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Abstract— Process variation poses a threat to the perfor-
mance and reliability of the 6T SRAM cell. Research has turned
to new memory cell designs, such as the 3T1D DRAM cell, as
potential replacement designs. If designers are to consider 3T1D
memory architectures, performance models are needed to better
understand memory cell behavior. We propose a decoupled
approach for collecting Monte Carlo HSPICE data, reducing
simulation times by simulating memory array components
separately based on their contribution to the worst-case critical
path. We use this Monte Carlo data to train regression models,
which accurately predict retention and access times of a 3T1D
memory array with a median error of 7.39%.

I. INTRODUCTION

For decades, technology scaling has boosted performance
and increased density in integrated circuits. However, shrink-
ing device feature sizes mean that process variation has
become a significant hindrance, reducing reliability and
limiting performance gains from technology scaling. With
process variation, we must revisit traditional memory circuit
designs.

In particular, process variation directly attacks the weake-
nesses of 6T SRAM producing transistors that deviate from
their specified sizes, thereby causing device mismatches.
Mismatches reduce reliability and adversely affect perfor-
mance. In addition to device mismatch, process variation
limits 6T performance scalability by causing variation in
the operating speed of individual cells and memory lines.
Thus, the 6T cell is not sufficiently robust to withstand the
challenges that come with future technology scaling.

Recent research has turned to alternative designs that can
replace the 6T cell. One such design is that of the 3T1D
DRAM, which promises operating speed comparable to that
of SRAM without the destructive reads of the standard
1T DRAM. Furthermore, 3T1D does not rely on matched
transistor strengths, so its reliability is not affected by process
variations in the same way that the 6T cell’s is. Recent
research indicates 3T1D can be used directly in the place
of 6T SRAM within structures, such as L1 caches, with
negligible performance loss [1].

If chip designers are to consider the 3T1D cell as a
practical design option, they need high-level models to
quickly estimate 3T1D memory performance and its im-
plications for the overall system. Prior work in memory
models consider only 6T SRAM for on-chip memory or
build analytical DRAM models (e.g., CACTI [2]). However,
on-chip DRAM will figure prominently in future variation-
tolerant designs. Prior work also overly emphasizes detailed
circuit simulation, which makes performance estimates pro-
hibitively expensive for early stage design space exploration
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by architects. To be widely adopted by architects and to be
integrated into chip-level simulators, memory models must
be computationally efficient.

To address these challenges, we propose empirical perfor-
mance models that combine new circuit simulation method-
ology with best-known practices in regression modeling.
After surveying the background and motivation for 3T1D
memories in Section II, this paper presents:

o Circuit simulation methodology that decouples memory
array components along the critical path, reducing the
size of simulated circuits and capturing performance
characteristics more efficiently. (Section III).

o Application of spline-based regression models, which
are empirically derived from circuit simulations to ac-
curately estimate performance with the speed of solving
analytical regression equations (Section IV).

We apply this new combination of methodologies to con-
struct models, estimating retention and access times for
a given set of 3T1D array design parameters, operating
conditions, and expected device size variation.

II. BACKGROUND AND MOTIVATION
A. Process Variation and 6T Limitations

Process variation can affect the speed of a 6T SRAM cell,
and consequently jeopardize the operating frequency of an
entire array. Figure la shows the schematic of a standard
6T cell. Reads are performed by precharging both bitlines
(the bitline and the inverted bitline) to high, strobing the
wordline, and seeing which bitline discharges. If the inverted
bitline discharges, a 1 is read from the cell. If the regular
bitline discharges, a 0 is read from the cell. For example, this
discharge path moves through transistors T1 and T2 to read
a 0. Any variation in the gate length or threshold voltage
of these transistors changes the current driving capability
of the read path, and thus affects the access times of these
cells. Within-die variation further complicates this scenario:
because these transistor sizes can vary from cell to cell,
each memory cell and memory line may operate at different
speeds. Circuit designers must clock the circuit at the worst-
case operating frequency, leading to significant performance
penalties for the entire memory array.

Process variation also attacks the stability of a 6T SRAM
cell. For example, transistor T2 is designed to be very strong,
transistor T1, moderately strong, and transistor T3, weak.
In reads, this allows T2 to quickly discharge the necessary
bitline while ensuring the intermediate node between T2 and
T3 does not rise enough to store a 1 when it is supposed to
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Fig. 1.

store a 0. Any variation within the cell changes the strength
of each transistor, and may lead to a weaker T2 that does not
discharge the bitline quickly enough. Such variation allows
the value at the intermediate node to rise completely and
flip the bit stored in the circuit, causing a pseudo-destructive
read. The same analysis holds for transistors T4, T5, and T6.

