be written with the wrong value.
Moreover, the load may cause an exception and trigger a
handler unnecessarily. For these reasons, Itanium’s advanced
loads require fix-up code and propagate a token that tracks
deferred exceptions to each instruction that depends on the
advanced load’s value [11]. We show how decoupled loads
can be hoisted above branches non-speculatively and without
fix-up code.

Scheduling and Examples. Figure 6 presents a simplified
control flow graph from the spec random load function in
bzip2, a benchmark from the SPEC2006 suite. Basic block
A has two successors, B and C, both of which start with
a load. The compiler cannot hoist these conventional loads
above A’s branch because it cannot determine the branch
direction.

Decoupled loads enable a new schedule. The compiler
decouples each load into load.D$ and load.wb instruc-
tions. It hoists both load.D$ instructions over A’s branch
while ensuring that both load.wb instructions remain in
their respective positions. Because load.D$ places data in
load tags and does not fault until ordered by a load.wb,
the transformation ensures program correctness regardless
of branch direction. By hoisting load.D$ above branches,
the compiler overlaps latency of B and C’s loads with the
latency of A’s load.

Naı̈vely decoupling loads and hoisting data accesses
above branches may harm performance. Figure 7 presents a
scenario in which basic block C has two predecessors, A and

Figure 6. Hoisting decoupled loads over branch (shared predecessor).

Figure 7. Hoisting decoupled load over branch (multiple predecessors).

B. The compiler may wish to decouple C’s load and hoist its
data access into B to overlap the latency with the load in B.
However, it must hoist data access into both predecessors to
ensure a valid value for the writeback regardless of control
flow. Unfortunately, A is a loop body and its branch into
C has a very low bias. Hoisting C’s data access into A
may cause A to execute more slowly due to more dynamic
instructions. Since A is executed multiple times, overall
performance may suffer.

The compiler can implement one of two solutions to
this scenario. First, the compiler can be conservative and
refrain from decoupling C’s load instruction. Alternatively,
the compiler can create a new basic block between A
and C that contains only the load.D$ instruction, which
has several advantages. When control flows from A to C,
computation is correct and load.D$ does not affect A’s
performance. When control flows from B to C, the hoisted
load.D$ improves performance.

In our implementation, the compiler determines its han-
dling of decoupled loads and branches based on static
analysis. Estimating bias is easier in some cases (e.g. loops)



and more difficult in others. In future, decoupled loads could
be generated and scheduled with profiles and dynamic binary
translation. Dynamic frameworks might enable a panoply of
more precise optimizations.

C. Scheduling Policy
Instruction scheduling is a critical stage in the compiler’s

code generation pipeline. The compiler tries to reorder in-
structions to increase instruction-level parallelism and reduce
structural hazards. Even when the compiler has a holistic
view of the program, it typically reorders instructions within
a basic block and not across them. Scheduling instructions
across basic blocks is difficult because it risks executing
instructions from the wrong code path.

Scheduling for Conventional Loads. List scheduling is
a common algorithm used by most modern compilers for
scheduling instructions within a basic block. The scheduler
constructs a data dependency graph (DDG) in which nodes
represent instructions, edges represent instruction dependen-
cies, and edge weights represent instruction latencies.

For a given basic block, Algorithm 1 shows a simplified
procedure for list scheduling. The algorithm first builds
DDG and then uses the graph to identify instructions that are
ready to execute. Whether an instruction is ready at a given
cycle depends on when its predecessors were scheduled
and their latencies. If no instruction is ready, the algorithm
simply increments the cycle count and checks again. Thus,
the algorithm repeatedly selects ready instructions, inserts
them into the schedule, and updates the graph. The process
continues until all instructions are scheduled and the graph
is empty.

Algorithm 1 Scheduling with Conventional Loads
1: procedure SCHEDULE(BASICBLOCK *B)
2: build DDG
3: while B has unscheduled instructions do
4: if no instruction ready at this cycle then
5: goto next
6: pick instructions
7: release successor instructions
8: next:
9: cycle++

Extensions for Decoupled Loads. We extend list
scheduling to use decoupled loads in Algorithm 2. The
new scheduling algorithm discovers new opportunities to
exploit instruction- and memory-level parallelism. When the
algorithm cannot find a ready instruction in a given cycle, it
will expand its search by decoupling a load and determining
whether its data access instruction can be scheduled.

