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Abstract

We present performance optimizations and detailed performance analyses
of sparse matrix-vector multiply SpMV and its generalization to multiple
vectors, SpMM, when the matrix is symmetric. In addition to the tra-
ditional benefit of reduced storage from symmetry, we show considerable
performance benefits are possible on modern architectures where the cost
of memory access dominates the cost of other operations. We analyze the
effects of (1) symmetric storage, (2) register-level blocked matrix storage,
and (3) register-level vector blocking for multiple vectors, when applied
individually and applied in conjunction. Compared to the best register
blocked implementations that ignore symmetry, we show 2.1× speedups
for SpMV and 2.6× speedups for SpMM. Compared to the most näıve
implementation in which none of the three optimizations are applied, our
best implementations are up to 9.9× faster for a dense matrix in sparse
format and up to 7.3× faster for a true sparse matrix.

We evaluate our implementations with respect to upper bounds on their
absolute performance in Mflop/s. Our performance model, which extends
our prior bounds for SpMV in the non-symmetric case, bounds perfor-
mance by considering only the cost of memory operations, and using
lower bounds on cache misses. On four different platforms and a suite
of twelve symmetric matrices spanning a variety of applications, we find
our implementations are within 60% of the upper bounds on average.
This fraction is smaller than what we have previously observed for non-
symmetric SpMV, suggesting two possible avenues for future work: (1)
additional refinements to the performance bounds that explicitly model
low-level code generation (e.g., register pressure or instruction schedul-
ing/selection/bandwidth issues), and (2) a new opportunity to apply au-
tomated low-level tuning techniques in the spirit of ATLAS/PHiPAC sys-
tems to symmetric sparse kernels.

2



1 Introduction

This report presents performance optimizations and detailed performance anal-
yses for the sparse matrix-vector multiply (SpMV) operation, y ← y + A · x,
when A is a symmetric sparse matrix (i.e., A = AT ), and x, y are dense column
vectors. We refer to x as the source vector, and y as the destination vector.
In addition, we also consider the generalization of SpMV to multiple column
vectors: x, y are replaced by dense matrices X, Y , and we refer to this multiple
vector kernel as SpMM. Symmetry has traditionally been exploited to conserve
storage, but significant performance improvements are also possible since the
cost of memory accesses dominates the cost of flops on most modern cache-
based superscalar architectures.

We show that by combining symmetric storage with existing techniques that
exploit other kinds of sparse matrix substructure, improvements in performance
(Mflop/s) of up to 2.1× and 2.6× are possible for SpMV and SpMM, respec-
tively, when compared to equivalent optimized implementations without sym-
metry. In particular, the maximum performance gains from symmetry were:
1.7× and 1.1× on the Sun Ultra 2i; 1.4× and 1.5× on the Itanium 1; 2.0×
and 2.6× on the Itanium 2; and 2.1× and 1.8× on the Power 4 for SpMV and
SpMM, respectively.

The central problem in efficient performance tuning for sparse computational
kernels like SpMV and SpMM is the considerable variation in the best choice of
sparse matrix data structure and code transformations across machines, com-
pilers, and matrices, the latter of which may not be known until run-time. Our
approach to automatic tuning builds on prior experience with the Sparsity
system [16, 14] for SpMV and SpMM when A is non-symmetric: for each ker-
nel, we (1) identify and generate a space of candidate implementations, any one
of which might be the best, and (2) search using a combination of modeling and
experimental profiling (i.e., actually running the code) to find the fastest imple-
mentation in that space. This report describes a new implementation space for
the symmetric case in which the following three optimizations are considered:

1. symmetric storage of the sparse matrix (Section 3),

2. register-level blocked storage of the sparse matrix, as proposed in Sparsity
(Section 3),

3. register-level vector blocking, as proposed in Sparsity (Section 4).

Our experimental work considers the effect of each optimization when applied
both individually and in conjunction.

To evaluate the achieved performance of our best implementations, we develop
upper bounds on their absolute performance (Mflop/s) as described in Section
5. Our performance model is a bound primarily in two senses. First, we bound
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execution time from below by considering only the cost of memory accesses
(loads and stores). Second, we model data placement at the various levels of
cache using lower bounds on the number of cache misses. We account for spe-
cific machines in our bounds by using published and measured values for the
effective access latencies at each level of the memory hierarchy and compare our
models to detailed hardware counter data. In prior work, similar bounds for
the non-symmetric case indicated that our implementations were often within
80% of the upper bound, suggesting that further performance improvements
from low-level tuning of the code would be limited [2]. By contrast, our im-
plementations in the symmetric case achieve a smaller fraction of the upper
bound, achieving approximately 60% on average. This observation suggests two
avenues for future work: (1) refining the optimistic assumptions of the upper
bound model, possibly to include modeling of register pressure, or instruction
scheduling, selection, and bandwidth issues, and (2) applying automated low-
level tuning techniques developed for dense linear algebra operations as in the
ATLAS/PHiPAC systems [5, 22].

The following summarizes the observations of our experimental work, conducted
on four different computing platforms (Table 1) and over a test suite of twelve
sparse symmetric matrices (Table 2):

• We present a variant of the Sparsity register blocking optimization for
SpMV that exploits matrix symmetry. This optimization for symmetry
can improve SpMV performance by as much as 2.1× over a non-symmetric
implementation with register blocking and as much as 2.6× over a non-
symmetric implementation with register blocking and vector blocking.

• We present a variant of the Sparsity vector blocking optimization for
SpMV that exploits multiple vectors. This optimization for multiple vec-
tors can improve SpMV performance by as much as 4.9× over a single
vector implementation when the matrix is stored in a non-symmetric for-
mat (full storage) and as much as 3.3× over a single vector implementation
when the matrix is stored in a symmetric format (half storage).

• Optimizing the SpMV kernel with symmetry, register blocking, and mul-
tiple vectors improves performance by as much as 9.9× for a dense matrix
in sparse format and 7.3× for a true sparse matrix when compared to a
näıve implementation (no symmetry, no register blocking, single vector).

• Optimizing the Ultra 2i and Itanium 1 for symmetry yields performance
comparable to the performance of a non-symmetric implementation (i.e.
limited performance gains) when considered with register blocking and
vector blocking. The case for symmetry exploiting optimization still holds,
however, since tuning is necessary to achieve this performance along with
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savings in storage. In contrast, the previously mentioned maximum per-
formance speedups were observed on the Itanium 2 and Power 4.

Collectively, these results show that significant gains are possible in practice
by consideration of higher-level matrix structure (e.g., symmetry) and kernels
beyond SpMV (e.g., SpMM) that inherently possess more opportunities for
reuse.

2 Experimental Methodology

2.1 Platforms

We conducted our experimental evaluations on machines based on the micropro-
cessors shown in Table 1. This table summarizes each platform’s hardware and
compiler configurations, and performance results on key dense kernels. Latency
estimates were obtained from a combination of published sources and experimen-
tal measurements using the Saavedra-Barrera memory system microbenchmark
[24] and MAPS benchmarks [29].

In addition, Table 1 shows performance data for a variety of related dense
matrix kernels available from the best hand-tuned or automatically tuned Basic
Linear Algebra Subroutine (BLAS) libraries. DGEMM is the double-precision
dense matrix multiply routine, and DGEMV is the dense matrix-vector multi-
ply routine. Both routines are a guide to the best possible performance of the
corresponding sparse kernels when the input matrices are non-symmetric.

The BLAS also includes matrix-vector and matrix-matrix multiply routines for
the symmetric case. In Table 1, we show the performance of DSYMV and
DSYMM, which are matrix-vector and matrix-matrix multiply when the sym-
metric matrix is stored as if it were a dense matrix, with half the matrix entries
ignored by the routine (i.e., the routines assume symmetry). DSPMV is a sym-
metric matrix-vector multiply routine in which the symmetric matrix is stored
symmetrically by storing either the upper or lower triangle of the matrix (ef-
fectively storing only half the total matrix entries). On our four evaluation
platforms, DSYMM generally approaches the performance of DGEMM. The
similarity in performance of DSYMM and DGEMM is to be expected since it is
natural to implement DSYMM by invoking DGEMM on large, rectangular sub-
blocks of the stored triangle. In contrast, DSYMV is nearly up to twice as fast
as DGEMV. The differences in performance of DSYMV and DGEMV is also
expected since DSYMV requires approximately half as many memory references
as DGEMV. Except on the Power4, DSPMV performance is much lower than
DSYMV. This effect is most likely due to a lack of tuning for DSPMV since we
would not expect the performance of these routines to differ significantly.
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Sun Intel Intel IBM
Property Ultra 2i Itanium 1 Itanium 2 Power4

Clock Rate 333 MHz 800 MHz 900 MHz 1.3 GHz
Peak Main Memory 664 MB/s 2.1 GB/s 6.4 GB/s 8 GB/s
Bandwidth
Peak Flop Rate 667 Mflop/s 3.2 Gflop/s 3.6 Gflop/s 5.2 Gflop/s

DGEMM (n = 1000) 425 Mflop/s 2.2 Gflop/s 3.5 Gflop/s 3.5 Gflop/s
DGEMV (n = 1000) 58 Mflop/s 345 Mflop/s 740 Mflop/s 915 Mflop/s
STREAM Triad 250 MB/s 1.1 GB/s 3.8 GB/s 2.1 GB/s
Bandwidth [25]

DSYMV (n = 1000) 92 Mflop/s 625 Mflop/s 1.4 Gflop/s 1.6 Gflop/s
DSPMV (n = 2000) 62 Mflop/s 115 Mflop/s 356 Mflop/s 1.7 Gflop/s
DSYMM (n = 2000) 383 Mflop/s 1.9 Gflop/s 3.4 Gflop/s 3.5 Gflop/s

L1 data cache size 16 KB 16 KB 32 KB 32 KB
L1 line size 16 B 32 B 128 B 128 B
L1 latency 2 cy 2 cy (int) 0.34 cy 0.7 cy
L2 cache size 2 MB 96 KB 256 KB 1.5 MB
L2 line size 64 B 64 B 128 B 128 B
L2 latency 7 cy 6 cy (int) 0.5 cy 12 cy

9 cy (double)
L3 cache size N/A 2 MB 1.5 MB 16 MB
L3 line size 64 B 128 B 512 B
L3 latency 21 cy (int) 3 cy 45 cy

24 cy (double)

TLB entries 64 32 (L1 TLB) 32 (L1 TLB) 1024
96 (L2 TLB) 128 (L2 TLB)

Page size 8 KB 16 KB 16 KB 4 KB
Memory 36 cy 36 cy 11 cy 167 cy
latency (≈)

sizeof(double) 8 B 8 B 8 B 8 B
sizeof(int) 4 B 4 B 4 B 4 B

Compiler Sun C Intel C Intel C IBM XLC
v6.1 v5.0.1 v7.0

Flags -dalign -O3 -O3 -O5, -qhot

-xtarget=native -qalias=allp

-xO5 -qcache=auto

-xarch=v8plusa -qarch=pwr4

-xrestrict=all -qtune=pwr4

-qnoipa

Table 1: Evaluation platforms. We list the basic configuration data for
the machines and compilers used in our experiments. For the BLAS routines
(DGEMM, DGEMV, DSYMV, DSPMV, and DSYMM), we show the best per-
formance between hand-tuned and automatically tuned libraries (ATLAS 3.4.1
[22], Sun Performance Library v6.0, Intel Math Kernel Library v5.2, and Goto’s
BLAS library [30]). The leading dimension (LDA) is set to be equal to the
matrix dimension.
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Name Application Area Dimension Nonzeros

1 dense1600 Dense Matrix 1600 1280800

2 bcsstk35 Stiff matrix automobile frame 30237 1450163

3 crystk02 FEM Crystal free vibration 13965 968583

4 crystk03 FEM Crystal free vibration 24696 1751178

5 nasasrb Shuttle rocket booster 54870 2677324

6 3dtube 3-D pressure tube 45330 3213332

7 ct20stif CT20 Engine block 52329 2698463

8 gearbox ZF aircraft flap actuator 153746 4617075

9 finan512 Financial portfolio optimization 74752 596992

10 pwt Structural engineering problem 36519 326107

11 vibrobox Structure of vibroacoustic problem 12328 342828

12 gupta1 Linear programming matrix 31802 2164210

Table 2: Matrix benchmark suite. Matrices are categorized roughly as fol-
lows: 1 is a dense matrix stored in sparse format; 2–8 arise in finite element
applications; 9–11 come from assorted applications; 12 is a linear programming
example. For each matrix, we show the number of non-zeros in the upper-
triangle.

2.2 Matrices

We evaluate the SpMV implementations on a subset of the matrix benchmark
suite used by Im [14]. Table 2 summarizes the size and application of each
matrix. Most of the matrices are available from either the collections at NIST
(MatrixMarket [26]) or the University of Florida [27].

The matrices in Table 2 all possess symmetry. They are arranged in four groups.
Matrix 1 is a dense matrix stored in sparse format; matrices 2–8 arise in finite
element method (FEM) applications; matrices 9–11 come from assorted appli-
cations ; matrix 12 is a linear programming example 1.

2.3 Timing

We use the PAPI v2.1 library for access to hardware counters on all platforms
[23] except for Power 4; we use the cycle counters as timers. Counter values
reported are the median of 25 consecutive trials.2

PAPI load instruction counters are unavailable for the Power 4 platform. Alter-
natively, we employed the HPM Tool Kit from IBM to record hardware statis-
tics, such as loads and cache misses. However, the version of HPM available
to us significantly undercounted the number of cache misses. For this reason,
hardware cache miss data is unavailable for the Power 4.

1This linear programming matrix is symmetric because it represents the explicit product
AT A.

2The standard deviation of these trials is typically less than 1% of the median.
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The largest cache on some machines is large enough to contain some of the
matrices. To avoid inflated findings, we report performance results only on the
subset of out-of-cache matrices for each platform. Figures will always use the
numbering scheme shown in Table 2.

For SpMV, reported performance in Mflop/s always uses “ideal” flop counts.
That is, if a transformation of the matrix requires filling in explicit zeros (as
with register blocking, described in Section 3), arithmetic with these extra zeros
are not counted as flops when determining performance.

3 Optimizations for Matrix Symmetry

This section provides an overview of the optimizations for matrix symmetry and
discusses the implementation space of a symmetric SpMV kernel. In particu-
lar, we examine the symmetric storage of a matrix as a technique to achieve
increased storage efficiency by storing only half of the matrix, while reducing
the number of accesses to the matrix. We then describe the register blocking op-
timization, designed to exploit naturally occuring dense blocks by reorganizing
the matrix data into a sequence of small (small enough to fit in registers) dense
blocks to further register reuse. Furthermore, combining register blocking and
symmetric storage requires special attention to diagonal block alignment and
the application of floating point operations for the transpose of the stored trian-
gle. We then mention loop unrolling as a mechanism for reducing loop overhead
within the register blocks. Finally, we conclude this section with a summary of
the implementation space for symmetry optimizations and identify the subspace
examined in the experimental work of this report.