Variation also causes instability in writes. Normally, a
value is written to the cell by forcing the normal bitline to
the value we want to store, the inverted bitline to the opposite
value, and strobing the wordline. The access transistor T1/T4
and the write transistor must be strong enough to overcome
the pull-up strength of T3/T6 to flip the bit. By changing
the relative strength of each transistor, variation may prevent
writes from occurring. Thus, in the case of both reads and
writes, process variation makes it hard to ensure that a 6T
cell can function reliably. Even small error rates in an SRAM
array can lead to a huge performance loss [3].

B. The 3TI1D Cell

In light of such problems with the standard 6T SRAM
design, researchers are investigating new cell designs that
can better withstand process variation. 3T1D cell is one of
the possible options proposed by Luk et al. [4]. 3TID is a
DRAM memory cell that, unlike a typical 1T or IT1C design,
provides non-destructive reads and high-speed operation that
is comparable to (and in some cases better than) the standard
6T SRAM cell. 3T1D is also more compact and dissipates
less leakage power than the 6T cell [1]. Moreover, it does
not suffer from the stability issues that are present in the
6T design: its operation does not rely on the specific device
balance, and device mismatch is less likely to cause failure
within the cell. Variation only affects the operating frequency
of the cell, making it much more robust to process variation
than the 6T design.

Figure 1b presents a schematic of a 3T1D cell. To write to
the cell, the write bitline is charged to the value we wish to
store in the cell, and the write wordline is strobed. To read
from the cell, the read bitline is precharged high and the read
wordline is strobed. If a 1 is stored in the cell, transistor T2
turns on and the bitline discharges. The key to fast access
times is the gated diode, which is tied to the read wordline.
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Comparison of 6T and 3T1D memory cells.

When a 1 is stored in the cell, the diode provides a “boosting”
effect to the value at the storage node and temporarily gives
it a value close to (and sometimes greater than) Vdd, which
allows T2 to turn on quickly and discharge the bitline.

When a 0 is stored in the cell, the capacitance of D1
is smaller and little to no voltage boosting occurs, keeping
T2 turned off. Because the 3T1D is a dynamic memory
cell, the value at the storage node leaks away as time
passes. As this happens, accesses to the cell become slower
and slower. Eventually, this access time becomes so slow
that it is no longer comparable to that of the 6T cell.
Eventually, the stored value degrades completely. While the
fast access times and non-destructive reads of the 3T1D cell
produce an attractive 6T cell alternative, 3T1D’s dynamic
nature introduces a new issue that SRAM designers need
not consider.

Although there are many instances where static data
storage is desirable, most data used by modern processors
is transient, and need not be stored for large periods of
time. Data stored in structures like L1 caches, register
files, and TLBs change quickly, and these structures do not
necessarily need (or desire) static storage. Following this
line of reasoning, recent work investigates the viability of
building cache structures out of 3T1D arrays [1]. According
to preliminary estimates, 3T1D performs within 2% of 6T
memories under typical variation, outperforms 6T by 36%
under severe variation, and offers lower leakage power in
both cases [1]. 3T1D thus seems to solve a lot of the
problems encountered by the 6T cell, and stands as a viable
replacement option for transient, on-chip memory structures.

IITI. CIRCUIT MODELS

Architects rely on memory models to determine what kind
of memory structures they need to get desired performance.
For example, an L1 data cache requires fast access time but
can tolerate a low retention time, but an L2 or L3 cache needs
a higher retention time and can tolerate slower access times.
Each of these performance targets calls for different transistor
sizing and array structuring, and models are essential for
determining these exact targets. There already exist many
different models to help designers understand 6T SRAM