The scheduler has several strategies for decoupling loads
and hoisting data accesses. For any given cycle, the sched-
uler considers decoupled loads only when no other instruc-
tion is ready for scheduling and the load/store unit is idle.

Algorithm 2 Scheduling with Decoupled Loads – Bubble
1: procedure SCHEDULE(BASICBLOCK *B)
2: build DDG
3: while B has unscheduled instructions do
4: if no instruction ready at this cycle then
5: if available Ld/St Unit then
6: if exist load only constrained by may-alias then
7: goto decouple
8: if exist independent load in successor blocks then
9: goto decouple

10: goto next
11: decouple:
12: decouple load into load.D$ and load.wb
13: mark load.D$ as ready
14: continue
15: pick instructions
16: release successor instructions
17: next:
18: cycle++

To find an instruction for this “bubble” cycle, the scheduler
seeks to decouple loads from the current basic block and, if
that fails, to decouple loads from the block’s successors.

First, within the current block, the scheduler searches for
loads that are constrained only by a may-alias dependence.
The scheduler can decouple the load, hoist its data access
instruction above the may-alias store, and rely on the load
tag table to supply the value for register write. Second,
the scheduler searches for independent loads in the current
block’s successors. The scheduler can decouple the load and
hoist its data access instruction above the branch.

When a candidate load is found, the compiler decouples
the conventional load into load.D$ and load.wb instruc-
tions. Then, the compiler updates the graph with dependen-
cies and latencies for the new instructions. To ensure that
the ordering point remains in the original load’s position,
load.wb inherits all dependency information from the
original load plus an additional predecessor – load.D$.
If the scheduler assumes an n-cycle latency for the original
load, it assumes n− 1-cycle latency for load.D$ and
one-cycle latency for load.wb. With the new graph, the
scheduler attempts to fill bubbles in the schedule.

Algorithm 3 offers a more aggressive approach to schedul-
ing decoupled loads. Instead of decoupling loads only in the
presence of bubble cycles during scheduling, the algorithm
seeks candidate loads for decoupling immediately after
building the data dependence graph. Doing so adds flexibility
because the compiler may schedule the entire basic block
differently and, for example, prioritize the load.D$ over
other low-latency instructions. However, such an aggressive
policy requires new, comprehensive compiler heuristics to
determine when decoupling loads is worthwhile.



Algorithm 3 Scheduling with Decoupled Loads – Early
1: procedure SCHEDULE(BASICBLOCK *B)
2: build DDG
3: for each instruction do
4: if is load instruction then
5: if no predecessor instruction then
6: decouple into load.D$ and load.wb
7: for each of B’s predecessor block P do
8: hoist load.D$ to the end of P
9: mark P to be rescheduled

10: if constrained by may-alias then
11: decouple into load.D$ and load.wb
12: add load.wb’s data dependency edges to load.D$
13: (rest same as Algorithm 1)

D. Load Tag Allocation

The compiler allocates and frees load tags, which are
required when decoupling loads, in a proccess that closely
resembles register allocation. When the compiler decides to
decouple a load in the scheduling stage, it assigns a virtual
load tag to the pair of load.D$ and load.wb instructions,
much like a virtual register number for traditional register
allocation. The load.D$ opens the liveness of the corre-
sponding load tag whereas the load.wb kills it.

When the compiler enters the register allocation stage, it
allocates load tags just as it allocates registers. Because load
tags look very much like registers, we can take advantage of
the liveness analysis and register allocation frameworks that
already exist in the compiler to support decoupled loads.

The allocator handles load tag pressure differently than
register pressure. When the allocator encounters register
pressure, it spills register contents to memory. In contrast,
when the allocator encounters load tag pressure, it reverses
the decision to decouple the load and couples the load.D$
and load.wb to produce a conventional load.

Reverting to a conventional load is preferable to spilling,
which generates a new pair of store/load instructions and
defeats the purpose of decoupling loads (i.e., hiding load
latency). Register allocation follows scheduling in a conven-
tional compiler pipeline, but the compiler must re-schedule
a basic block if allocation reverts a decoupled load into a
conventional one. Rescheduling incurs no additional over-
head since the compiler requires a post-register-allocation
scheduling pass to accommodate normal register spills.