The baseline implementation in this report uses full storage of the matrix
(i.e.ignores symmetry) in compressed sparse row (CSR) format.3 This base-
line implementation computes symmetric SpMV using a non-symmetric kernel,
accessing each matrix element once.

3.1 Symmetric Storage

Matrix symmetry makes it possible to store just half of the matrix and, without
loss of generality, our implementation stores the upper-triangle. Although the
symmetric implementation requires the same number of floating point opera-
tions as the baseline implementation, symmetric storage reduces the number of
memory accesses to the matrix by half.

However symmetric storage also potentially changes the access pattern to the
destination vector, y. First, observe that the baseline implementation processes
each row in turn, thus requiring only one store to each element of y. In contrast,

3One survey of common formats appears in Barrett, et al.[3].

8



for each non-zero matrix element, a symmetric implementation simultaneously
applies that element and its transpose, meaning one store for every non-zero.
Furthermore, each of these stores is indirect and thus potentially irregular. From
this view, it is not obvious that symmetric storage alone has a clear performance
advantage over the baseline.

Figure 1 shows the standard implementation of SpMV in C assuming CSR
storage in the non-symmetric (full-storage) case. Note the overhead of extra
storage for the data structure (row idx and col ptr) as well as the potential for
irregular memory accesses to x in line 4. Also note that there is only one store
per element of y.

Figure 2 shows a standard implementation for the symmetric case. As is evident
in the code, we perform the same number of flops as the non-symmetric code
while reducing the number of accesses to A (through *value). However, we have
introduced an extra branch to handle the diagonal elements (lines 4–8), and we
have also increased the number of stores to the destination vector (line 13).

Both implementations are slight modifications of the routines from the NIST
Sparse BLAS library [20]. In particular, the original NIST routines compute
y = Ax, whereas our implementations compute y = y+Ax. For this reason, the
original routine sets all elements in y to zero on entry (Appendix B). For our ac-
cumulation version, we eliminate this operation. The original routines also use
two sets of row pointers for the beginning and end of a row while our reference
implementation uses one set of row pointers for the beginning of a row. Other
differences include the condition to terminate the main loop, instantiation of
new pointers to arrays passed into the routine, and the syntax used to access
matrix and vector elements. Despite these differences, the performance of our
reference implementation (Figure 1) and the performance of our register blocked
implementation (Appendix A) with (1, 1) register blocks are both comparable
to that of the CSR implementation from the NIST Sparse BLAS [20]. We will
use these routines as our reference implementations in subsequent performance
comparisons.

3.2 Register Blocking

Sparsity’s register blocking optimization is a technique for improving register
reuse over that of a conventional implementation [16]. Register blocking is de-
signed to exploit naturally occuring dense blocks by reorganizing the matrix
data structure into a sequence of small (enough to fit in registers) dense blocks.
Register blocking reduces loop overhead, reduces indexing overhead, reduces ir-
regular access, and increases temporal locality to the source vector.

In the register blocked implementation, consider an m× n matrix, divided log-
ically into m

r ×
n
c submatrices, where each submatrix is of size r × c. Assume

for simplicity that r divides m and that c divides n. For sparse matrices, only
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void spmv( int m, const double* value,
const int* col_idx, const int* row_start,
const double* x, double* y )

{
int i;

/* loop over rows */
1 for( i = 0; i < m; i++ ) {

int jj;
2 double y_i = y[i];

/* loop over non-zero elements in row i */
3 for( jj = row_start[i]; jj < row_start[i+1]; jj++ ) {
4 y_i += (*value++) * x[*col_idx++];

}
5 y[i] = y_i;

}
}

Figure 1: A standard C implementation of reference SpMV for y = y + Ax,
assuming CSR storage and C-style 0-based indexing. A is an m×n matrix.
This is a modification of the corresponding NIST routine to compute y = y+Ax
instead of y = Ax.

void spmv_symm( int m, const double* value,
const int* col_idx, const int* row_start,
const double* x, double* y )

{
int i;

/* loop over rows */
1 for( i = 0; i < m; i++, row_start++ ) {

double y_i = y[i];
2 double x_i = x[i];
3 int jj = row_start[i];

/* special handling of the diagonal */
4 if ( i == *col_idx ) {
5 y_i += x[i] * (*value++);
6 col_idx++;
7 jj++;

}
8 else y_i = 0;

/* loop over non-zeros in row i */
9 for( ; jj < row_start[i+1]; jj++ ) {

10 int j = *col_idx++; /* column index j */
11 double a_ij = *value++; /* matrix element A(i,j) */

12 y_i += a_ij * x[j];
13 y[j] += a_ij * x_i;

}

14 y[i] = y_i;
}

}

Figure 2: A standard C implementation of SpMV for y = y+Ax assuming CSR
storage, where A is symmetric. The code assumes that only the upper-triangle
is stored. This code differs from the non-symmetric case by the extra branch
for the diagonal (lines 4–8) and the additional updates to y (line 13).
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A =


a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35


b row start =

(
0 2 4

)
b col idx =

(
0 4 2 4

)
b value =(

a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35
)

Figure 3: Block compressed sparse row (BCSR) storage format. BCSR
format uses three arrays. The elements of each dense 2 × 2 block are stored
contiguously in the b value array. Only the first column index of the (1,1)
entry of each block is stored in b col idx array; the b row start array points
to block row starting positions in the b col idx array. In Sparsity, blocks are
stored in row-major order. (Figure taken from Im [14].)

those blocks which contain at least one non-zero are stored. The computation
of SpMV proceeds block-by-block. For each block, we can reuse the correspond-
ing c elements of the source vector and r elements of the destination vector by
keeping them in registers, assuming a sufficient number are available.

Sparsity’s implementation of register blocking uses the blocked variant of com-
pressed sparse row (BCSR) storage format. Blocks within the same block row
are stored consecutively, and the elements of each block are stored consecutively
in row-major order.4 A 2 × 2 example of BCSR is shown in Figure 3. When
r = c = 1, BCSR reduces to CSR.5 Refer to Appendix A for an example of a
register blocked implementation.

Note that BCSR potentially stores fewer column indices than CSR implementa-
tion (one per block instead of one per non-zero). The effect is to reduce memory
traffic by reducing storage overhead. Furthermore, Sparsity implementations
fully unroll the r × c submatrix computation, reducing loop overheads and ex-
posing scheduling opportunities to the compiler.
However, Figure 3 also shows that the imposition of a uniform block size may
require filling in explicit zero values, resulting in extra computation. We define
the fill ratio to be the number of stored values (original non-zeros plus explicit
zeros) divided by the number of non-zeros in the original matrix. Whether con-
version to a register blocked format is profitable depends highly on the fill and,
in turn, the non-zero pattern of the matrix. Furthermore, the performance gains
from register blocking for SpMV given a block size varies across platforms, sug-
gesting that performance is a strong function of platform characteristics, such

4Row-major is Sparsity’s convention; column-major or other layouts are possible.
5The performance of this code is comparable to that of the CSR implementation from the

NIST Sparse BLAS [20].
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as architecture and compiler, in addition to block size.

The Sparsity system includes a heuristic for selecting the register block size
given a performance profile of the machine. The profile characterizes the per-
formance of block sizes up to 12x12 on a very regular ”sparse” problem: a dense
n × n matrix stored in sparse BCSR format. The experimental work for this
report does not include modifications to the Sparsity heuristic for symmetry
and instead presents performance based on exhaustive search for block sizes up
to 8x8 for each matrix. The development of a heuristic for the symmetric case
is future work.

3.3 Diagonal Block Alignment

The alignment of diagonal blocks refers to the manner in which the diagonal el-
ements are register blocked. The alignment chosen will affect the complexity of
a symmetric SpMV kernel as well as the alignment and blocking of non-diagonal
elements. We describe two alignment schemes, uniform blocking and square di-
agonal blocking, and mention possible variations on these schemes.

Uniform blocking is an alignment scheme in which all blocks, diagonal and
non-diagonal, are the same size (Figure 4, left). Employing a uniform block size
is a natural extension of Sparsity’s alignment scheme with the exception that
any block strictly below the diagonal is omitted. Furthermore, matrix elements
below the diagonal are not included in the diagonal block. Although uniform
blocking is conceptually simple, the implementation is subtly difficult since di-
agonal blocks must be handled specially. In particular, a diagonal element could
intersect a diagonal block at any number of positions within the block, requiring
conditional statements to handle each possible configuration.

Square diagonal blocking is an alignment scheme in which the diagonal blocks
are square (Figure 4, right). As in the uniform blocking scheme, elements below
the diagonal are not included in the diagonal block. Given a row-oriented storage
scheme and r× c register blocks, the diagonal blocks are implemented as square
r × r blocks, simplifying implementation and analysis since all diagonal blocks
may be considered in the same manner. However, in order to keep the register
blocks aligned as uniformly as possible, we choose to align the register blocks
from the right edge of the matrix. For some rows, aligning these register blocks
requires small degenerate r×c′ blocks to the right of the diagonal blocks, where
c′ < c and c′ depends on the block row. Analyses of the distribution of block
types (diagonal square, degenerate, non-diagonal register) when implementing
square diagonal blocking, however, indicate that degenerate blocks account for
at most 7.7% of the total number of blocks in a symmetrically stored matrix.
In most cases, no degenerate blocks were necessary.

Variations on uniform blocking and square diagonal blocking are also possible.
One variation on uniform blocking fills diagonal blocks with modified elements

12



Figure 4: Diagonal block alignment schemes. Two diagonal block align-
ment schemes for a 10 × 10 matrix with 2 × 3 register blocks: uniform block-
ing(left) and square diagonal blocking (right). In uniform blocking, all blocks
are 2 × 3. The matrix is logically expanded to a multiple of the block size.
In square diagonal blocking, there is a single diagonal block size (r × r). The
non-diagonal blocks are aligned from the right edge of the matrix with smaller
degenerate blocks to the right of the diagonal blocks, if necessary. The diagonal
elements are highlighted in green and the degenerate blocks in yellow.

from below the diagonal. Filling the diagonal blocks enables all blocks to be
considered in the same manner, but the filled elements actually duplicate storage
since they represent values below the diagonal. Furthermore, the fill elements
must be modified from their true value to account for duplicate operations on
the same matrix element. Although filled elements complicate matrix manip-
ulations, the cost of such complications could be amortized over many uses of
the symmetric SpMV kernel for a given matrix.

A variation on square diagonal blocking uses large diagonal square blocks of
size l × l where l = lcm(r, c), the least common multiple of r and c. Assuming
lcm(r, c) divides the matrix dimension, the size of these blocks eliminates the
need for degenerate blocks in the r × r square diagonal blocking scheme. The
performance gains from this optimization, however, would most likely be rela-
tively insignificant given the relatively small number of diagonal blocks in the
distribution of block types as discussed above.

The experimental work for this report implements square diagonal blocking. Our
preliminary analyses of uniform blocking and square diagonal blocking suggest
no obvious advantage to either alignment scheme. Refer to Appendix F for a
preliminary performance analysis of the two schemes.
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3.4 Applying the Transpose of the Stored Triangle

In the blocked symmetric SpMV implementation, we apply both the block and
its transpose for each stored register block. We consider two possible implemen-
tations: simultaneous and sequential application of the transpose.

The simultaneous application interleaves the floating point operations of the
stored elements and those of the corresponding transpose elements within a
register block. Thus, the simultaneous application of the transpose stores com-
puted values into the destination vector element by element. In contrast, the
sequential application of the transpose completes the operations for all stored
elements within a given register block before performing those in the correspond-
ing transposed register block. Thus, the sequential application of the transpose
stores computed values into the destination vector block by block.

This report studies the sequential application of the transpose. In principle,
the simultaneous scheme reduces register pressure since an entire block does
not need to be stored in registers. However, preliminary evidence in Appendix
E suggests that employing the sequential scheme is faster in practice. Note that
our implementations are written in C and we rely on the compiler to schedule
the code. Thus, although we would expect the simultaneous scheme to make
more efficient use of the registers, this scheme does not necessarily yield more
efficient schedules than the schedules for the sequential scheme. Fully under-
standing this phenomenon is possible future work.

3.5 Loop Unrolling

The floating point operations for the elements in a register block may be unrolled
to reduce loop overhead. This report considers two possible implementations of
loop unrolling, row-wise and column-wise. Given a register block, the elements
may be unrolled across the block row or the block column. There is no obvious
advantage to either unrolling scheme. This report studies column-wise unrolling
since initial experimental work shows higher performance from column-wise un-
rolling, especially for Itanium 1 and Itanium 2 (Appendix G).

3.6 Implementation Summary

Numerous alternative implementations for a symmetric SpMV kernel were con-
sidered, but not all implemented in the experimental work of this report. The
first of these alternatives is an option to multiply the diagonal blocks separately,
instead of multiplying them when considering each block row. Let A = D + A1

where D consists of the diagonal blocks from the matrix and A1 is the matrix
with the diagonal blocks excluded. Thus, the SpMV operation y = y + A · x is
equivalent to y = y + D · x + A1 · x where the terms are evaluated separately.
We do not consider such an implementation in this report.
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Another option interleaves the source and destination vectors. In particular,
this option lays out x and y in memory such that x[i] and y[i] reside at consecu-
tive memory locations. Interleaving the vectors takes advantage of the locations
of data in cache since elements are needed from both the source and destina-
tion vectors to calculate each result in the destination. We do not implement
vector interleaving since the data must be explicitly organized in this fashion,
potentially complicating the user interface.

In summary, the implementation space for a symmetric SpMV kernel includes
the following factors. The italicized option indicates the option considered in
this report.

• Storage: Non-symmetric; Symmetric

• Blocking: None; Register

• Block Size Selection: Heuristic; Exhaustive

• Diagonal Block Alignment: Uniform; Square diagonal

• Application of the Transpose: Simultaneous; Sequential

• Loop Unrolling: Row-wise; Column-wise

Refer to Appendix C for an example of an implementation of SpMM with the
italicized options above.

4 Optimizations for Multiple Vectors

This section provides an overview of the optimizations for the sparse matrix-
multiple vector (SpMM) kernel, Y = Y + A ·X, where A is a symmetric sparse
n×n matrix, and X, Y are dense n× k matrices. We can view X and Y equiv-
alently as collections of k dense column vectors of length n: X = (x1, . . . , xk)
and Y = (y1, . . . , yk). Here, we examine the vector blocking optimization, de-
signed to reduce loop overhead and increase temporal locality to A. In a vector
blocked implementation of SpMM, the k vectors are processed in groups of the
vector width v, and multiplication of each element of A (or block, if A is register
blocked) is unrolled by v—conceptually, the vector width is the vector blocking
analogue of the register block size r × c.