Parameter Retention Time Access Time Access Time Access Time
H Wordline Local Bitline Global Bitline

vdd 0.8V - 1.4V 0.8V - 1.4V 0.8V - 1.4V 0.8V - 1.4V

Temperature 0°C-126°C 0°C-126°C 0°C-126°C 0°C-126°C

Technology 45nm 45nm 45nm 45nm

No. Wordlines 8, 16, 32, 64, 128

No. Local Bitlines 8, 16, 32, 64, 128 | 8, 16, 32, 64, 128

No. Global Bitlines 8, 16, 32, 64, 128

T1 length 4AA+15nm™ 4AX+15nm*

T1 width 3AE£15nm* 3AE15nm™

T2 length 22A+15nm*™ 22+15nm*

T2 width 16AE£15nm* 16A+£15nm*

T3 length 22+15nm* 2A+15nm*

T3 width 4A+15nm* 4A+15nm*

D1 length 8A+15nm* 8A+15nm™

D1 width 20A+15nm* 20A+15nm*

Mstart length 45nm=+15nm*

Mstart width 2um=E15nm*

Mend length 45nm+15nm* 45nm+15nm”*

Mend width 90nm=+15nm* 90nm=+15nm”*

Time elapsed between Ons - 500ns

write and read

TABLE I
PERFORMANCE MODEL PARAMETERS AND MONTE CARLO SIMULATION RANGE. * THE RANGE OF 15NM IS BASED ON THE EQUATION:

0.5X(PREVIOUS TECHNOLOGY NODE - NEXT TECHNOLOGY NODE), MEASURING APPROXIMATELY 30% VARIATION.
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Circuit schematic for retention time simulation.

cell arrays (e.g. CACTI [2]). Thus, if architects are to really
consider 3T1D as a potential replacement for 6T structures,
performance models are need to estimate 3T1D performance
within architectures.

Our performance model consists of two components: a
retention time model, which gives the time it takes for the
storage node in an individual 3T1D cell to decay to Vdd/4,
and an access time model, which gives the time it takes to
perform a single read in the array.

We perform Monte Carlo simulation using HSPICE to
get a large sample of timing data across the different input
parameters of Table I. The 3T1D model is intended for chip-
level memory hierarchy design and, therefore, estimate per-
formance from high-level design parameters such as the num-
ber of wordlines and bitlines. However, given the challenges
of technology scaling, architects must also incorporate low-
level parameters for environmental conditions (temperature,
voltage), device parameters (transistor sizes), and variations
in all of the above. For clarity, we take transistor sizes
as proxies for device variations in this paper and ignore
modeling threshold voltages, which can be easily included

into our framework in future work.

A. Retention Time Model

Our retention time model calculates the retention time for
an individual 3T1D cell, given the following input param-
eters: supply voltage, temperature, and expected variation
expressed in terms of transistor sizes. We define retention
time as the time required for the storage node in the cell to
decay to Vdd/4 after a 1 has been written to the cell. Such
understanding allows architects to better identify refresh
policies or invalidation schemes necessary for their array.

To generate the retention model, we conduct Monte Carlo
simulations of a 3T1D cell using HSPICE, randomly varying
input parameters and measuring the cell’s retention time.
Figure 2 shows the schematic for the simulated circuit.
It consists of a single 3T1D cell, connected to simple
precharge and driver circuitry as appropriate. Wire parasitics
are determined using standard recommendations from the
Predictive Technology Models (PTM) [5]. Driver circuitry
was sized to produce a fanout-of-four delay, and all input
signals were shaped appropriately. To simulate this circuit,
we write a 1 to our cell, wait for the value of the storage
node to decay past Vdd/4, and report this value.

B. Access Time Model

The model calculates access time for an individual 3T1D
cell in an array, given the following input parameters: Vdd,
temperature, wordline length, local bitline length, global
bitline length, time elapsed between write and read, and
expected variation expressed in terms of transistor sizes. We
define access time as the time required to perform a single
read when a 1 has been written to the cell. We consider this
read to be the worst case operation of the cell; modeling this
read is sufficient to describe expected cell performance.

We adopt an array structure similar to that of the IBM
Power6 SRAM arrays, with hierarchical bitlines and no sense
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Fig. 3. Circuit schematic for access time simulation.

amplifiers (often referred to as a domino sense scheme) [6].
This structure is better suited for high frequency operation,
typical for 3T1D cells. We also chose a compositional
approach to this model, breaking the array into three separate
pieces: (1) wordline, (2) cell and local bitline, and (3) global
bitline. We model the delay of each piece separately. This
compositional approach is more practical for empirical mod-
eling, as users will want varying combinations of wordline
and bitline lengths and modeling every combination of these
lengths would be intractable. To get the delay for the entire
array, we only need to compute the delay through each of

these paths and add them together.