IV. EXPERIMENTAL EVALUATION

We extend the OpenRISC instruction set with decoupled
loads. To generate code with decoupled loads, we extend
the Machine Instruction Scheduler in LLVM 3.5 [13] with
Algorithms 2-3. The scheduler searches for two types of
conventional loads that could be decoupled to improve
performance. First, it seeks loads in the same basic block

Structure Configuration

Branch Predictor GShare, 8KB table, 13 history bits,
4K-entry BTB, 64-entry RAS

Machine Width Varied – 2/4
Functional Units LD/ST varied – 1/2,

INT ALU 2×, FP-ALU 1×
Load Tag Table Varied – 8/16/32 entries
L1 Caches 8-way 32KB L1-D$,

4-way 32KB L1-I$,
64B lines, 4-cycle latency

L2 Cache 16-way 256KB, 12-cycle latency
L3 Cache 32-way 4MB, 25-cycle latency
Miss Handling 8-entry MSHR
DRAM 140-cycle latency

Table I
MACHINE MODEL.

that have been constrained by may-aliasing stores. Second,
it seeks independent loads in successor blocks that could be
hoisted above branches depending on the static analysis of
branch biases.

Machine Model. To understand the performance of de-
coupled loads, we perform cycle-level simulation by extend-
ing the OpenRISC architectural simulator Or1ksim with an
in-order timing model that includes dependency checking,
superscalar support, a three-level cache hierarchy and a
branch predictor.

Table I summarizes machine parameters that are used in
the simulations. LLVM also uses some of these parameters
– for example, the number of functional units, instruction
latency – to guide static scheduling. Load latency varies dra-
matically across applications and even across specific load
instructions within the same application. Yet the scheduler
requires a single static value that estimates load latency. Our
compiler schedules loads using L1 hit latency.

Benchmarks. We evaluate eight integer benchmarks
in SPEC2006. We also experiment decoupled loads with
floating-point benchmarks in SPEC2006, but are unable to
produce meaningful results because OpenRISC does not
support double-precision arithmetic in its 32-bit architecture.
Double-precision arithmetic is implemented in software,
which generates many library calls that restrict code motion
for decoupled loads; the compiler cannot hoist loads above
a function call.

The standard approaches in performance measurement
sample workloads and run a limited number of representative
instructions. Yet sampling is difficult when comparing dif-
ferent ISAs. Simulating X instructions after fast-forwarding
Y instructions could measure performance in very different
parts of the workload as code generation and scheduling



bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

5

10

15 12

7
11

14
10

4 5

10

Sp
ee

du
p

%

Figure 8. Performance speedup from decoupled loads over baseline with
conventional loads.

could produce very different dynamic instruction counts.
For this reason, we run each benchmark to completion with
its TRAIN input set and measure end-to-end performance
speedup.

Evaluation Strategy. Graphs show results from a 4-
wide, 2-LD/ST, 32-entry load tag table configuration unless
otherwise specified. We present the geometric mean of
speedups obtained over a baseline in-order machine. We first
supply insight into the sources of performance by showing
how often loads are decoupled and hoisted. We further dif-
ferentiate decoupled loads hoisted above may-aliasing stores
versus those hoisted above branches. We assess performance
sensitivity to machine width, prefetching, scheduling policy
and microarchitectural resources. Finally, we discuss side
effects of decoupled loads.

A. Performance Analysis

Figure 8 presents performance gains when generating
code with decoupled loads instead of conventional loads.
Overall, decoupled loads improve performance with geo-
metric mean speedup of 8.4% and a max speedup of 14%.
Performance gains vary from benchmarks as six out of the
eight benchmarks report substantial speedups, ranging from
7% - 14%, while the other two benefit significantly less.

Instruction Mix. Figure 9 presents the number of loads
relative to number of dynamic instructions. The black bar
denotes the number of useful decoupled loads, measured by
the number of completed load.wb instructions. The white
bar denotes the number of conventional loads that are not
decoupled. The gray bar denotes the number of redundant
loads, measured by the number of load.D$ instructions
from unexecuted code paths.