The baseline implementation assumed in considering multiple vectors takes a
symmetric matrix and, given k vectors, applies the unblocked symmetric SpMV
kernel once for each vector. This implementation requires k accesses to the en-
tire matrix and, for large matrices, requires bringing the entire matrix through
the memory hierarchy once for each vector. Thus, the vector blocking optimiza-
tion has the potential to decrease the number of memory accesses by as much
as a factor of v.
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4.1 Vector Storage

Vector storage has implications for kernel implementation and performance. The
two obvious storage options are storage by columns and storage by rows. Column
storage places the multiple vectors end to end. Thus, given a vector length of
n, x1[i] and x2[i] are separated by n − 1 elements in memory. Similarly, y1[i]
and y2[i] are separated by n − 1 elements in memory. In contrast, row storage
places the multiple vectors side to side. In this case, x1[i] and x2[i] are placed in
adjacent memory locations. Similary y1[i] and y2[i] are adjacent in memory. The
access patterns to the x and y imply that row storage may be more efficient due
to spatial locality. When A is stored by rows, also known as field interlacing
[28], the natural access pattern to the vectors x and y is by rows. However,
the user must explictly organize the data in this fashion. Elements within the
same row of x and y are likely to straddle multiple pages when the vectors are
stored by columns and n is large, thus applying pressure to the TLBs, which
are typically small. The experimental work of this report implements vector
storage by columns, since this is the most common user interface.

4.2 Vector Blocking

Vector blocking is a technique for reducing memory traffic during a sparse com-
putation with multiple vectors over a conventional implementation. An imple-
mentation of SpMM with vector blocking exploits a set of multiple vectors by
amortizing the cost of accessing a matrix element across a subset of these vec-
tors, where the size of the subset is defined as the vector width. This technique
to reduce loop overhead and increase temporal locality to a matrix may be ap-
plied to sparse matrix-vector multiply with multiple vectors.

In the vector blocked implementation, consider a set of k vectors divided into⌈
k
v

⌉
vector blocks, where each block has a vector width of at most v vectors.

In the case with no register blocking, the computation of SpMM proceeds se-
quentially across matrix elements. For each matrix element, the multiple vector
kernel computes results for the corresponding elements in each of the v desti-
nation vectors in the vector block before continuing with the computation for
the next matrix element. Throughout the computation of an element for each
of the v destination vectors in the vector block, we can reuse the corresponding
element in the matrix by keeping it stored in a register, assuming a sufficient
number are available. An analogous computational sequence applies for the reg-
ister blocked case, with computation proceeding across register blocks instead
of individual elements. Refer to Appendix C for an implementation of register
blocking combined with vector blocking.

The implementation of vector blocking is dependent on the vector width. Given
a vector width v as a tuning parameter, the SpMM kernel implements v sub-
routines. Each subroutine, SRi for 1 ≤ i ≤ v, is an implementation of SpMM
for a fixed number of vectors, i. Given a set of k vectors, the optimized kernel
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• dispatch to SRv

⌊
k
v

⌋
times

• if k%v > 0, dispatch to SRk%v once

Figure 5: Multiple vector dispatch algorithm. The optimized kernel dis-
patches to the appropriate subroutine. Refer to routine bssmvm m 2x3 2 in
Appendix C for a dispatch example for two subroutines.

dispatches to the appropriate subroutine (Figure 5). When v = 1, the subrou-
tine is effectively a single vector implementation of SpMV. Such a code sample
would differ from Appendix C in that the kernel always dispatches to routine
bssmvm m 2x3 1 once.

Note that each subroutine accesses each matrix element only once. Thus, given
a set of k vectors and a vector width of v, the matrix is accessed at most

⌈
k
v

⌉
+1

times in contrast to the k times required by the baseline implementation. The
effect is to reduce memory traffic by reducing matrix accesses. Furthermore,
the SpMV implementations for multiple vectors fully unroll the computations
for the v vectors in the subset, thereby reducing loop overhead and exposing
scheduling opportunities to the compiler.

4.3 Vector Width Selection

The selection of the vector width is highly dependent on the platform, matrix,
and application. An implementation of SpMV for multiple vectors is usually
register intensive, since the elements from each source and destination should
be stored in registers, assuming a sufficient number of registers are available.
Although increasing the vector width reduces memory traffic and achieves per-
formance gains, it also increases the number of registers that the kernel seeks
to use.

A simple analysis of register pressure that ignores compiler scheduling and opti-
mizations provides a conservative estimate of register usage for the computation
of a single register block. In the symmetric single vector case, the elements of
the stored transpose require rc registers. The c source vector elements and r
destination vector elements corresponding to the register block should be stored
in registers. Similarly, the computation for the transpose block will also re-
quire r + c registers. In a sequential application of the transpose, however, the
registers for the stored block and the transpose block are not needed simultane-
ously. Thus, a conservative estimate of register usage in the computation for one
register block and its transpose is r + c + rc registers when the transpose is ap-
plied sequentially and 2(r+c)+rc when the transpose is applied simultaneously.

A similar estimate for the multiple vector case is obtained by scaling the number
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of registers used for the source and destination vectors by a factor of v. An esti-
mate of register usage in the computation with multiple vectors is v(r + c) + rc
registers when the transpose is applied sequentially and 2v(r + c) + rc for when
the transpose is applied simultaneously. Thus, a simple analysis of register usage
indicates that register pressure increases with vector width. In the case where
the estimated number of registers exceeds the actual number available, register
spilling occurs resulting in a greater number of loads. The ultimate effect is an
increase in execution time and a decrease in performance.

Increasing the vector width also raises possible issues in instruction cache misses.
Instruction caches tend to be relatively small and the number of instructions in
an implementation of a fully unrolled r × c× v computation scales like r · c · v.
For this reason, larger vector widths tend to decrease performance, reflecting
the effects of register spilling. Refer to Appendix D for a representative plot of
performance as a function of vector width.

This report presents performance data from an exhaustive search that would
enable a user to select an optimal vector width for a particular platform and
matrix. Furthermore, an analysis of the performance data for varying vector
widths often indicate the existence of an optimal width. Continuing work with a
non-symmetric SpMV kernel optimized with register blocking and vector block-
ing has indicated potential for a comprehensive search heuristic for register block
sizes and vector widths, suggesting a similar heuristic is possible for a symmetric
kernel.

5 Bounds on Performance

We present performance upper bounds to estimate the best possible perfor-
mance given a matrix and a data structure, but independent of any particular
instruction mix or ordering. In related work, code generators in automatic tun-
ing systems for dense linear algebra, such as ATLAS or PHiPAC [5, 22], vary
the instruction schedule during the tuning process. In our work on sparse kernel
tuning, we have focused on data structure transformations, relying on the com-
piler (and eventually on a system like ATLAS or PHiPAC [5, 22]) to produce
efficent schedules. An upper bound allows us to estimate the probable payoff
from low-level tuning.

Our bounds for the register blocked, vector blocked implementations of sym-
metric SpMM, as described in Section 3 and Section 4, are based on bounds
previously developed for non-symmetric SpMV [2]. In particular, we make the
following assumptions in the derivation of the upper bound on performance:

1. SpMV and SpMM are memory bound since most of the time is spent
streaming through the matrix data. Thus, we form a lower bound on exe-
cution time by considering only the cost of memory operations. Further-
more, we assume write-back caches (a valid assumption for each platform
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considered in Table 1) and sufficient store buffer capacity such that we
are able to consider only the contribution of loads to execution time and
ignore the cost of stores.

2. The execution time model accounts for cache and memory latency, as
opposed to assuming that data can be retrieved from memory at the man-
ufacturer’s reported peak main memory bandwidth. When data resides in
the internal cache (L1 on these machines), we assume that all accesses to
this data can be fully pipelined, and therefore commit at the maximum
load/store commit rate. Table 1 shows this effective L1 access latency
6. Refer to Section 5 of our prior paper [2] for a detailed analysis of the
STREAM benchmarks that justifies this assumption.

3. We are able to get a lower bound on memory costs by computing a lower
bound on cache misses. We, therefore, consider only compulsory and
capacity misses, ignoring conflict misses. Furthermore, we account for
cache capacity and cache line size.

4. We do not consider the cost of TLB misses. Unless the matrix dimension
is so large that the source vector no longer fits in cache, operations such as
SpMV, SpMM, SpAT A 7, and SpTS 8 spend most of the execution time
streaming through the matrix using stride one accesses, so very few TLB
misses will occur 9.

5.1 Execution Time Model

Let the total execution time of SpMM be T seconds. The corresponding per-
formance P in Mflop/s is

P =
4kv

T
× 10−6 (1)

where k is the number of stored non-zeros in the n×n sparse matrix A (exclud-
ing any fill) and v is the vector width in the vector blocked implementation. To
get an upper bound on performance, we require a lower bound on T .

Consider a machine with κ cache levels where the access latency at cache level
i is αi (in cycles or seconds) and the memory access latency is αmem. Let hi be
the number of hits and mi be the number of misses at cache level i. Assuming
that we can overlap the latencies due to a perfect nesting of the caches, the
execution time T is

6For example, the Sun Ultra 2i has a L1 load latency of 2 cycles [31]. This processor can
commit, however, 1 load per cycle. We therefore charge a 1 cycle latency for L1 accesses in
the bound.

7y = y + AT Ax [1]
8sparse triangular solve
9This observation has been verified experimentally using hardware counters.
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T =
κ−1∑
i=1

hiαi + mκαmem, (2)

Given the number of loads Loads(r,c,v) as a function of block size (r, c) and
vector width v, the number of L1 hits h1 is given by h1 = Loads(r, c, v) −m1.
Assuming a perfect nesting of the caches, such that a miss at level i is an access
at level i+1, hi+1 = mi−mi+1 for i ≥ 1. Thus, to get an estimate of the upper
bound on performance given a lower bound M(i)

lower(r, c, v) on misses in the i-
th cache as a function of block size and vector width, let mi = M(i)

lower(r, c, v)
in Equation (2), and convert to MFlop/s using Equation (1). The following
sections derive expressions for Loads(r,c,v) and M(i)

lower(r, c, v).

5.2 Load Model

The following performance model assumes an implementation of an SpMV ker-
nel optimized for symmetry, register blocking, and vector blocking, as described
in Section 3 and Section 4. The performance model counts the number of loads
and stores required for symmetric SpMM as follows.

Let A be an m × m symmetric matrix with k stored non-zeros. Let Dr be
the number of r × r non-zero diagonal blocks and Brc be the number of r × c
non-zero register blocks required to store the matrix in symmetric BCSR for-
mat. Let ‖Dr‖ and ‖Brc‖ denote the total number of matrix elements (including
filled zeros) stored in the diagonal and non-diagonal blocks, respectively. Also
denote the fill ratio, given r× r diagonal blocks and r× c register blocks, as frc.

The upper bound on Dr is
⌈

m
r

⌉
with at most ‖Dr‖ =

⌈
m
r

⌉
· r(r+1)

2 ≈ m(r+1)
2

diagonal blocked elements in the matrix. This follows from the observation that
a diagonal block has at most r(r+1)

2 elements since elements strictly below the
diagonal are not stored. Furthermore, we estimate the number of non-diagonal
blocks Brc by counting the stored elements excluded from the diagonal blocks
so that Brc = ‖Brc‖

rc where ‖Brc‖ ≈ kfrc − m(r+1)
2 . Each register block has

exactly rc elements comprised of non-zeros and explicitly filled zeros. In the
case of 1× 1 register blocking, ‖Dr‖+ ‖Brc‖ = k.

The matrix requires storage of ‖Dr‖+‖Brc‖ double precision values, Dr+Brc in-
tegers for the column indices, and

⌈
m
r

⌉
+1 integers for the row indices. Since the

fill ratio is defined as the number of stored elements (fill values included) divided
by the number of non-zeros (fill values excluded), we find that frc ≈ ‖Dr‖+‖Brc‖

k ,
and is always at least 1.

Every matrix element, row index, and column index must be loaded once. We
assume that SpMM iterates over block rows in the stored upper triangle and
that all vr entries of the v destination vectors can be kept in registers for the
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duration of the block row multiply. Thus, we only need to load each element
of the destination vector once for computations on the upper triangle. We also
assume that all c destination vector elements can be kept in registers during the
multiplication of a given transpose block, thereby requiring Brcvc additional
loads from the destination vector. Each load from the destination vector is fol-
lowed by a store to the destination vector.

Furthermore, we assume that the kernel iterates over block columns in the
transpose of the stored triangle, and that all vr entries of the v source vectors
can be kept in registers for the duration of the block column multiply, requir-
ing Drvr loads from the source vector. Finally, we assume that all c source
vector elements can be kept in registers during the multiplication of a given
register block in the upper triangle, thus requiring Brcvc additional loads from
the source vector. Refer to the code subsections labeled Handle register blocks
in Appendix C for the code performing the multiplication and addition within
a register block.

In terms of the number of non-zeros and the fill ratio, the total number of
loads and stores of floating point and integer data is

Loads(r, c, v) = Brcrc + Dr

(
r2+r

2

)
+ Brc + Dr +

⌈
m
r

⌉
+ 1︸ ︷︷ ︸

matrix

+

vrDr + vcBrc︸ ︷︷ ︸
source vector

+ vrDr + vcBrc︸ ︷︷ ︸
destination vector

(3)

Stores(r, c, v) = vrDr + vcBrc (4)

where Dr and Brc can be represented in terms of frc, m, r, c, and k.

5.3 Load Model Validation

We present results from data collected for all register block sizes up to 8x8 across
all matrices and platforms, measuring execution time, loads, and cache misses
using PAPI (except for Power4, refer to discussion below). For each matrix, we
compare the number of loads as measured by PAPI to the number estimated by
the Equation (3). We validate our load model in Figures 6–9, showing data from
a fully optimized implementation (symmetry, register blocking, vector blocking)
for the block size and vector with that maximizes performance, chosen by ex-
haustive search (Appendix J). The data shows that load model estimates are a
good match to the actual number of load instructions issued, especially for the
Sun Ultra 2i and the IBM Power 4 (Appendix H). Differences in the estimated
and the actual number of loads may reflect register spilling that results from
vector blocking, requiring extra loads (Section 4.3).
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PAPI load instruction counters are unavailable for the Power 4 platform. Alter-
natively, we employed the HPM Tool Kit from IBM to record hardware statistics.
The HPM loads counted, however, count only floating point loads.

5.4 Cache Miss Model

The analytic upper bound on execution time as modeled in this report is derived
from specifying an analytic lower bound on the number of cache misses.