To generate the access time model, we conduct Monte
Carlo simulations using HSPICE for the three separate
pieces. The schematics for each of these components are
shown in Figure 3. The wordline circuit (Figure 3a) consists
of a simple clocked driver chain and dummy loads, which
consist of a single access transistor per cell and the appropri-
ate wire parasitics. The driver chain is sized to have fanout-
of-four inverter delays. The local bitline circuit (Figure 3b)
consists of a single 3T1D cell, where the read and write
bitlines are connected to a chain of dummy loads, which
consist of access transistor junction capacitances and wire
parasitics. The end of the read bitline is connected to circuitry
that activates the global bitline (GBLin) and is precharged
low (pre_n). The global bitline circuit (Figure 3c) consists of
a precharge transistor, a select transistor that turns the bitline
on, a chain of dummy cells, and an output driver.

To simulate these circuits, we consider a typical read
operation proceeding through the array and emulate this path
in each of the three circuits. In the wordline circuit, we
measure the propagation of a clock signal through a driver
and chain of dummy (i.e., access transistor only) cells. In
the local bitline circuit, we write a 0, write a 1, wait a given
time interval, and measure the delay between a read signal
on the wordline and the discharging of the last part of the
local bitline. In the global bitline circuit, we measure the
propagation of a signal through a chain of dummy bitline
cells and an output driver.

C. HSPICE Simulation Results

Figure 4 presents representative scatter plots of Monte
Carlo HSPICE simulations used to construct regression mod-
els. We observe a wide range of retention times and delays
from the space of parameters in Table I, which highlight the
challenges for empirical modeling. Retention times span a
range between zero and three microseconds. Cells with zero
retention times are functional and still hold data. Because we
define retention time as the time a cell can provide access
speeds comparable to that of 6T, cells with zero retention
times are those that can not deliver access speeds comparable
to those of 6T due to process variations.

Figure 4a indicates three discrete segments in wordline de-
lays for our 1000 Monte Carlo trials, indicating three differ-
ent delay regions that correspond to array configurations with
128 wordlines, 64 wordlines, and fewer than 32 wordlines.
The number of wordlines is the most significant determinant
of wordline delay. We use this Monte Carlo data to construct
empirical regression models, which predict retention times
and delays as a function of memory parameters and serve as
surrogates for detailed HSPICE simulations.

IV. REGRESSION MODELS

Regression models are empirically derived equations that
express a response as a linear combination of predictors. In
computer engineering, such models are often used as compu-
tationally efficient surrogates for detailed microarchitectural
or circuit simulation [7], [8]. However, prior modeling efforts
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Fig. 4. HSPICE Monte Carlo simulation results.

focus on either circuits or architectures. In contrast, this work
constructs models as a necessary bridge between circuits and
architectures to understand their interaction in the presence of
process variations. In particular, we simulate 3T1D circuits
to train regression models that estimate performance as a
function of input parameters. Thus, we combine the detail of
HSPICE data with empirically derived regression equations,
simultaneously achieving accuracy close to HSPICE simula-
tion and speed similar to that of purely analytical approaches.
Traditional Monte Carlo circuit simulations are far too slow
for microarchitectural design space exploration.

A. Model Formulation

Notation. Suppose we have a set of n training observa-
tions for which values of a response y = y1,...,y, and
predictors ©; = x; 1,. .., Tip, i € [1,n], of that response are
known. Let 3 = fo,..., 3, denote regression coefficients
used in describing the response as a linear function of
predictors plus a random error €; as shown in Equation
(1). F and G are non-linear transformations to capture non-
linearity and improve model fit. The errors ¢€; are independent
random variables with zero mean and constant variance.
Least squares is commonly used to identify the best-fitting
model for the training observations.

F(y;)) =G(X;)B+ e (1)

In this work, 3T1D retention and access times are the
responses. We construct four separate regression models: (1)
retention time, (2) wordline delay, (3) local bitline delay, (4)
global bitline delay. These models are trained with HSPICE
simulations of circuits in Figures 2-3. Predictors of these
responses are the parameters of Table I.

Predictor Interactions. In some cases, the effect of two
predictors 1 and x5 cannot be separated; the effect of x; on
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Fig. 5. Association between local bitline access time (ns) and device
parameters (number of local bitlines, device lengths (nm)) from Monte Carlo
simulations. Parameters are grouped into four intervals. Average access time
across Monte Carlo instances within each interval are plotted.

y depends on the value of x5 and vice versa. This interaction
may be modeled by constructing a third predictor x3 = z1xz2
to obtain y = By + 121 + Bex2 + Psr122 + €;. We specify
these interactions using domain-specific knowledge. Devices
DI and T2 of the 3T1D cell in Figure 1b likely interact to
affect the local bitline delay. T2’s ability to discharge the
bitline is determined by the boosting effect, which depends
on the size of D1.