Load instructions often comprise about 20% of the total.
The compiler can decouple a large percentage of these
loads. For example, loads comprise 17% of libquantum’s
instruction mix and 70% of these loads are decoupled.
Similarly, loads comprise 23% of mcf’s instruction mix
and 43% of these are decoupled, which corresponds to a
large number of loads in absolute terms. The percentage of
decoupled loads indicates how often the compiler uses the
new instructions and correlates with performance gains.

bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng0

10

20

30

Pe
rc

en
ta

ge
%

Decoupled Conventional Redundant

Figure 9. Load breakdown, relative to number of dynamic instructions.

bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng0

5

10

15

Sp
ee

du
p

%

from May-Alias Stores from Branches

Figure 10. Contributors to decoupled load performance.

Although the compiler decouples loads and hoists data
access instructions aggressively, it rarely creates extra work
for the application. Unnecessary and redundant data access
instructions comprise only 1.4%, on average, of the total.
Redundant data access instructions are those that are hoisted
from basic blocks in unexecuted code paths. In these scenar-
ios, the application executes a load.D$ instruction but fails
to execute the corresponding load.wb instruction. Thus,
redundant loads are a measure of wasted work. Figure 9
indicates that redundant loads are rare and the compiler
generates efficient code.

Stores and Branches. We hoist decoupled loads above
may-aliasing stores and branches with two different mech-
anisms. Hoisting above stores requires a load-tag table that
forwards updated values to decoupled loads. Hoisting above
branches requires bias analysis and new basic blocks. We
find that applications are diverse and require support for
both types of instruction re-ordering.

Figure 10 illustrates contributions to performance when
hoisting a load’s data access above stores and branches.
Although all benchmarks benefit from both types of code
motion permitted when decoupling loads, the extent of these
benefits vary. For example, 90% of hmmer’s performance
gain comes from hoisting loads over may-aliasing stores
whereas benchmarks like libquantum and mcf benefit mostly
hoisting loads over branches. In contrast, bzip2 benefits
equally from both. Thus, both scheduling techniques are
required to realize the full potential of decoupled loads.



bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

5

10

15

20
Sp

ee
du

p
%

2-wide 1 Ld/St 2-wide 2 Ld/St 4-wide 2 Ld/St

Figure 11. Performance sensitivity to machine width.

bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

10

20

30

Sp
ee

du
p

%

No prefetching Perfect L2 Perfect L1

Figure 12. Performance sensitivity to prefetching.

bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

5

10

15

20

Sp
ee

du
p

%

Algorithm 2 Algorithm 3

Figure 13. Performance sensitivity to scheduling policy.

bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

5

10

15

20

Sp
ee

du
p

%

32 16 8

Figure 14. Performance sensitivity to load tag table (LTT) size.

B. Sensitivity Analysis

Machine Width. Figure 11 illustrates performance sen-
sitivity to an in-order machine’s issue width and number of
load/store units. Decoupled loads perform better in wider
machines. Given a wider machine, the compiler is more
likely to find idle slots and “bubbles” in the static schedule,
which trigger a search for loads to decouple and data access
instructions to hoist. Thus, the compiler can decouple loads
more aggressively in a wider machine. However, perfor-
mance differences are modest as the compiler is limited by
the number of candidate loads in the application.

Prefetching. Figure 12 shows the speedup obtained by
decoupled loads over a baseline with no prefetching, with a
perfect L2 (every L1 miss served by L2), and with a perfect
L1 (every access hits L1). The perfect caches model the
effect of ideal prefetchers on decoupled loads.

We find that prefetchers do not degrade benefits from
decoupled loads. On the contrary, for benchmarks with
relatively bad data cache behavior, such as mcf and libquan-
tum, bundling decoupled loads with prefetching increases
speedups. While decoupled loads can potentially overlap
cache miss latency, consecutive cache misses are rare be-
cause most benchmarks are characterized by regular memory
access patterns and good data locality. The majority of
decoupled loads’ benefits come from hiding the load-to-use
latency of a cache hit.

Scheduling Policy. Figure 13 compares the intuitive
policy in Algorithm 2, which hides load latency in bubble
cycles, with the more aggressive policy in Algorithm 3.
For benchmarks with long load latencies and prevalent

bubbles, such as mcf, decoupling loads in the presence of
bubbles or immediately after building the dependence graph
makes little difference. A few benchmarks perform better
with Algorithm 3. These benchmarks tend to have more
instruction-level parallelism, providing the compiler more
opportunities to prioritize decoupled loads over low-latency
instructions. However, several benchmarks perform worse as
the compiler generates more redundant load.D$ instructions
when branches are unbiased.