Beginning with the L1 cache, let l1 be the L1-cache line size, in double-precision
words. One compulsory L1 read miss per cache line is incurred for every matrix
element (value and index) and each of the mv destination vector elements. In
considering the source vector for the lower bound, we assume the source vector
size is less than the L1 cache size, so that in the best case, only one compulsory
miss per cache line is incurred for each of the mv source vector elements. Thus,
a lower bound M(1)

lower on L1 misses is

M(1)
lower(r, c, v) = 1

l1

[
kfrc + 1

γ

(
Dr + Brc +

⌈
m
r

⌉
+ 1

)
+ 2mv

]
(5)

where the size of one double precision floating point value equals γ integers. In
this paper, we use 64-bit double-precision floating point data and 32-bit inte-
gers, so that γ = 2. The factor of 1

l1
accounts for the L1 line size. An analogous

expression applies at other cache levels by simply substituting the appropriate
line size.

In the worst case, we will miss on every access to a source and destination
vector element due to capacity and conflict (both self-interference and cross-
interference) misses. Thus, an upper bound on misses is 10

M(1)
upper(r, c, v) = 1

l1

[
kfrc + 1

γ

(
Dr + Brc +

⌈
m
r

⌉
+ 1

)]
+

2vrDr + 2vcBrc (6)

5.5 Cache Miss Model Validation

We present results from data collected for all register block sizes up to 8 × 8
across all matrices and platforms, measuring execution time, loads, and cache
misses using PAPI (except Power 4, refer to discussion below). For each matrix,
we compared the cache misses as measured by PAPI to the cache miss lower and
upper bounds given by Equation (5) and Equation (6), respectively. We vali-
date our cache miss models in Figures 10–14, showing data on a fully optimized

10Equation (6) is a loose upper-bound because it essentially ignores any spatial locality
in accesses to the source vector. In principle, we can refine this bound by using the matrix
non-zero pattern to identify spatial locality when present, but the experimental work of this
report does not do so for simplicity.
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implementation (symmetry, register blocking, and vector blocking) for the block
size and vector width that maximizes performance, chosen by exhaustive search
(Appendix J). The data shows that the miss bounds are a good match to the
true misses (Appendix I). In particular, the vector lengths in our matrix suite
are small enough that the lower miss bounds, which assume no capacity and
conflict misses, count the true misses rather accurately in the off-chip caches
(i.e., the L2 cache on the Ultra 2i platform and the L3 cache on the Itanium 1,
Itanium 2, and Power 4 platforms).

The Itanium 1 and Itanium 2 architectures have L1 caches that do not cache
floating point values. Therefore, the data presented excludes the L1 cache for
these platforms.

The PAPI hardware counters used to validate the cache miss models were un-
available for the IBM Power 4. The HPM Tool Kit from IBM was used as an
alternative source of hardware data, but the version available to us significantly
undercounted the number of cache misses. For this reason, actual cache misses
are omitted for the Power 4 platform in Figures 13–14.
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Figure 6: Load Model Validation – Sun Ultra 2i. Model for the number of
issued load instructions on the Sun Ultra 2i compared to PAPI measurements for
the block size and vector width that maximizes performance in a fully optimized
implementation.
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Figure 7: Load Model Validation – Intel Itanium 1. Model for the number
of issued load instructions on the Intel Itanium 1 compared to PAPI measure-
ments for the block size and vector width that maximizes performance in a fully
optimized implementation.
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Figure 8: Load Model Validation – Intel Itanium 2. Model for the number
of issued load instructions on the Intel Itanium 2 compared to PAPI measure-
ments for the block size and vector width that maximizes performance in a fully
optimized implementation.
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Figure 9: Load Model Validation – IBM Power 4. Model for the number of
issued load instructions on the IBM Power 4 compared to HPM measurements
for the block size and vector width that maximizes performance in a fully opti-
mized implementation. The HPM measurements presented reflect only floating
point load instructions.
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Figure 10: Cache Miss Model Validation – Sun Ultra 2i. Upper and
lower bounds on L1 and L2 cache misses on the Sun Ultra 2i compared to PAPI
measurements for the block size and vector that maximizes performance in a
fully optimized implementation. The number of L2 misses match the lower
bound well in the larger L2 cache, suggesting the vector sizes are small enough
that conflict misses play a relatively small role.
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Figure 11: Cache Miss Model Validation – Intel Itanium 1. Upper and
lower bounds on L2 and L3 cache misses on the Intel Itanium 1 compared to
PAPI measurements. As with Figure 10, the lower bounds are a good match in
the largest (L3) cache.
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Figure 12: Cache Miss Model Validation – Intel Itanium 2. Upper and
lower bounds on L2 and L3 cache misses on the Intel Itanium 2 compared to
PAPI measurements. As with Figure 10, the lower bounds are a good match in
the largest (L3) cache.
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Figure 13: Cache Miss Model Validation – IBM Power 4. Upper and
lower bounds on L1 and L2 cache misses on the IBM Power 4. The actual
number of cache misses are omitted due to PAPI counter unavailibility and
significant undercounting with the HPM Tool Kit.
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Figure 14: Cache Miss Model Validation – IBM Power 4. Upper and
lower bounds on L3 cache misses on the IBM Power 4 compared to HPM mea-
surements. As in Figure 13, the actual number of cache misses are omitted
due to PAPI counter unavailibility and significant undercounting with the HPM
Tool Kit.
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6 Evaluation

This section evaluates the effects of various optimizations in the optimization
space considered in this report. In Section 6.2 we examine the payoff in per-
formance from exploiting symmetry. In Section 6.3 we examine the payoff in
storage space from exploiting symmetry. In Section 6.4, we examine experi-
mental data for any dependence between the register block size that maximizes
performance and the matrix, the number of vectors to be multiplied, and the
platform. In Section 6.5, we evaluate our performance models as upper bounds
on optimized performance. In Section 6.6, we present optimized performance
as a fraction of peak performance on each platform.

6.1 Performance Data

We summarize the performance results for various combinations of the opti-
mizations discussed in Section 3 and Section 4. Figures 15–18 summarize the
performance of our optimizations on the four hardware platforms in Table 1
and the matrix test suite in Table 2. In particular, we compare the following
six implementations:

• Non-Symmetric Unoptimized Reference: The unblocked (1, 1) single
vector implementation with non-symmetric storage. Refer to Figure 1 for
a code sample. Represented by crosses.

• Symmetric Reference: The unblocked (1, 1) single vector implementa-
tion with symmetric storage. Refer to Figure 2 for a code sample. Repre-
sented by five-pointed stars.

• Non-Symmetric Register Blocked: The blocked single vector imple-
mentation with non-symmetric storage where r and c are chosen by ex-
haustive search to maximize performance. Refer to Appendix J for the
optimal values of r and c given a matrix and platform. Refer to Appendix
A for a code sample. Represented by asterisks.

• Symmetric Register Blocked: The blocked single vector implemen-
tation with symmetric storage where r and c are chosen by exhaustive
search to maximize performance. Refer to Appendix J for the optimal
values of r and c given a matrix and platform. Refer to Appendix C
(bssmvm m 2x3 1 once) for a code sample. Represented by plus signs.

• Non-Symmetric Register Blocked with Multiple Vectors: The
blocked multiple vector implementation with non-symmetric storage where
r, c, and v are chosen by exhaustive search to maximize performance.
Refer to Appendix J for the optimal values of r, c, and v given a matrix
and platform. Represented by upward pointing triangles.

• Symmetric Register Blocked with Multiple Vectors: The blocked
multiple vector implementation with symmetric storage where r, c, and
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v are chosen by exhaustive search to maximize performance. We refer to
these parameters as ropt, copt, and vopt. Refer to Appendix J for the values
of ropt, copt, and vopt given a matrix and platform. Refer to Appendix C
(bssmvm m 2x3 2 once) for a code sample. Represented by six-pointed
stars.

In addition to the measured performance values for these six implementations,
Figures 15–18 also present upper bounds on performance as computed in Section
5. The bounds differ only in the number of loads and cache misses. In particular,
we present two upper bounds on optimized performance:

• Analytic Upper Bound: The analytic upper bound on performance for
the ropt × copt blocked implementation with vopt vectors. The number of
loads and cache misses are determined from Equation (3) and Equation
(5), respectively. Refer to Appendix J for the values of ropt, copt, and vopt

given a matrix and platform. Represented by solid lines.

• PAPI Upper Bound: An upper bound on performance for the ropt×copt

blocked implementation with vopt vectors. The number of loads and cache
misses are obtained from PAPI event counters. Refer to Appendix J for
the values of ropt, copt, and vopt given a matrix and platform. Represented
by dashed lines.

We further analyze our results in subsequent tables and figures. In particular,
we examine the following effects of our optimizations:

• Performance Effects of Symmetry: Table 3 assesses the effect of sym-
metric storage on performance. The performance speedups are computed
for symmetric storage when combined with three levels of optimization:
(1) Unoptimized Reference; (2) Register Blocking; (3) Register Blocking
and Vector Blocking.

• Performance Effects of Optimizations with Symmetry: Table 4
assesses the effect of optimizations, such as register blocking and vector
blocking, assuming symmetric storage. The performance speedups are
computed for varying combinations of register and vector blocking.

• Storage Effects of Symmetry: Table 5 assesses the effect of symmetry
optimizations on matrix storage. The savings in storage are not only
affected by symmetry, but also by subtleties in register blocking fill and
integer storage of matrix row and column indices.

• Performance as a Percentage of Peak: Figures 19–20 presents the
optimized performance as a percentage of peak machine performance for
the four platforms in Table 1.
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Figure 15: Performance Summary – Sun Ultra 2i. Performance (MFlop/s)
of various optimized implementations with the optimization parameters chosen
by exhaustive search. The performance data is compared to the upper bounds
on execution time for the symmetric, register blocked, multiple vector imple-
mentation (fully optimized). The data shown is collected on the Sun Ultra 2i.
The fully optimized implementation achieves improvements by as much as 5.1×
over the non-symmetric reference for this platform.
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Figure 16: Performance Summary – Intel Itanium 1. Performance data
and upper bounds shown in a format analogous to the format in Figure 15.
The data shown is collected on the Intel Itanium. The fully optimized imple-
mentation achieves improvements by as much as 8.1× over the non-symmetric
reference for this platform.
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Figure 17: Performance Summary – Intel Itanium 2. Performance data
and upper bounds shown in a format analogous to the format in Figure 15. The
data shown is collected on the Intel Itanium 2. The constant bounds of 3.6
GFlop/s for matrices 1-7 indicate that there is sufficient memory bandwidth to
achieve peak speed for matrix multiply operations. The fully optimized imple-
mentation achieves improvements by as much as 9.9× over the non-symmetric
reference for this platform.
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Figure 18: Performance Summary – IBM Power 4. Performance data and
upper bounds shown in a format analogous to the format in Figure 15. The data
shown is collected on the IBM Power 4. The fully optimized implementation
achieves improvements by as much as 5.1× over the non-symmetric reference for
this platform. The analytic upper bound is omitted due to the unavailability of
hardware counters.
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Overall Ultra 2i Itanium 1 Itanium 2 Power4
I. Optimizations: None
minimum 0.80 1.02 0.82 0.80 1.14

median 1.15 1.35 0.83 0.81 1.28
maximum 2.01 1.70 0.95 1.17 2.01
II. Optimizations: Register Blocking
minimum 0.85 1.09 0.85 0.95 1.12

median 1.34 1.47 1.22 1.11 1.76
maximum 2.08 1.71 1.35 2.01 2.08
III. Optimizations: Register and Vector Blocking
minimum 0.59 0.76 0.59 0.88 0.93

median 1.09 1.03 0.98 1.62 1.16
maximum 2.58 1.14 1.53 2.58 1.78

Table 3: Performance Effects of Symmetry. The table shows the effects of
symmetry with other optimizations such as register blocking and vector block-
ing. The values shown reflect performance speedups of the symmetric implemen-
tation of the optimizations specified over the non-symmetric implementation of
the same optimizations. Values are reported for each platform and over all
platforms.

6.2 Effects of Symmetry on Performance

Symmetry has varying effects on performance depending on the presence of
other optimizations such as register blocking and vector blocking. Furthermore,
symmetry yields varying results for different platforms and different matrices.
Table 3 presents the effects of symmetry as a ratio of optimized performance
with and without symmetry. This table effectively represents the advantages
of symmetry from the perspective of execution time regardless of storage re-
quirements. Furthermore, the table allows for performance comparisons across
platforms and lends itself to several notable observations.

Considering all four platforms, the maximum performance gains from exploit-
ing symmetry at each level of optimization are 2.01×, 2.08×, and 2.58× for the
unoptimized reference, register blocking implementation, and register blocking
with multiple vector implementation, respectively. However, the overall median
speedups of 1.15×, 1.34×, and 1.09× are appreciably lower. Furthermore, the
worst case performance gains are all less than one, indicating reduced perfor-
mance due to symmetry. The register block sizes in Appendix J suggest that
these performance decreases are due to block sizes in the symmetric case that
lead to significantly more fill than those in the non-symmetric case. Although
rare, it possible for symmetry to yield little or no performance gains.
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Overall Ultra 2i Itanium 1 Itanium 2 Power4
I. Symmetry Register Blocking
minimum 1.00 1.00 1.08 1.00 1.00

median 1.64 1.54 2.03 2.63 1.36
maximum 3.40 1.93 2.64 3.40 1.96
II. Symmetry Register and Vector Blocking
minimum 1.36 1.87 1.54 1.79 1.36

median 2.28 2.03 2.77 2.71 1.57
maximum 3.34 2.71 3.29 3.34 2.01
III. Symmetry Register and Vector Blocking
minimum 1.40 1.89 2.09 2.63 1.40

median 3.44 3.48 6.11 7.07 2.55
maximum 9.19 3.81 7.82 9.19 3.01

IV. Symmetry Register Blocking vs. Näıve
minimum 0.93 1.11 0.93 1.17 1.14

median 1.78 2.00 1.68 2.24 2.00
maximum 2.76 2.45 2.16 2.76 2.68
V. Symmetry Register and Vector Blocking vs. Näıve
minimum 1.60 2.56 1.71 2.14 1.60

median 4.15 4.42 5.05 6.36 3.39
maximum 7.32 5.13 6.40 7.32 5.12

Table 4: Effects of Optimizations in Symmetric Case. The table shows
the effects of symmetry with other optimizations such as register blocking and
vector blocking. The values shown reflect performance speedups attributed to
the bold optimization (e.g. Symmetry Register Blocking refers to the per-
formance speedups of the symmetric register blocked implementation over a
symmetric implementation). The last two sets of values show the performance
speedup of a symmetric register blocked implementation and a fully optimized
implementation over the non-symmetric reference implementation.
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The effectiveness of register blocking and vector blocking when combined with
symmetry is assesed in Table 4. The performance improvements presented in
this table indicate the effectiveness of the our combined optimizations. In par-
ticular, symmetry and register blocking achieve a maximum speedup of 2.76×
and a median speedup of 1.78× over a non-symmetric unoptimized reference
(Group IV). In the worst case, performance decreases by 0.93×. However, this
case occurs only once for matrix 11 on the Itanium 1. Upon examining Ap-
pendix J, we find that the loss in performance is caused by a large fill ratio of
2.49. This fill ratio implies that the symmetric data structure contains almost
60% explicitly stored zeros and is nearly as large as the non-symmetric data
structure. This anomaly does not exist for other platforms where the perfor-
mance speedup is at least 1.11×. Thus, it is possible, although rare, for little
or no performance advantage from symmetry.