Non-Linearity. As illustrated by the non-linearity of Fig-
ure 4 in Section III-C, our regression models must capture
discrete segments or non-linear trends. We use cubic splines
to model non-linearity. Splines are piecewise polynomials,
dividing the fitted function into intervals and fitting different
polynomials to each interval. Splines of higher order polyno-
mials may offer better fits and cubic splines have been found
particularly effective [9], [8].

We determine the number of intervals based on a predic-
tor’s significance. If a predictor is highly correlated with the
response, we use a greater number of intervals because mod-
eling the predictor’s non-linearity is likely more important to
overall model accuracy. Less significant predictors will use
fewer intervals. This link between significance and spline
intervals requires exploratory data analysis to identify strong
associations and correlations during model derivation.

Figure 5 illustrates an association analysis for local bitline
access times. The scatter plots reveal strong monotonic trends
for the number of local bitlines (nLBL) and T3 length (T3L)
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and a weaker trend for T2 length (T2L). There is no obvious
relationship between access times and devices T1 or DI.
We reconcile these trends with domain-specific knowledge.
Access times depend on the speed at which transistors T2
and T3 discharge the bitline, which depends on transistor
sizes. Access times also depend on bitline parasitics, which
are affected by the number of connected access transistors.
We use a larger number of spline intervals for nLBL, T3L,
and T2L given their significance, providing model flexibility
to capture trends likely important to predictive accuracy.

B. Fit and Accuracy

We collect 1000 Monte Carlo HSPICE simulations, using
800 for training and reserving 200 for validation. The R?
statistic quantifies fit to training data with R? — 1 indicating
a better fit. The retention time model achieves R? = 0.95.
For components of the access time model, we observe 0.93 <
R? < 0.98. Thus, we observe good fit to training data, which
suggests 800 training points are sufficient.

For non-training data, Figure 6 illustrates error distribu-
tions for model predictions on the 200 independent val-
idation points. These plots illustrate quartiles (horizontal
lines), dispersion (vertical lines), and outliers (circles). The
performance model is comprised of models for retention time
(RT) and access time, which is further comprised of wordline
(WL), local bitline (LBL), and global bitline (GLB) delays.

Retention time is predicted with a median error of 7.39%.
Wordline delays are predicted with a median error of 1.01%,
the lowest of models presented. These low errors are likely
due to the smaller number of predictors used to estimate the
response (Table I). Global bitline delay is estimated with a
median error of 8.65%.

We construct multiple local bitline delay models with an
overall median of 6.65%. Each model predicts delay for a
particular time elapsed between write and read. In Figure 6,
LBL1 estimates delay for reads that occur immediately after
a write. LBL2, LBL3, and LBL4 estimate delays for reads
that occur 20ns, 40ns, and 60ns after the write, respectively.
Models for other access times were constructed with similar
accuracy and we present these four representative models

for illustrative purposes.. To combine these separate LBL
models into an integrated model and to predict delays for
elapsed times not explicitly modeled, we interpolate between
predictions from models capturing adjacent points in time.

Across all models, we observe a median error rate of
7.39%. Outliers rarely exceed 20 percent. These errors are
sufficient to guide system-level architects to use 3T1D mem-
ories within their early stage processor deisgn simulations.
For example, these models are likely accurate enough to
guide the choice of refresh and replacement policies and to
reveal the implications of process variations on those poli-
cies. Should designers later need greater accuracy, additional
simulations and refinements might be applied.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a performance modeling methodology
for 3T1D memories. Models are constructed empirically us-
ing detailed HSPICE simulations made tractable by breaking
the simulated circuit into smaller parts of the read criti-
cal path. Spline-based regression on HSPICE training data
provides equations to quickly estimate performance metrics.
Such models are a necessary tool if computer architects are
to successfully use 3T1D memories and effectively combat
effects of process variation on memory performance.

In the future, we might apply regression to a number of
different memory cells, including 6T, 2T, and 1TIC. We
might also use these methods to hierarchically construct
models for higher-level structures, like caches or register
files. These models might be integrated into simulators or
other software that need information about memory per-
formance. This project provides a proof-of-concept for a
promising methodology and new avenues of research.
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