Load-Tag Table Size. A decoupled load that is in flight
requires a load tag, which links the data access instruction to
its corresponding register write instruction. Our analysis thus
far assumes 32 entries in the load tag table, a conservative
configuration that evaluates compiler effectiveness when
resources are abundant. In practice, however, we balance
performance gains against load-tag table size.

Figure 14 evaluates performance for a range of LTT sizes
and shows that only a few entries are sufficient. Load tag
pressure is usually much smaller than conventional register
pressure for two reasons. First, load tags are used only
for decoupled loads. Second, load tags have a very small
liveness range. As we vary LTT size from 32 to 8 entries,
we find that 16 load tags are sufficient to capture 95% of the
performance gains from decoupled loads. When we reduce
the number of tags from 16 to 8, hmmer, libquantum and
mcf performance suffers. This sensitivity analysis satisfies
a key design objective, minimal microarchitectural support,
and motivates future work in adapting the processor datapath
for decoupled loads.



bzip2
h264ref

hmmer

libquantum mcf
omnetpp

perlbench
sjeng

0

5

10

15

20

Sp
ee

du
p

%

Static Dynamic

Figure 15. Code size and overhead.

C. Side Effects

Figure 15 shows instruction overheads from decoupled
loads. Decoupled loads separate a load instruction into two
parts – data access and register write – and may increase
code size. For our benchmarks, decoupled loads increase
static and dynamic code size by an average of 5.8% and
7.4%, respectively.

Increases in static code size could reduce the instruction
cache’s hit rates, harming performance. However, we ob-
serve negligible performance degradation. SPEC2006 bench-
marks behave well from the instruction cache’s perspec-
tive [14]. Moreover, performance penalties from instruction
cache misses are small for in-order cores, which suffer
from head-of-line blocking frequently. Misses do not harm
performance when instructions are off the critical path or
are not immediately ready for execution upon entering the
window [5].

Increases in dynamic code size could increase contention
for issue slots. In practice, however, the compiler decouples
loads to fill slots that would otherwise stall the pipeline. Only
the data access part of redundant loads contend with useful
instructions for issue slots. But we find that the number of
redundant loads is very small.

V. RELATED WORK

Branches perform multiple operations in a single instruc-
tion. By decomposing a branch into prediction and resolution
instructions, control flow transfers can be hoisted above
branch resolution [5]. Breaking both branches and loads into
their constituent parts will produce even better schedules.

Load Latency. Microarchitectural mechanisms have been
proposed to tolerate cache miss latencies [15], [16], [17],
[18], [19]. CFP uses a slice buffer to drain the missed
load and its dependent instructions, freeing issue queue
and register file resources [17]. iCFP adapts CFP for in-
order pipelines, unblocking latches and allowing indepen-
dent instructions to execute [18]. SLTP and Multipass
Pipelining present other implementations of non-blocking
schemes [20], [21]. State-of-the-art iCFP achieves reach
57% of OoO performance with IO design.

Prefetching reduces cache miss latency. Software
prefetching inserts explicit prefetch instructions for memory

references that are likely to miss in cache [22]. Compilers
can detect memory access patterns and tune for varied la-
tencies [23]. Prefetching is especially effective given regular
memory access patterns [24], [25], but has also been applied
to pointer-based data structures [26], [27]. Prefetching does
not hide load-to-use latency once data is in the L1 cache.
Indeed, decoupled loads could improve performance even if
the system were to use an ideal prefetcher.

The Decoupled Access/Execute Architecture (DAE) [28]
decouples operand access and execution with two instruction
streams that comunicate via queues. DAE is orthogonal to
decoupled loads since the former is a microarchitectural
implementation and the latter is an architectural extension.
However, in a direct comparison with decoupled loads, DAE
requires much more complex hardware and its loads remain
serialized by stores and branches.

Instruction Scheduling. Dynamic optimization re-
schedules code to reflect runtime behavior, adding new code
to the application address space [29], [30] or into a hardware
cache[31], [32]. rePLay and Region Slip support dynamic
optimization and allow region schedules to overlap [33],
[34]. Each of these techniques require extensive hardware
support (e.g., frame constructor, optimization engine and
scheduler, frame cache, recovery mechanism).