If we also exploit multiple vectors by implementing vector blocking, significant
performance gains are possible. An implementation optimized for symmetry,
register and vector blocking achieves maximum, median, and minimum perfor-
mance gains of 7.32×, 4.15×, and 1.60× over all platforms and matrices.

Given symmetric storage, register and vector blocking almost always yield per-
formance improvements and never reduce performance. This conclusion is ap-
parent from the overall performance gains of groups I-III in Table 4. The in-
creasing performance gains as optimizations are incrementally applied suggest
cumulative performance effects of these optimizations. Furthermore, Itanium
2 speedups of 3.40×, 3.34×, and 9.19× for Groups I, II, and III, respectively,
suggest multiplicative effects on performance from our optimizations may be
possible.

6.3 Effects of Symmetry on Storage

The effects of symmetry optimizations on storage are summarized in Table 5.
Assuming floating point data takes twice as much space as integer indices, a
large register block size in the symmetric case can reduce storage requirements
by as much as a factor of three when compared to a non-symmetric reference
implementation. This is possible because the memory needed for matrix indices
decreases by up to a factor of r × c, complementing the memory savings from
storing only half the matrix elements. However, an increase in space require-
ments from symmetric storage is also possible, however, if the chosen register
block size results in significant fill of explicitly stored zeros.

Table 5 presents the storage savings of a symmetric, register blocked imple-
mentation in group I. In particular, we show maximum, median, and minimum
savings of 2.84×, 2.30×, and 0.91×, respectively. Symmetry usually saves sig-
nificantly more than a factor of 2 in space, but may also use almost 10% more
memory in the case of matrix 12 on the Itanium 1 and 2. We also present the
storage savings of a symmetric, register and vector blocked implementation in
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Overall Ultra 2i Itanium 1 Itanium 2 Power4
I. Symmetry Register Blocking
minimum 0.91 1.55 0.91 0.91 1.47

median 2.40 2.56 1.91 2.38 2.57
maximum 2.84 2.84 2.84 2.84 2.84
II. Symmetry Register and Vector Blocking
minimum 0.96 1.40 0.96 1.14 1.40

median 2.16 2.16 2.01 2.47 2.16
maximum 2.84 2.33 2.84 2.84 2.84

Table 5: Memory Usage. The table shows the effects of symmetry for storage
requirements. The values shown reflect reductions in matrix storage require-
ments as a ratio of storage for an optimized symmetric and non-symmetric
implementations. The numerator approximates the storage requirements of
a non-symmetric implementation while the denominator approximates the re-
quirements of a symmetric implementation. These approximations are derived
in Appendix K.

group II. Adding multiple vectors to group I, we show maximum, median, and
minimum savings of 2.84×, 2.16×, 0.96×, respectively.

6.4 Block Size Selection

The experimental data of this report is the result of exhaustive search across
all register block sizes up to 8× 8 and vector widths up to 10. This report does
not propose a scheme for predicting the optimal (r, c, v) based on the matrix,
number of vectors multiplied, and platform. The complexity of the dependences
between these performance factors motivates the need for heuristic search to ef-
ficiently determine optimization parameters that yield acceptable performance
(perhaps defined as performance within 10% of the best optimized performance).
We discuss any simple patterns, or lack thereof, in the optimal block sizes from
Appendix J.

Examining the block sizes for the Ultra 2i in Appendix J, we find that the
optimal register block sizes are identical for non-symmetric register blocked
code in both the single and multiple vector case. This observation suggests that
the block sizes depend on the sparse matrix, but not on the presence of vector
blocking. Performing a similar examination for the Itanium 1, Itanium 2, and
Power 4 will yield similar observations though not all block sizes are identical.

In contrast, the block sizes for symmetric code are dependent on the presence of
vector blocking. In the multiple vector case for the Ultra 2i, the optimal block
size is (2, 1) in nine of the eleven matrices and (1, 1) for the other two matrices.
However, the optimal block size is never (2, 1) in the single vector case. This
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pattern also holds true for the Itanium 1, Itanium 2, and Power 4.

Comparing the block sizes for the non-symmetric and symmetric implemen-
tations of register blocking for the Ultra 2i, show five matrices for which the
block sizes are different. These differences, however, are usually cases where one
block dimension (i.e. row or column) is an integer multiple of the same block
dimension for the differing block size. We refer to this difference as commensu-
rate. For example, block sizes (6,6) and (3,3) are commensurate, but block sizes
(2,2) and (4,3) are not. Performing a similar comparison for non-symmetric
and symmetric implementations of register blocking with multiple vectors for
the Ultra 2i, we find differing block sizes for nine of the eleven matrices. Five of
these nine differences are commensurate. Similar comparisons for the Itanium 1,
Itanium 2, and Power 4 will yield similar patterns where the difference between
block sizes are often commensurate.

To summarize our observations and their implications on block size selection,
we note the optimal block size (r, c) does not depend strongly on the vector
width in a non-symmetric implementation. In contrast, the addition of sym-
metry reveals an empirical correlation between block size and multiplication
by multiple vectors. Despite fewer differing block sizes between symmetric and
non-symmetric implementations in the single vector case, these differences occur
frequently enough to preclude safe prediction of the optimal symmetric register
block size from the non-symmetric register block size.

Searching for patterns in the optimal block sizes chosen across the four plat-
forms, we find the block sizes tend to be small. Let us define acceptable per-
formance as performance within 10% of the maximum optimized performance
achieved from a block size chosen with exhaustive search. For the symmet-
ric, register and vector blocked implementation, it is almost always possible to
find a block size smaller than (3, 3) to yield acceptable performance. Further-
more, it always possible to achieve acceptable performance from a block size
with a row dimension equal to 1 and a column dimension less than 3 for the
Ultra 2i, Itanium 2, and Power 4. Despite these patterns, however, we find the
performance profile and register block sizes that yield acceptable performance
for the dense matrix are not representative of those for sparse matrices. The
dense register blocks tend to have larger block sizes that would be ineffective for
sparse matrices. Nonetheless, these patterns suggest that a heuristic for select-
ing register block sizes could effectively limit the search space to smaller register
blocks without significantly compromising performance when optimizations for
symmetry and multiple vectors have been implemented.

6.5 Evaluation of Performance Upper Bounds

To evaluate the effectiveness of our performance models, we consider the prox-
imity of the analytic and PAPI upper bounds to the measured performance of
the symmetric, register and vector blocked implementation. In our evaluation
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of the upper bounds, we will distinguish between FEM matrices (matrices 2-8
in our test suite) and non-FEM matrices.

The measured performance of FEM matrices on the Ultra 2i and Itanium 1
is within 80% to 90% and 72% to 83% of the PAPI upper bound, respectively.
In contrast, the measured performance of FEM matrices on these platforms only
achieve 64% to 70% and 53% to 73% of the analytic upper bound, respectively.
This difference suggests that further performance improvements on these plat-
forms will require understanding and reducing the gap between the number of
predicted and measured cache misses.

For the Itanium 2, the analytic and PAPI upper bounds predict that our opti-
mized routines achieve machine peak of 3.6 Gflops (i.e.the code is not memory
bound) for matrices 2 through 7. However, Figure 19 indicates the true per-
formance of these matrices is between 38% to 51% of peak. The measured
performance of matrix 8 is slightly higher than the PAPI upper bound (for rea-
sons we do not understand) and within 88% of the analytic upper bound.

For the Power 4, the measured performance of FEM matrices is between 48%
and 63% of the analytic upper bound. No PAPI data was available to calculate
a PAPI upper bound for this platform.

The non-FEM matrices on the Ultra 2i and Itanium 1 achieve lower measured
performance relative to the FEM matrices. In particular, measured performance
of non-FEM matrices was within 65% to 120% and 65% to 105% of the PAPI
upper bound, respectively. On both platforms, the measured performance for
matrix 12 is higher than the PAPI upper bound on both platforms (for reasons
we do not understand). The measured performance of non-FEM matrices on
these platforms is within 44% to 61% and 44% to 62% of the analytic upper
bound, respectively.

There is significant potential for non-FEM performance improvement on the
Itanium 2 and Power 4. The measured performance of non-FEM matrices on
the Itanium 2 is only within 29% to 38% of the PAPI upper bound. No PAPI
data was available to calculate a PAPI upper bound for the Power 4. The mea-
sured performance for the Itanium 2 and Power 4 is only within 23% to 32%
and 38% to 54% of the analytic upper bound, respectively.
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Figure 19: Performance as a Percentage of Peak. The figure summarizes
the performance of our optimized SpMM implementation across all matrices
in the test suite as a percentage of each platform’s peak FLOP rate (Table
1). Performance is presented for the following implementations: symmetry and
register blocking (SR); symmetry, register and vector blocking (SRV); BLAS
implementations (DSPMV, DSYMV, DGEMV, DSYMM, DGEMM).
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Figure 20: Performance as a Percentage of Peak (FEM vs. non-FEM).
The figure compares the performance of our optimized SpMM implementa-
tion for matrices from finite element applications (FEM) and all other matri-
ces (nFEM). Performance is presented as a percentage of each platform’s peak
FLOP rate (Table 1). Performance is presented for the following implementa-
tions: symmetry and register block (SR); symmetry, register and vector blocking
(SRV).
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6.6 Peak Performance

The overall performance of our matrix test suite is presented in Figure 19 as
a percentage of the peak Mflop rate for each of the four platforms. This rep-
resentation of the performance data is interesting because the percentages of
peak achieved by the dense Level 2 BLAS matrix-matrix multiply (DSYMM
and DGEMM) are implicit upper bounds on our optimized performance.

In general, Figure 19 indicates the maximum and median percentages of peak
performance for the Itanium 2 and the Power 4 are significantly higher than
the corresponding values for the Ultra 2i and the Itanium 1. This observation
is true for both the symmetric register blocked implementation (SR) and the
symmetric, register and vector blocked implementation (SRV).

The median percentage of peak for the symmetric register blocked implementa-
tion (SR) actually exceeds the percentage of peak for the dense Level 2 BLAS
DSPMV on all platforms except the Power 4. Furthermore, the median per-
centage of peak for the symmetric, register and vector blocked implementation
(SRV) is significantly greater than the percentage of peak for all the dense Level
2 BLAS codes (DSPMV, DSYMV, DGEMV). It is remarkable that sparse codes
perform as well as dense codes.

Figure 20 distinguishes between the performance of matrices from finite element
applications (FEM) and all other matrices (non-FEM). The overall performance
of FEM matrices is higher than the overall performance of the non-FEM matri-
ces in our test suite. Register blocking for FEM matrices tends to yield larger
performance gains because of the natural dense structure of these matrices.

Figure 20 also indicates a combination of symmetry, register blocking, and vec-
tor blocking will generally perform better than a combination of only symmetry
and register blocking. This is observed by comparing the percentages of peak
for the symmetric, register and vector blocked implementation (SRV) and those
for the symmetric register blocked implementation (SR). For both FEM and
non-FEM matrices across all platforms, the percentages for optimizations that
include vector blocking are significantly larger than those for optimizations for
the single vector case. In particular, the median percentages of SRV are almost
always at least a factor of two larger than those for SV for all four platforms.
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7 Related Work

For dense algorithms, a variety of sophisticated static models for selecting trans-
formations and tuning parameters have been developed, each with the goal of
providing a compiler with sufficently precise models for selecting memory hierar-
chy transformations and parameters such as tile sizes [32, 33, 34, 35]. However,
it is difficult to apply these analyses directly to sparse matrix kernels due to
the presence of indirect and irregular memory access patterns. Nevertheless,
there have been a number of notable modeling attempts in the sparse case for
SpMV. Temam and Jalby [37], Heras, et al. [38], and Fraguela, et al. [39] have
developed sophisticated probablistic cache miss models for SpMV, but assume
uniform distribution of non-zero entries. These models vary in their ability
to account for self-interference and cross-interference misses. To obtain lower
bounds, we account only for compulsory and capacity misses.

Gropp, et al., use bounds like the ones we develop to analyze and tune a com-
putation fluid dynamics code [28] on Itanium 1. However, we are interested in
tuning for matrices that come from a variety of domains and machine archi-
tectures. Furthermore, our bounds explicitly model execution time (instead of
only modeling cache misses) in order to evaluate the extent to which our tuned
implementations achieve optimal performance.

Work in sparse compilers, e.g., Bik et al. [40], Pugh and Spheisman [41], and
the Bernoulli compiler [42], complements our own work. These projects focus
on the expression of sparse kernels and data structures for code generation, and
will likely prove valuable to generating our implementations. One distinction of
our work is our use of a hybrid off-line, on-line, architecture-specific model for
selecting transformations (tuning parameters).

8 Conclusions and Future Directions

The simultaneous application of symmetric storage, register blocking, and vec-
tor blocking for SpMM yields substantial improvements in performance of up to
7.3× for a sparse matrix compared to a baseline implementation in which none of
these optimizations are applied and up to 2.6× compared to a non-symmetric
(full-storage), register and vector blocked implementation. Furthermore, the
performance effects of each optimization in our optimization space (symmetry,
register blocking, vector blocking) appear to be cumulative, making the case for
the benefits of implementing all three techniques in conjunction. Future work
will lie in four broad areas: (1) heuristic block size selection, (2) performance
model refinement, (3) code generation, and (4) related optimizations.

Previous work has included the development of heuristics to select the opti-
mization parameters. Such work includes the Sparsity heuristic (Version 2.0)
[2] that selects the register block size, given the performance profile of a par-
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ticular platform, independently of vector width. We are currently pursuing a
comprehensive heuristic that selects the register block size and vector width
simultaneously, maximizing performance as function of r, c, and v.

The modest accuracy achieved by the performance models presented in this
report reflect a relatively optimistic performance upper bound. We believe that
the high bounds reflect issues arising from the multiple vector implementation
of the kernel and the assumptions made in the development of the performance
models (assumptions 1 and 3 from Section 5). As the number of vectors in-
creases, conflict misses may occur as the number of vector elements exceeds the
number of available registers. Furthermore, not all vectors may fit in cache as
the vector width increases. Model refinements could potentially account for the
additional memory traffic incurred as the number of vectors increases and more
accurately predict execution time spent in the memory hierarchy.

Closing the gap between the realized performance and the upper bound may
require automatic tuning techniques to explore a larger optimization space to
maximize performance for a given platform. Future work to improve realized
performance may include techniques used in ATLAS and PhiPAC [22, 5] and
to produce parameterized code generators whose parameters are relevant to the
resulting machine performance. The generated code would also follow machine-
specific coding optimizations such as manually unrolling loops, explicitly remov-
ing unnecessary dependencies in code blocks, and using machine sympathetic C
constructs. These optimizations would augment the current performance gains
achieved by individually tuning the SpMM routines for a particular platform.

Future work in optimization techniques may involve variations of those described
in this report. In particular, sparse kernels may be optimized to exploit other
forms of symmetry:

• Structural: Structural symmetry refers to a matrix in which the position
of non-zero elements are symmetric about the diagonal, but the non-zero
values themselves are not. Assuming that structural symmetry provides a
performance advantage, a conceivable optimization would fill an ”almost
symmetric” matrix with zeros to make the matrix structurally symmetric.

• Skew: Skew symmetry refers to a matrix in which each transpose element
equals the negative stored element.

• Hermitian: Hermitian symmetry refers to a matrix in which each trans-
pose element equals the complex conjugate of the stored element.

• Skew Hermitian: Skew Hermitian symmetry refers to a matrix in which
each tranpose element equals the negative complex conjugate of the stored
element.

The increasing size of matrices and vectors reflects growing storage requirements
in cache that could limit the effectiveness of the multiple vector optimizations.
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In particular, the assumption that all vectors fit in cache is invalid for large
vector widths. These effects may be mitigated by cache blocking, a technique
to group the matrix into larger blocks whose sizes are determined by the cache
size. Each cache block would be considered separately and only portions of the
matrix and the corresponding vectors would need to be considered at any given
time, thereby reducing the vector storage requirements in cache.

Lastly, a variation on the vector blocking optimization is the technique of field
interlacing [28], equivalent to vector row storage described in Section 4. This
optimization involves interleaving the source vectors and interleaving the des-
tination vectors to create spatial locality for successive vector accesses. The
primary advantages of this technique include improved data reuse for data re-
trieved from cache and reduced TLB misses.
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A Non-symmetric Register Blocked Example

The following is a C implementation of a 2x2 register blocked code. Here, bm is the
number of block rows, i.e., the number of rows in the matrix is 2*bm. The dense
sub-blocks are stored in row-major order.

void smvm_regblk_2x2( int bm, const int *b_row_start,
const int *b_col_idx, const double *b_value,
const double *x, double *y )

{
int i, jj;

/* loop over block rows */
1 for( i = 0; i < bm; i++, y += 2 )

{
2 register double d0 = y[0];
3 register double d1 = y[1];
4 for( jj = b_row_start[i]; jj < b_row_start[i+1];

jj++, b_col_idx++, b_value += 2*2 )
{

5 d0 += b_value[0] * x[*b_col_idx+0];
6 d1 += b_value[2] * x[*b_col_idx+0];
7 d0 += b_value[1] * x[*b_col_idx+1];
8 d1 += b_value[3] * x[*b_col_idx+1];

}
9 y[0] = d0;

10 y[1] = d1;
}

}
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B Modifications to NIST Sparse BLAS

The following is an adaptation of the NIST Sparse BLAS routine. The original routine
implements y = Ax whereas the routine below implements y = y + Ax.

void CSR_VecMult_CAB_double_accum(
const int m, const int k,
const double *val, const int *indx,
const int *pntrb, const int *pntre,
const double *b,
double *c,
const int ind_base)

{
double t;
const double *pval;
double *pc=c;
int i,j,jb,je;
b-=ind_base;
indx-=ind_base;

pval = val;
for (i=0;i!=m;i++) {

t = 0;
jb = pntrb[i];
je = pntre[i];
for (j=jb;j!=je;j++)

t += b[indx[j]] * (*pval++);
c[i] += t;

}
}
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C Symmetric Register & Vector Blocked Exam-
ple

The following is an implementation of a symmetric, register blocked, vector blocked
code with 2× 3 register blocks and vector width of 2. Here, bm is the number of block
rows, i.e., the number of rows in the matrix is 2*bm. The dense sub-blocks are stored
in row-major order.

void bssmvm_m_2x3_2 (int m, int *b_row_start, int *b_col_idx, double *b_value,
int src_len, double *src, int dest_len, double *dest, int vec_width)

{
int l;
int full_loops, short_loops;
full_loops = vec_width / 2;
short_loops = vec_width % 2;

/* Dispatch to subroutine -- depends on the length of destination vectors */
/* Handle vector blocks */
for (l=0; l<full_loops; l++, src+=2*src_len, dest+=2*dest_len)
{

bssmvm_m_2x3_2_once (m, b_row_start, b_col_idx, b_value, src_len, src, dest_len, dest, vec_width);
}

/* Handle remaining vectors */
switch (short_loops)
{

case 1:
bssmvm_m_2x3_1_once (m, b_row_start, b_col_idx, b_value, src_len, src, dest_len, dest, vec_width);
break;

}
}
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/* Routine that performs the SMVM for one vector */
void bssmvm_m_2x3_1_once (int m, int *b_row_start, int *b_col_idx, double *b_value,

int src_len, double *src, int dest_len, double *dest, int vec_width)
{

int ri, rimax, ci, bri, bci, brimax, idx;
int blocks, degenerate, diag;
int *b_max;
int degen_max;
double *dest_p;
brimax = m/2;
dest_p = dest;

/* Loop over block rows */
for (bri=0; bri<brimax; bri++,dest+=2)
{

register double d0_0;
register double d1_0;
register double s0_0;
register double s1_0;

bci = b_row_start[bri+1] - b_row_start[bri]; /* Number of block columns */
if (bci == 0) continue; /* No elements in this block row */

d0_0 = dest[0*dest_len+0];
d1_0 = dest[0*dest_len+1];
s0_0 = src[(0*src_len)+(2*bri+0)];
s1_0 = src[(0*src_len)+(2*bri+1)];

/* Handle diagonal block, if necessary */
b_max = b_col_idx + bci;
if (*b_col_idx == 2*bri)
{

d0_0 += b_value[0] * s0_0;
d1_0 += b_value[1] * s0_0;
d0_0 += b_value[1] * s1_0;
d1_0 += b_value[2] * s1_0;
b_value+=3;
b_col_idx++;

bci--;
if (bci == 0)
{

dest[0*dest_len+0] = d0_0;
dest[0*dest_len+1] = d1_0;
continue;

}
}

/* Handle degenerate block, if necessary */
if (*b_col_idx == 2*(bri+1))
{

degen_max = (m-*b_col_idx)%3;
if (degen_max != 0)
{

for (ci=0;ci<degen_max; b_value++, ci++)
{

dest_p[0*dest_len + (*b_col_idx+ci)] += b_value[0*degen_max] * s0_0;
d0_0 += src[0*src_len + (*b_col_idx+ci)] * b_value[0*degen_max];
dest_p[0*dest_len + (*b_col_idx+ci)] += b_value[1*degen_max] * s1_0;
d1_0 += src[0*src_len + (*b_col_idx+ci)] * b_value[1*degen_max];

}
b_col_idx++;
b_value+=degen_max*1;

}
}

/* Handle register blocks */
for (; b_col_idx<=b_max-1; b_col_idx+=1,b_value+=6)
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{
register double t0_0 = dest_p[0*dest_len + *b_col_idx];
register double t1_0 = dest_p[0*dest_len + *b_col_idx+1];
register double t2_0 = dest_p[0*dest_len + *b_col_idx+2];

/* Handle stored register blocks */
t0_0 += b_value[0] * s0_0;
t0_0 += b_value[3] * s1_0;
t1_0 += b_value[1] * s0_0;
t1_0 += b_value[4] * s1_0;
t2_0 += b_value[2] * s0_0;
t2_0 += b_value[5] * s1_0;

/* Handle transpose register blocks */
d0_0 += src[0*src_len + *b_col_idx] * b_value[0];
d1_0 += src[0*src_len + *b_col_idx] * b_value[3];
d0_0 += src[0*src_len + *b_col_idx+1] * b_value[1];
d1_0 += src[0*src_len + *b_col_idx+1] * b_value[4];
d0_0 += src[0*src_len + *b_col_idx+2] * b_value[2];
d1_0 += src[0*src_len + *b_col_idx+2] * b_value[5];

dest_p[0*dest_len + *b_col_idx] = t0_0;
dest_p[0*dest_len + *b_col_idx+1] = t1_0;
dest_p[0*dest_len + *b_col_idx+2] = t2_0;

}
dest[0*dest_len+0] = d0_0;
dest[0*dest_len+1] = d1_0;

} /* End loop over rows */

/* Handle any remaining, unblocked rows of the matrix */
rimax = m - 2*brimax;
idx = 0;
for(ri=0; ri<rimax; ri++)
{

dest_p[0*dest_len+(*b_col_idx+ri)] += b_value[idx] * src[0*src_len+(*b_col_idx+ri)];
idx++;
for(ci=ri+1; ci<rimax; ci++, idx++)
{

dest_p[0*dest_len+(*b_col_idx+ci)] += b_value[idx] * src[0*src_len+(*b_col_idx+ri)];
dest_p[0*dest_len+(*b_col_idx+ri)] += src[0*src_len+(*b_col_idx+ci)] * b_value[idx];

}
}

}
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/* Routine that performs the SMVM for two vectors */
void bssmvm_m_2x3_2_once (int m, int *b_row_start, int *b_col_idx, double *b_value,

int src_len, double *src, int dest_len, double *dest, int vec_width)
{

int ri, rimax, ci, bri, bci, brimax, idx;
int blocks, degenerate, diag;
int *b_max;
int degen_max;
double *dest_p;
brimax = m/2;
dest_p = dest;

/* Loop over block rows */
for (bri=0; bri<brimax; bri++,dest+=2)
{

register double d0_0, d0_1;
register double d1_0, d1_1;
register double s0_0, s0_1;
register double s1_0, s1_1;

bci = b_row_start[bri+1] - b_row_start[bri]; /* Number of block columns */
if (bci == 0) continue; /* No elements in this block row */

d0_0 = dest[0*dest_len+0];
d0_1 = dest[1*dest_len+0];
d1_0 = dest[0*dest_len+1];
d1_1 = dest[1*dest_len+1];
s0_0 = src[(0*src_len)+(2*bri+0)];
s0_1 = src[(1*src_len)+(2*bri+0)];
s1_0 = src[(0*src_len)+(2*bri+1)];
s1_1 = src[(1*src_len)+(2*bri+1)];

/* Handle diagonal block, if necessary */
b_max = b_col_idx + bci;
if (*b_col_idx == 2*bri)
{

d0_0 += b_value[0] * s0_0;
d1_0 += b_value[1] * s0_0;
d0_0 += b_value[1] * s1_0;
d1_0 += b_value[2] * s1_0;
d0_1 += b_value[0] * s0_1;
d1_1 += b_value[1] * s0_1;
d0_1 += b_value[1] * s1_1;
d1_1 += b_value[2] * s1_1;
b_value+=3;
b_col_idx++;

bci--;
if (bci == 0)
{

dest[0*dest_len+0] = d0_0;
dest[0*dest_len+1] = d1_0;
dest[1*dest_len+0] = d0_1;
dest[1*dest_len+1] = d1_1;
continue;

}
}

/* Handle degenerate block, if necessary */
if (*b_col_idx == 2*(bri+1))
{

degen_max = (m-*b_col_idx)%3;
if (degen_max != 0)
{

for (ci=0;ci<degen_max; b_value++, ci++)
{

dest_p[0*dest_len + (*b_col_idx+ci)] += b_value[0*degen_max] * s0_0;
d0_0 += src[0*src_len + (*b_col_idx+ci)] * b_value[0*degen_max];
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dest_p[0*dest_len + (*b_col_idx+ci)] += b_value[1*degen_max] * s1_0;
d1_0 += src[0*src_len + (*b_col_idx+ci)] * b_value[1*degen_max];
dest_p[1*dest_len + (*b_col_idx+ci)] += b_value[0*degen_max] * s0_1;
d0_1 += src[1*src_len + (*b_col_idx+ci)] * b_value[0*degen_max];
dest_p[1*dest_len + (*b_col_idx+ci)] += b_value[1*degen_max] * s1_1;
d1_1 += src[1*src_len + (*b_col_idx+ci)] * b_value[1*degen_max];

}
b_col_idx++;
b_value+=degen_max*1;

}
}

/* Handle register blocks */
for (; b_col_idx<=b_max-1; b_col_idx+=1,b_value+=6)
{

register double t0_0 = dest_p[0*dest_len + *b_col_idx];
register double t0_1 = dest_p[1*dest_len + *b_col_idx];
register double t1_0 = dest_p[0*dest_len + *b_col_idx+1];
register double t1_1 = dest_p[1*dest_len + *b_col_idx+1];
register double t2_0 = dest_p[0*dest_len + *b_col_idx+2];
register double t2_1 = dest_p[1*dest_len + *b_col_idx+2];

/* Handle stored register blocks */
t0_0 += b_value[0] * s0_0;
t0_1 += b_value[0] * s0_1;
t0_0 += b_value[3] * s1_0;
t0_1 += b_value[3] * s1_1;
t1_0 += b_value[1] * s0_0;
t1_1 += b_value[1] * s0_1;
t1_0 += b_value[4] * s1_0;
t1_1 += b_value[4] * s1_1;
t2_0 += b_value[2] * s0_0;
t2_1 += b_value[2] * s0_1;
t2_0 += b_value[5] * s1_0;
t2_1 += b_value[5] * s1_1;

/* Handle transpose register blocks */
d0_0 += src[0*src_len + *b_col_idx] * b_value[0];
d0_1 += src[1*src_len + *b_col_idx] * b_value[0];
d1_0 += src[0*src_len + *b_col_idx] * b_value[3];
d1_1 += src[1*src_len + *b_col_idx] * b_value[3];
d0_0 += src[0*src_len + *b_col_idx+1] * b_value[1];
d0_1 += src[1*src_len + *b_col_idx+1] * b_value[1];
d1_0 += src[0*src_len + *b_col_idx+1] * b_value[4];
d1_1 += src[1*src_len + *b_col_idx+1] * b_value[4];
d0_0 += src[0*src_len + *b_col_idx+2] * b_value[2];
d0_1 += src[1*src_len + *b_col_idx+2] * b_value[2];
d1_0 += src[0*src_len + *b_col_idx+2] * b_value[5];
d1_1 += src[1*src_len + *b_col_idx+2] * b_value[5];

dest_p[0*dest_len + *b_col_idx] = t0_0;
dest_p[1*dest_len + *b_col_idx] = t0_1;
dest_p[0*dest_len + *b_col_idx+1] = t1_0;
dest_p[1*dest_len + *b_col_idx+1] = t1_1;
dest_p[0*dest_len + *b_col_idx+2] = t2_0;
dest_p[1*dest_len + *b_col_idx+2] = t2_1;

}
dest[0*dest_len+0] = d0_0;
dest[0*dest_len+1] = d1_0;
dest[1*dest_len+0] = d0_1;
dest[1*dest_len+1] = d1_1;

} /* End loop over rows */

/* Handle any remaining, unblocked rows of the matrix */
rimax = m - 2*brimax;
idx = 0;
for(ri=0; ri<rimax; ri++)
{
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dest_p[0*dest_len+(*b_col_idx+ri)] += b_value[idx] * src[0*src_len+(*b_col_idx+ri)];
dest_p[1*dest_len+(*b_col_idx+ri)] += b_value[idx] * src[1*src_len+(*b_col_idx+ri)];
idx++;
for(ci=ri+1; ci<rimax; ci++, idx++)
{

dest_p[0*dest_len+(*b_col_idx+ci)] += b_value[idx] * src[0*src_len+(*b_col_idx+ri)];
dest_p[0*dest_len+(*b_col_idx+ri)] += src[0*src_len+(*b_col_idx+ci)] * b_value[idx];
dest_p[1*dest_len+(*b_col_idx+ci)] += b_value[idx] * src[1*src_len+(*b_col_idx+ri)];
dest_p[1*dest_len+(*b_col_idx+ri)] += src[1*src_len+(*b_col_idx+ci)] * b_value[idx];

}
}

}
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D Performance Profile Example

The experimental work of this report collected performance data exhaustively for block
sizes up to 8 × 8 and vector widths up to 10. Figures 21–22 show the performance
profiles of the optimal tuning parameters for the dense matrix (matrix 1) on the Intel
Itanium 2. These profiles are representative of the profiles obtained for all 12 matrices
in our test suite on all platforms.