Schedulers could perform better when given broader
scope. Trace scheduling is an early solution to the global
microcode optimization problem [35]. Similar approaches
include Superblock and Hyperblock formation[9], [36].
These profile-driven techniques are data dependent. They
also require mechanisms to support prediction and recovery
after misspeculation, either with fix-up code or checkpoint
recovery.

IA-64 provides “advanced loads” and “speculative loads”
which allow the compiler to schedule a load before one or
more prior stores and branches [11]. These instructions place
a check instruction at the original load’s location to detect
misspeculation and branch to fix-up codes. Our scheme
differs because the compiler transforms code to execute the
data access portion of the load non-speculatively.

VI. CONCLUSION

Current instruction set architectures bundle multiple oper-
ations into one instruction, which prevents compilers from
aggressively re-ordering instructions. We propose decoupled
loads to separate data accesses and register writes. Decou-
pled loads enable better static schedules by allowing compil-
ers to hoist data access above may-alias stores and branches,
two major barriers for code motion on conventional loads.
Decoupled loads require modest system and microarchitec-
tural support and improve performance by enabling better
static schedules.



ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion under grants CCF-1149252 (CAREER), CCF-1337215
(XPS-CLCCA), SHF-1527610, and AF-1408784. This work
is also supported by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of these sponsors.

REFERENCES

[1] D. McFarlin, C. Tucker, and C. Zilles, “Discerning the dom-
inant out-of-order peformance advantage: Is it speculation or
dynamism?” in Proc. ASPLOS. ACM, 2013, pp. 241–252.

[2] P. Chang, W. Chen, S. Mahlke, and W. Hwu, “Comparing
static and dynamic code scheduling for multiple-instruction-
issue processors,” in Proc. MICRO. ACM, 1991, pp. 25–33.

[3] C. Love and H. Jordan, “An investigation of static versus
dynamic scheduling,” in Proc. ISCA. ACM, 1990, pp. 192–
201.

[4] D. Patterson and D. Ditzel, “The case for the Reduced
Instruction Set Computer,” SIGARCH Computer Architecture
News, pp. 25–33, 1980.

[5] D. McFarlin and C. Zilles, “Branch Vanguard: Decomposing
branch functionality into prediction and resolution instruc-
tions,” in Proc. ISCA. ACM, 2015, pp. 323–335.

[6] X. Dai, A. Zhai, W. Hsu, and P. Yew, “A general compiler
framework for speculative optimizations using data specula-
tive code motion,” in Proc. CGO. IEEE Computer Society,
2005, pp. 280–290.

[7] J. Lin, T. Chen, W. Hsu, P. Yew, R. Ju, T. Ngai, and
S. Chan, “A compiler framework for speculative analysis and
optimizations,” in Proc. PLDI. ACM, 2003, pp. 289–299.

[8] J. Dehnert, B. Grant, J. Banning, R. Johnson, and T. Kistler,
“The Transmeta Code Morphing Software: Using speculation,
recovery, and adaptive retranslation to address real-life chal-
lenges,” in Proc. CGO. IEEE Computer Society, 2003, pp.
15–24.

[9] W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R. Bring-
mann, R. Ouellette, R. Hank, T. Kiyohara, G. Haab, J. Holm,
and D. Lavery, “The Superblock: An effective technique for
VLIW and superscalar compilation,” J. Supercomputing, pp.
229–248, 1993.

[10] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann,
“Effective compiler support for predicted execution using the
hyperblock,” in Proc. MICRO. IEEE, 1992, pp. 45–54.

[11] H. Sharangpani and K. Arora, “Itanium processor microar-
chitecture,” IEEE Micro, pp. 24–43, 2000.

[12] T. Austin and G. Sohi, “Zero-cycle loads: Microarchitecture
support for reducing load latency,” in Proc. MICRO. IEEE
Computer Society Press, 1995.

[13] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Proc.
CGO. IEEE Computer Society, 2004, pp. 75–86.

[14] A. Jaleel, “Memory chracterization of workloads us-
ing instrumentation-driven simulation: A pin-based mem-
ory characterization of the SPEC CPU2000 and SPEC
CPU2006 benchmark suites,” http://www.jaleels.org/ajaleel/
publications/SPECanalysis.pdf.

[15] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg, “A large, fast instruction window for tolerating
cache misses,” in Proc. ISCA. ACM, 2002, pp. 59–70.