Figure 21: Performance – Varying Vector Width, Intel Itanium 2. Per-
formance (MFlop/s) presented as a function of the vector width. The näıve
implementation refers to the non-symmetric reference. The optimized imple-
mentation refers to the register blocked performance varying with vector width,
given a 5× 3 register block size chosen because 5× 3 is fastest when v = 1. The
best implementation refers to the register blocked performance varying with
vector width, given the best register block size for each particular width. Note
that performance gains from vector blocking peaks at v = 7 and falls drastically
for high vector widths.
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Figure 22: Performance – Varying Block Size, Intel Itanium 2. Per-
formance (Mflop/s) presented as a function of the register block size, given a
vector width of 7. Note that the performance gains for register blocking peaks
at 5× 3 and falls drastically with larger register block sizes.
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E Application of the Transpose

This report considered the sequential and simultaneous application of the transpose.
Initial studies indicate a performance advantage for the sequential application over the
simultaneous application. Figure 23 presents the performance (MFlop/s) of the two
implementations for the Ultra2i.

Figure 23: Simultaneous vs. Sequential Application of the Transpose,
Sun Ultra2i. Performance (Mflop/s) is presented for preliminary studies in
comparing the simultaneous and sequential application of the transpose (Section
3.4). The sequential application improved performance by as much as 1.3× over
the simultaneous application.
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F Block Alignment

This report considered uniform blocking and square diagonal blocking in the align-
ment of the diagonal blocks (Section 3.3). The performance results of initial studies
comparing the two alignment schemes is presented in Figure 24. There is no obvious
advantage to any particular alignment scheme.
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Figure 24: Diagonal Block Alignment, Intel Pentium 4. Performance
(MFlop/s) presented for uniform blocking, square diagonal blocking, and square
diagonal blocking with interleaved source and destination vectors. For each ma-
trix, performance is normalized to the slowest of the three implementations. The
performance of the näıve symmetric implementation is included for reference.
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G Loop Unrolling

This report considered row-wise and column-wise loop unrolling of the register block
elements. Initial studies indicate a performance advantage for the column-wise im-
plementation, especially for Itanium 1 and Itanium 2. Figures 25–28 present the
performance (MFlop/s) of the two implementations for the four platforms considered
in this report.
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Figure 25: Row-wise vs. Column-wise Unrolling, Sun Ultra2i. Perfor-
mance (MFlop/s) for the row-wise (top) and col-wise (bottom) implementation
on the Sun Ultra2i. The numbers within each cell in the register profile is the
speedup factor over the reference (35.8 MFlop/s).
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Figure 26: Row-wise vs. Column-wise Unrolling, Intel Itanium 1. Per-
formance (MFlop/s) for the row-wise (top) and col-wise (bottom) implementa-
tion on the Intel Itanium 1. The numbers within each cell in the register profile
is the speedup factor over the reference (120.8 MFlop/s).
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Figure 27: Row-wise vs. Column-wise Unrolling, Intel Itanium 2. Per-
formance (MFlop/s) for the row-wise (top) and col-wise (bottom) implementa-
tion on the Intel Itanium 2. The numbers within each cell in the register profile
is the speedup factor over the reference (294.5 MFlop/s).
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Figure 28: Row-wise vs. Column-wise Unrolling, IBM Power4. Perfor-
mance (MFlop/s) for the row-wise (top) and col-wise (bottom) implementation
on the IBM Power4. The numbers within each cell in the register profile is the
speedup factor over the reference (594.9 MFlop/s).
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H Load Data

In Tables Tables 6–9, we present for each platform and matrix, the number of load
instructions (integer and floating point loads) issued as reported by PAPI hardware
counters and as estimated by our load model. The exception is the Power 4 platform
for which HPM hardware counters were used to count only floating point loads.

Loads Issued
PAPI Loads Model Loads

Matrix (millions) (millions)
1 7.083 7.048
2 4.772 4.269
3 3.273 3.041
4 5.903 5.491
5 9.027 8.118
6 10.723 9.969
7 9.337 8.462
8 32.426 29.854
9 4.241 3.433
10 2.252 1.850
11 1.955 1.788
12 11.049 10.459

Table 6: Load Instructions Issued, Sun Ultra 2i.
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Loads Issued
PAPI Loads Model Loads

Matrix (millions) (millions)
1 5.079 4.962
2 3.902 3.310
3 2.782 2.573
4 7.335 6.473
5 4.827 4.531
6 9.374 8.696
7 11.872 10.865
8 10.849 9.355
9 7.130 6.792
10 3.482 3.300
11 3.387 3.209
12 10.832 10.011

Table 7: Load Instructions Issued, Intel Itanium 1.

Loads Issued
PAPI Loads Model Loads

Matrix (millions) (millions)
1 8.971 6.574
2 4.908 3.870
3 4.954 3.584
4 8.952 6.473
5 15.337 11.146
6 16.754 12.111
7 10.184 8.003
8 38.027 29.773
9 4.741 3.777
10 2.325 1.852
11 2.746 2.154
12 16.088 12.363

Table 8: Load Instructions Issued, Intel Itanium 2.
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Loads Issued
PAPI Loads Model Loads

Matrix (millions) (millions)
1 5.127 5.447
2 4.849 5.048
3 1.196 1.226
4 6.184 6.492
5 9.226 9.599
6 11.236 11.786
7 9.575 10.005
8 33.685 35.296
9 3.196 3.190
10 1.259 1.276
11 1.308 1.433
12 7.678 8.554

Table 9: Load Instructions Issued, IBM Power 4.
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I Cache Miss Data

In Tables 10–12, we present for each platform and matrix, the number of cache misses
as reported by PAPI hardware counters and as estimated by our lower bound on the
number of cache misses.

L1 Cache Misses L2 Cache Misses
PAPI Misses Lower Bound Misses PAPI Misses Lower Bound Misses

Matrix (millions) (millions) (millions) (millions)
1 3.342 0.807 0.211 0.202
2 0.955 0.600 0.157 0.151
3 0.811 0.399 0.102 0.100
4 1.420 0.718 0.188 0.180
5 2.103 1.131 0.293 0.284
6 3.970 1.305 0.357 0.327
7 2.044 1.161 0.315 0.291
8 8.566 3.978 1.050 0.997
9 1.472 0.570 0.178 0.142
10 0.416 0.291 0.079 0.073
11 0.722 0.186 1.058 0.046
12 6.377 1.310 1.128 0.328

Table 10: Cache Misses, Sun Ultra 2i.
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L2 Cache Misses L3 Cache Misses
PAPI Misses Lower Bound Misses PAPI Misses Lower Bound Misses

Matrix (millions) (millions) (millions) (millions)
1 0.715 0.173 0.174 0.173
2 0.183 0.169 0.170 0.169
3 0.147 0.097 0.097 0.097
4 0.257 0.173 0.175 0.173
5 0.447 0.325 0.326 0.325
6 0.815 0.322 0.334 0.322
7 0.443 0.337 0.359 0.337
8 1.463 1.196 1.211 1.196
9 0.258 0.182 0.212 0.182
10 0.100 0.089 0.092 0.089
11 0.247 0.088 0.096 0.088
12 3.032 0.336 0.422 0.336

Table 11: Cache Misses, Intel Itanium 1.

L2 Cache Misses L3 Cache Misses
PAPI Misses Lower Bound Misses PAPI Misses Lower Bound Misses

Matrix (millions) (millions) (millions) (millions)
1 0.095 0.084 0.086 0.084
2 0.094 0.085 0.087 0.085
3 0.046 0.043 0.043 0.043
4 0.106 0.087 0.088 0.087
5 0.142 0.138 0.137 0.138
6 0.269 0.144 0.147 0.144
7 0.261 0.188 0.215 0.188
8 0.641 0.358 0.359 0.358
9 0.153 0.118 0.153 0.118
10 0.063 0.055 0.059 0.055
11 0.117 0.029 0.034 0.029
12 1.257 0.197 0.248 0.197

Table 12: Cache Misses, Intel Itanium 2.

74



J Performance for Optimum Register & Vector
Block Sizes

In Tables 13–16, we present for each platform and matrix, the performance (Mflop/s)
of the following register block sizes:

• Non-Symm Reg: The values of r × c yielding the best performance in the
non-symmetric, register blocked, single vector implementation.

• Symm Reg: The values of r×c yielding the best performance in the symmetric,
register blocked, single vector implementation.

• Non-Symm Reg mVec: The values of r×c and v yielding the best performance
in the non-symmetric, register blocked, vector blocked implementation.

• Symm Reg mVec: The value of the r× c and v yielding the best performance
in the symmetric, register blocked, vector blocked implementation.
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Non-Symm Reg Symm Reg
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 8× 7 1 71.0 1.00 4× 3 1 84.8 1.00
2 6× 6 1 49.7 1.52 3× 3 1 75.4 1.06
3 3× 3 1 55.2 1.00 3× 3 1 82.4 1.00
4 3× 3 1 54.9 1.00 3× 3 1 81.5 1.00
5 6× 6 1 51.8 1.15 3× 3 1 73.0 1.11
6 3× 3 1 53.3 1.02 3× 3 1 77.3 1.02
7 2× 2 1 38.7 1.25 4× 3 1 56.9 1.63
8 3× 3 1 48.0 1.49 3× 1 1 67.5 1.00
9 1× 1 1 21.5 1.00 1× 1 1 29.6 1.00
10 1× 1 1 22.0 1.00 1× 1 1 37.6 1.00
11 1× 1 1 30.0 1.00 1× 1 1 50.7 1.00
12 1× 1 1 32.5 1.00 1× 3 1 35.3 1.66

Non-Symm Reg mVec Symm Reg mVec
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 8× 3 10 202.0 1.00 2× 1 4 124.8 1.00
2 6× 6 10 148.9 1.52 2× 1 4 170.4 1.03
3 3× 3 10 167.8 1.00 2× 1 4 154.1 1.11
4 3× 3 10 157.9 1.00 2× 1 4 165.5 1.11
5 6× 6 10 153.4 1.15 2× 1 4 161.8 1.06
6 3× 3 5 142.3 1.02 2× 1 4 150.9 1.10
7 2× 2 10 149.1 1.25 2× 1 4 154.0 1.10
8 3× 3 10 146.0 1.49 2× 1 4 149.5 1.16
9 1× 1 10 59.6 1.00 2× 1 4 58.0 1.64
10 1× 1 10 79.8 1.00 1× 1 4 71.2 1.00
11 1× 1 6 89.4 1.00 1× 1 4 99.7 1.00
12 1× 1 8 106.2 1.00 2× 1 4 81.1 1.72

Table 13: Block Sizes, Sun Ultra 2i.
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Non-Symm Reg Symm Reg
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 4× 1 1 249.0 1.00 2× 4 1 486.6 1.00
2 3× 1 1 197.5 1.04 3× 3 1 241.3 1.06
3 3× 1 1 217.5 1.00 3× 3 1 270.9 1.00
4 3× 1 1 217.4 1.00 3× 3 1 269.8 1.00
5 3× 1 1 197.5 1.05 2× 2 1 239.9 1.10
6 3× 1 1 212.3 1.01 3× 3 1 257.6 1.02
7 2× 1 1 162.8 1.10 2× 4 1 187.5 1.48
8 2× 1 1 214.0 1.16 2× 4 1 207.5 1.68
9 1× 1 1 65.2 1.00 2× 1 1 86.9 1.64
10 1× 1 1 73.0 1.00 2× 1 1 98.9 1.49
11 1× 1 1 123.8 1.00 2× 2 1 105.8 2.49
12 1× 1 1 115.7 1.00 2× 4 1 136.2 3.10

Non-Symm Reg mVec Symm Reg mVec
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 2× 2 10 1285.0 1.00 4× 2 8 1116.9 1.00
2 3× 1 8 752.4 1.04 4× 1 6 732.2 1.19
3 3× 1 9 902.4 1.00 3× 3 9 753.4 1.00
4 3× 1 9 836.8 1.00 3× 3 9 804.8 1.00
5 3× 1 8 666.0 1.05 3× 3 9 664.3 1.11
6 3× 1 8 734.0 1.01 3× 3 9 677.0 1.02
7 3× 1 9 632.8 1.27 4× 1 6 617.4 1.33
8 2× 2 10 637.0 1.34 4× 1 6 622.8 1.48
9 2× 1 9 147.0 1.64 2× 1 5 225.2 1.64
10 1× 1 7 168.1 1.00 2× 1 5 241.6 1.49
11 1× 1 7 287.0 1.00 4× 1 6 281.3 2.78
12 2× 1 8 358.0 1.72 2× 1 5 209.8 1.72

Table 14: Block Sizes, Intel Itanium 1.
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Non-Symm Reg Symm Reg
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 4× 2 1 1200.0 1.00 5× 3 1 1114.3 1.00
2 4× 2 1 611.6 1.34 3× 3 1 612.0 1.06
3 3× 2 1 629.2 1.11 3× 3 1 695.3 1.00
4 3× 2 1 631.8 1.11 3× 3 1 682.3 1.00
5 6× 1 1 593.1 1.12 6× 2 1 668.4 1.13
6 3× 2 1 623.0 1.13 3× 3 1 671.9 1.02
7 4× 2 1 546.2 1.49 4× 2 1 519.2 1.49
8 3× 2 1 277.0 1.16 3× 2 1 557.4 1.16
9 2× 1 1 133.4 1.64 2× 2 1 194.3 2.29
10 4× 1 1 172.0 2.37 2× 2 1 198.4 1.93
11 1× 1 1 239.4 1.00 1× 1 1 260.2 1.00
12 1× 1 1 259.2 1.00 2× 4 1 296.7 3.10

Non-Symm Reg mVec Symm Reg mVec
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 4× 2 10 3041.0 1.00 5× 3 7 2735.9 1.00
2 4× 2 10 1022.1 1.34 6× 1 8 1714.8 1.10
3 3× 2 10 1198.5 1.11 3× 3 6 1771.6 1.00
4 3× 2 10 1112.2 1.11 3× 3 9 1846.0 1.00
5 6× 1 10 948.3 1.12 6× 1 5 1538.3 1.12
6 3× 2 10 1114.5 1.13 3× 3 6 1761.9 1.02
7 4× 2 10 949.6 1.49 4× 1 9 1396.2 1.33
8 3× 2 5 1346.0 1.16 3× 1 10 1755.0 1.00
9 2× 1 10 210.6 1.64 1× 1 9 542.9 1.00
10 4× 1 6 242.3 2.37 1× 1 8 558.0 1.00
11 6× 1 10 361.0 3.68 1× 1 8 869.6 1.00
12 1× 1 9 599.8 1.00 3× 1 4 530.3 2.26

Table 15: Block Sizes, Intel Itanium 2.
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Non-Symm Reg Symm Reg
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 7× 1 1 835.0 1.00 4× 4 1 1368.0 1.00
2 3× 3 1 628.0 1.06 3× 3 1 978.3 1.06
3 3× 3 1 706.3 1.00 3× 3 1 1270.2 1.00
4 3× 3 1 681.4 1.00 3× 3 1 1197.1 1.00
5 3× 1 1 552.6 1.05 6× 3 1 1021.8 1.13
6 3× 3 1 581.2 1.02 3× 3 1 1022.2 1.02
7 2× 1 1 487.9 1.10 2× 1 1 796.4 1.10
8 3× 3 1 708.4 1.49 3× 1 1 794.8 1.00
9 1× 1 1 197.3 1.00 2× 1 1 389.3 1.64
10 1× 1 1 241.1 1.00 2× 1 1 501.7 1.49
11 1× 1 1 366.8 1.00 1× 1 1 552.6 1.00
12 1× 1 1 428.8 1.00 1× 1 1 510.9 1.00

Non-Symm Reg mVec Symm Reg mVec
Block Vector Perf. Fill Block Vector Perf. Fill

Matrix Size Width (MFlop/s) Ratio Size Width (MFlop/s) Ratio
1 7× 1 4 1828.0 1.00 2× 2 3 1973.2 1.00
2 3× 3 3 1424.6 1.06 2× 1 5 1784.9 1.03
3 3× 3 4 1521.9 1.00 3× 3 2 1769.3 1.00
4 3× 3 4 1374.3 1.00 2× 1 5 1628.0 1.11
5 3× 1 6 1303.2 1.05 2× 1 5 1691.3 1.06
6 3× 3 4 1467.2 1.02 2× 1 5 1603.0 1.10
7 2× 1 9 1465.5 1.10 2× 1 5 1600.1 1.10
8 3× 3 4 1634.7 1.49 2× 1 5 1517.7 1.16
9 1× 1 2 340.7 1.00 2× 1 4 605.2 1.64
10 1× 1 8 587.5 1.00 2× 1 3 825.6 1.49
11 1× 1 5 732.2 1.00 1× 1 3 826.6 1.00
12 1× 1 7 768.0 1.00 2× 1 3 713.0 1.72

Table 16: Block Sizes, IBM Power4.
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K Memory Usage

In Tables 17–20, we present for each platform and matrix, an approximation of the
storage requirements of a matrix with and without symmetric storage.

The approximation for näıve storage requirements accounts for double precision float-
ing point matrix elements (8 bytes), row indices (4 bytes), column indices (4 bytes).
Let k be half the total number of non-zero elements in the matrix and m be the ma-
trix dimensions for a square symmetric matrix. Näıve storage of the matrix would
store all 2k matrix elements for 8 × 2k = 16k bytes. Each element would also store
a corresponding column index for 4× 2k = 8k bytes. Lastly, the matrix dimension is
a conservative estimate for the number of row indices for 4m bytes. Thus, the total
näıve storage requirements is 24k + 4m bytes.

The approximation for symmetric storage accounts for double precisions floating point
matrix elements and indices, but also depends on the optimal register block size. Let
r and c be the row and column block size for a particular platform, matrix, and op-
timization. Symmetric storage of the matrix wold store only half the elements in
the matrix (k) scaled for any fill from register blocking (kfrc) for 8kfrc bytes. The
number of register blocks is given by kfrc

rc
. Each register block would also store a

corresponding column index for 4 kfrc
rc

bytes. Lastly, the number of blocked rows is
approximated by

⌈
m
r

⌉
for 4

⌈
m
r

⌉
bytes. Thus, the total symmetric storage requirements

is 8kfrc + 4 kfrc
rc

+ 4
⌈

m
r

⌉
bytes.
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I. Symmetry Register Blocking
1 2 3 4 5 6

k 1280800 1450163 968583 1751178 2677324 3213332
m 1600 30237 13965 24696 54870 45330

Näıve Storage (MB) 29.32 33.31 22.22 40.18 61.49 73.72
Ultra 2i

Row Size 4 3 3 3 3 3
Column Size 3 3 3 3 3 3

Fill Ratio 1.00 1.06 1.00 1.00 1.11 1.02
Symm Storage (MB) 10.18 12.42 7.82 14.13 24.00 26.45

Näıve-Symm Ratio 2.88 2.68 2.84 2.84 2.56 2.79
Itanium 1

Row Size 2 3 3 3 2 3
Column Size 4 3 3 3 2 3

Fill Ratio 1.00 1.06 1.00 1.00 1.10 1.02
Symm Storage (MB) 10.39 12.42 7.82 14.13 25.38 26.45

Näıve-Symm Ratio 2.82 2.68 2.84 2.84 2.42 2.79
Itanium 2

Row Size 5 3 3 3 6 3
Column Size 3 3 3 3 2 3

Fill Ratio 1.00 1.06 1.00 1.00 1.13 1.02
Symm Storage (MB) 10.10 12.42 7.82 14.13 24.08 26.45

Näıve-Symm Ratio 2.90 2.68 2.84 2.84 2.55 2.79
Power 4

Row Size 4 3 3 3 6 3
Column Size 4 3 3 3 3 3

Fill Ratio 1.00 1.06 1.00 1.00 1.13 1.02
Symm Storage (MB) 10.08 12.42 7.82 14.13 23.76 26.45

Näıve-Symm Ratio 2.91 2.68 2.84 2.84 2.59 2.79

Table 17: Memory Usage. The table shows the effects of symmetry for storage
requirements. The values shown reflect reductions in matrix storage require-
ments as a ratio of storage for symmetric and non-symmetric register blocking.
Storage ratios for matrices 1–6 are presented.

81



II. Symmetry Register Blocking
7 8 9 10 11 12

k 2698463 4617075 596992 326107 342828 2164210
m 52329 153746 74752 36519 12328 31802

Näıve Storage (MB) 61.96 106.26 13.95 7.60 7.89 49.66
Ultra 2i

Row Size 4 3 1 1 1 1
Column Size 3 1 1 1 1 3

Fill Ratio 1.63 1.00 1.00 1.00 1.00 1.66
Symm Storage (MB) 35.01 41.29 7.12 3.87 3.97 32.10

Näıve-Symm Ratio 1.77 2.57 1.96 1.96 1.99 1.55
Itanium 1

Row Size 2 2 2 2 2 2
Column Size 4 4 1 1 2 4

Fill Ratio 1.48 1.68 1.64 1.49 2.49 3.10
Symm Storage (MB) 32.47 63.17 9.48 4.70 7.35 54.45

Näıve-Symm Ratio 1.91 1.68 1.47 1.62 1.07 0.91
Itanium 2

Row Size 4 3 2 2 1 2
Column Size 2 2 2 2 1 4

Fill Ratio 1.49 1.16 2.29 1.93 1.00 3.10
Symm Storage (MB) 32.64 44.46 11.88 5.47 3.97 54.45

Näıve-Symm Ratio 1.90 2.39 1.17 1.39 1.99 0.91
Power 4

Row Size 2 3 2 2 1 1
Column Size 1 1 1 1 1 1

Fill Ratio 1.10 1.00 1.64 1.49 1.00 1.00
Symm Storage (MB) 28.41 41.29 9.48 4.70 3.97 24.89

Näıve-Symm Ratio 2.18 2.57 1.47 1.62 1.99 2.00

Table 18: Memory Usage. The table shows the effects of symmetry for storage
requirements. The values shown reflect reductions in matrix storage require-
ments as a ratio of storage for symmetric and non-symmetric register blocking.
Storage ratios for matrices 7–12 are presented.

82



III. Symmetry Register & Vector Blocking
1 2 3 4 5 6

k 1280800 1450163 968583 1751178 2677324 3213332
m 1600 30237 13965 24696 54870 45330

Näıve Storage (MB) 29.32 33.31 22.22 40.18 61.49 73.72
Ultra 2i

Row Size 2 2 2 2 2 2
Column Size 1 1 1 1 1 1

Fill Ratio 1.00 1.03 1.11 1.11 1.06 1.10
Symm Storage (MB) 12.22 14.30 10.28 18.58 27.17 33.80

Näıve-Symm Ratio 2.40 2.33 2.16 2.16 2.26 2.18
Itanium 1

Row Size 4 4 3 3 3 3
Column Size 2 1 3 3 3 3

Fill Ratio 1.00 1.19 1.00 1.00 1.11 1.02
Symm Storage (MB) 10.38 14.84 7.82 14.13 24.00 26.45

Näıve-Symm Ratio 2.82 2.24 2.84 2.84 2.56 2.79
Itanium 2

Row Size 5 6 3 3 6 3
Column Size 3 1 3 3 1 3

Fill Ratio 1.00 1.10 1.00 1.00 1.12 1.02
Symm Storage (MB) 10.10 13.20 7.82 14.13 24.82 26.45

Näıve-Symm Ratio 2.90 2.52 2.84 2.84 2.48 2.79
Power 4

Row Size 2 2 3 2 2 2
Column Size 2 1 3 1 1 1

Fill Ratio 1.00 1.03 1.00 1.11 1.06 1.10
Symm Storage (MB) 11.00 14.30 7.82 18.58 27.17 33.80

Näıve-Symm Ratio 2.67 2.33 2.84 2.16 2.26 2.18

Table 19: Memory Usage. The table shows the effects of symmetry for stor-
age requirements. The values shown reflect reductions in matrix storage re-
quirements as a ratio of storage for symmetric and non-symmetric register and
vector blocking. Storage ratios for matrices 1–6 are presented.
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IV. Symmetry Register & Vector Blocking
7 8 9 10 11 12

k 2698463 4617075 596992 326107 342828 2164210
m 52329 153746 74752 36519 12328 31802

Näıve Storage (MB) 61.96 106.26 13.95 7.60 7.89 49.66
Ultra 2i

Row Size 2 2 2 1 1 2
Column Size 1 1 1 1 1 1

Fill Ratio 1.10 1.16 1.64 1.00 1.00 1.72
Symm Storage (MB) 28.41 51.37 9.48 3.87 3.97 35.56

Näıve-Symm Ratio 2.18 2.07 1.47 1.96 1.99 1.40
Itanium 1

Row Size 4 4 2 2 4 2
Column Size 1 1 1 1 1 1

Fill Ratio 1.33 1.48 1.64 1.49 2.78 1.72
Symm Storage (MB) 30.85 58.80 9.48 4.70 8.19 35.56

Näıve-Symm Ratio 2.01 1.81 1.47 1.62 0.96 1.40
Itanium 2

Row Size 4 3 1 1 1 3
Column Size 1 1 1 1 1 1

Fill Ratio 1.33 1.00 1.00 1.00 1.00 2.26
Symm Storage (MB) 30.85 41.29 7.12 3.87 3.97 43.58

Näıve-Symm Ratio 2.01 2.57 1.96 1.96 1.99 1.14
Power 4

Row Size 2 2 2 2 1 2
Column Size 1 1 1 1 1 1

Fill Ratio 1.10 1.16 1.64 1.49 1.00 1.72
Symm Storage (MB) 28.41 51.37 9.48 4.70 3.97 35.56

Näıve-Symm Ratio 2.18 2.07 1.47 1.62 1.99 1.40

Table 20: Memory Usage. The table shows the effects of symmetry for stor-
age requirements. The values shown reflect reductions in matrix storage re-
quirements as a ratio of storage for symmetric and non-symmetric register and
vector blocking. Storage ratios for matrices 7–12 are presented.

84


	1 Introduction
	2 Experimental Methodology
	2.1 Platforms
	2.2 Matrices
	2.3 Timing

	3 Optimizations for Matrix Symmetry
	3.1 Symmetric Storage
	3.2 Register Blocking
	3.3 Diagonal Block Alignment
	3.4 Applying the Transpose of the Stored Triangle
	3.5 Loop Unrolling
	3.6 Implementation Summary

	4 Optimizations for Multiple Vectors
	4.1 Vector Storage
	4.2 Vector Blocking
	4.3 Vector Width Selection

	5 Bounds on Performance
	5.1 Execution Time Model
	5.2 Load Model
	5.3 Load Model Validation
	5.4 Cache Miss Model
	5.5 Cache Miss Model Validation

	6 Evaluation
	6.1 Performance Data
	6.2 Effects of Symmetry on Performance
	6.3 Effects of Symmetry on Storage
	6.4 Block Size Selection
	6.5 Evaluation of Performance Upper Bounds
	6.6 Peak Performance

	7 Related Work
	8 Conclusions and Future Directions
	A Non-symmetric Register Blocked Example
	B Modifications to NIST Sparse BLAS
	C Symmetric Register & Vector Blocked Example
	D Performance Profile Example
	E Application of the Transpose
	F Block Alignment
	G Loop Unrolling
	H Load Data
	I Cache Miss Data
	J Performance for Optimum Register & Vector Block Sizes
	K Memory Usage