[16] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez,
“Toward kilo-instruction processors,” Transactions on Archi-
tecture and Code Optimization, vol. 1, no. 4, pp. 389–417,
2004.

[17] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton, “Continual flow pipelines,” in Proc. ASPLOS.
ACM, 2004, pp. 107–119.

[18] A. Hilton, S. Nagarakatte, and A. Roth, “iCFP: Tolerating all-
level cache misses in in-order processors,” in Proc. HPCA.
IEEE, 2009, pp. 431–442.

[19] A. Hilton and A. Roth, “BOLT: Energy-efficient out-of-order
latency-tolerant execution,” in Proc. HPCA. IEEE, 2010, pp.
1–12.

[20] S. Nekkalapu, H. Akkary, K. Jothi, R. Retnamma, and
X. Song, “A simple latency tolerant processor,” in Proc.
ICCD, 2008, pp. 384–389.

[21] R. Barnes, S. Ryoo, and W.-M. Hwu, “”flea-flicker” multipass
pipelining: An alternative to the high-power out-of-order
offense,” in Proc. MICRO. IEEE, 2005, pp. 319–330.

[22] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla,
and I. Yanasak, “Architectural mechanisms for explicit com-
munication in shared memory multiprocessors,” in Proc. SC.
ACM, 1995, pp. 62–62.

[23] T. Mowry and A. Gupta, “Tolerating latency through
software-controlled prefetching in shared-memory multipro-
cessors,” J. Parallel Distrib. Comput., vol. 12, no. 2, pp. 87–
106, 1991.

[24] A. Klaiber and H. Levy, “An architecture for software-
controlled data prefetching,” in Proc. ISCA, 1991, pp. 43–53.

[25] T. C. Mowry, “Tolerating latency in multiprocessors through
compiler-inserted prefetching,” Transactions on Computer
Systems, vol. 16, no. 1, pp. 55–92, 1998.

[26] M. Karlsson, F. Dahlgren, and P. Stenstrom, “A prefetching
technique for irregular accesses to linked data structures,” in
Proc. HPCA. IEEE, 2000, pp. 206–217.

[27] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,” Proc. ASPLOS, pp.
115–126, 1998.

[28] J. Smith, “Decoupled access/execute architectures,” in Proc.
ISCA. ACM, 1984, pp. 112–119.

[29] K. Ebcioglu and E. R. Altman, “Daisy: Dynamic compilation
for 100% architectural compatibility,” in Proc. ISCA. ACM,
1997, pp. 26–37.

[30] M. Merten, A. Trick, C. George, J. Gyllenhaal, and W.-M.
Hwu, “A hardware-driven profiling scheme for identifying
program hot spots to support runtime optimization,” in Proc.
ISCA. ACM, 1999, pp. 136–148.

[31] S. Jee and K. Palaniappan, “Dynamically scheduling vliw
instructions with dependency information,” in Proc. Workshop
on Interaction between Compilers and Computer Architec-
tures, 2002, pp. 15–23.

[32] R. Nair and M. Hopkins, “Exploiting instruction level paral-
lelism in processors by caching scheduled groups,” in Proc.
ISCA. ACM, 1997, pp. 13–25.

[33] S. Patel and S. S. Lumetta, “rePLay: A hardware frame-
work for dynamic optimization,” Transactions on Computers,
vol. 50, no. 6, pp. 590–608, 2001.

[34] F. Spadini, B. Fahs, S. Patel, and S. S. Lumetta, “Improving
quasi-dynamic schedules through region slip,” in Proc. CGO.
IEEE Computer Society, 2003, pp. 149–158.

[35] J. Fisher, “Trace scheduling: A technique for global mi-
crocode compaction,” Transactions on Computers, vol. C-30,
no. 7, pp. 478–490, 1981.

[36] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann,
“Effective compiler support for predicated execution using
the hyperblock,” in Proc. MICRO. IEEE, 1992, pp. 45–54.

http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

	Introduction
	Decoupled Loads
	Design Objectives
	Instruction Semantics
	Microarchitectural Support
	System Support

	Compiler Support
	Hoisting Over (May-)Aliasing Stores
	Hoisting Over Branches
	Scheduling Policy
	Load Tag Allocation

	Experimental Evaluation
	Performance Analysis
	Sensitivity Analysis
	Side Effects

	Related Work
	Conclusion
	References

