
Optimizations & Bounds
for Sparse Symmetric
Matrix-Vector Multiply

Berkeley Benchmarking and Optimization Group (BeBOP)
http://bebop.cs.berkeley.edu

Benjamin C. Lee, Richard W. Vuduc, James W. Demmel, Katherine A. Yelick
University of California, Berkeley

27 February 2004

Berkeley Benchmarking and Optimization Group 2

Outline

n Performance Tuning Challenges

n Performance Optimizations
n Register Blocking
n Matrix Symmetry
n Multiple Vectors

n Performance Bounds Models

n Experimental Evaluation
n 7.3x max speedup over reference (median: 4.2x)

n Conclusions

Berkeley Benchmarking and Optimization Group 3

Introduction & Background

n Computational Kernels
n Sparse Matrix-Vector Multiply (SpMV): y ? y + A • x

n A: Sparse matrix, symmetric (i.e. A = AT)
n x,y: Dense vectors

n Sparse Matrix-Multiple Vector Multiply (SpMM): Y ? Y + A • X
n X,Y: Dense matrices

n Performance Tuning Challenges
n Sparse code characteristics

n High bandwidth requirements (matrix storage overhead)
n Poor locality (indirect, irregular memory access)
n Poor instruction mix (low ratio of flops to memory operations)

n SpMV performance less than 10% of machine peak
n Performance depends on kernel, matrix and architecture

Berkeley Benchmarking and Optimization Group 4

Optimizations: Register Blocking (1/3)

Berkeley Benchmarking and Optimization Group 5

Optimizations: Register Blocking (2/3)

n BCSR with uniform, aligned grid

Berkeley Benchmarking and Optimization Group 6

Optimizations: Register Blocking (3/3)

n Fill-in zeros: Trade extra flops for better blocked efficiency

Berkeley Benchmarking and Optimization Group 7

Optimizations: Matrix Symmetry

n Symmetric Storage
n Assume compressed sparse row (CSR) storage
n Store half the matrix entries (e.g., upper triangle)

n Performance Implications
n Same flops
n Halves memory accesses to the matrix
n Same irregular, indirect memory accesses

n For each stored non-zero A(i , j)
§ y(i) += A(i , j) * x(j)
§ y(j) += A(i , j) * x(i)

n Special consideration of diagonal elements

Berkeley Benchmarking and Optimization Group 8

Optimizations: Multiple Vectors

n Performance Implications
n Reduces loop overhead
n Amortizes the cost of reading A for v vectors

A

v
k

X

Y

Berkeley Benchmarking and Optimization Group 9

Optimizations: Register Usage (1/3)

n Register Blocking
n Assume column-wise unrolled block multiply
n Destination vector elements in registers (r)

yA

x

r

c

Berkeley Benchmarking and Optimization Group 10

Optimizations: Register Usage (2/3)

n Symmetric Storage
n Doubles register usage (2r)

n Destination vector elements for stored block
n Source vector elements for transpose block

yA

x

r

c

Berkeley Benchmarking and Optimization Group 11

Optimizations: Register Usage (3/3)

n Vector Blocking
n Scales register usage by vector width (2rv)

v

k

X

YA

c
r

Berkeley Benchmarking and Optimization Group 12

Performance Models

n Upper Bound on Performance
n Evaluate quality of optimized code against bound

n Model Characteristics and Assumptions
n Considers only the cost of memory operations
n Accounts for minimum effective cache and memory latencies
n Considers only compulsory misses (i.e. ignore conflict misses)
n Ignores TLB misses

n Execution Time Model
n Cache misses modeled and verified with PAPI hardware counters
n Charge a i for hits at each cache level

n T = (L1 hits) a1 + (L2 hits) a2 + (Mem hits) amem

n T = (Loads) a1 + (L1 misses)(a2 – a1) + (L2 misses)(amem – a2)

Berkeley Benchmarking and Optimization Group 13

Evaluation: Methodology

n Four Platforms
n Sun Ultra 2i, Intel Itanium, Intel Itanium 2, IBM Power 4

n Matrix Test Suite
n Twelve matrices
n Dense, Finite Element, Assorted, Linear Programming

n Reference Implementation
n Non-symmetric storage
n No register blocking (CSR)
n Single vector multiplication

Berkeley Benchmarking and Optimization Group 14

Evaluation: Observations

n Performance
n 2.6x max speedup (median: 1.1x) from symmetry

n {Symmetric BCSR Multiple Vector} vs. {Non-Symmetric BCSR Multiple Vector}

n 7.3x max speedup (median: 4.2x) from combined optimizations
n {Symmetric BCSR Multiple Vector} vs. {Non-symmetric CSR Single Vector}

n Storage
n 64.7% max savings (median: 56.5%) in storage

n Savings > 50% possible when combined with register blocking

n 9.9% increase in storage for a few cases
n Increases possible when register block size results in significant fill

n Performance Bounds
n Measured performance achieves 68% of PAPI bound, on average

Berkeley Benchmarking and Optimization Group 15

Performance Results: Sun Ultra 2i

Berkeley Benchmarking and Optimization Group 16

Performance Results: Sun Ultra 2i

Berkeley Benchmarking and Optimization Group 17

Performance Results: Sun Ultra 2i

Berkeley Benchmarking and Optimization Group 18

Performance Results: Sun Ultra 2i

Berkeley Benchmarking and Optimization Group 19

Performance Results: Intel Itanium 1

Berkeley Benchmarking and Optimization Group 20

Performance Results: Intel Itanium 2

Berkeley Benchmarking and Optimization Group 21

Performance Results: IBM Power 4

Berkeley Benchmarking and Optimization Group 22

Conclusions

n Matrix Symmetry Optimizations
n Symmetric Performance: 2.6x speedup (median: 1.1x)

n {Symmetric BCSR Multiple Vector} vs. {Non-Symmetric BCSR Multiple Vector}

n Overall Performance: 7.3x speedup (median: 4.15x)
n {Symmetric BCSR Multiple Vector} vs. {Non-symmetric CSR Single Vector}

n Symmetric Storage: 64.7% savings (median: 56.5%)
n Cumulative performance effects
n Trade-off between optimizations for register usage

n Performance Modeling
n Models account for symmetry, register blocking, multiple vectors
n Gap between measured and predicted performance

n Measured performance is 68% of predicted performance (PAPI)
n Model refinements are future work

Berkeley Benchmarking and Optimization Group 23

Current & Future Directions

n Heuristic Tuning Parameter Selection
n Register block size and vector width chosen independently
n Heuristic to select parameters simultaneously

n Automatic Code Generation
n Automatic tuning techniques to explore larger optimization spaces
n Parameterized code generators

n Related Optimizations
n Symmetry (Structural, Skew, Hermitian, Skew Hermitian)
n Cache Blocking
n Field Interlacing

Berkeley Benchmarking and Optimization Group 24

Appendices

Berkeley Benchmarking and Optimization Group 25

Related Work

n Automatic Tuning Systems and Code Generation
n PHiPAC [BACD97], ATLAS [WPD01], SPARSITY[Im00]
n FFTW [FJ98], SPIRAL[PSVM01], UHFFT[MMJ00]
n MPI collective ops (Vadhiyar, et al. [VFD01])
n Sparse compilers (Bik [BW99], Bernoulli [Sto97])

n Sparse Performance Modeling and Tuning
n Temam and Jalby [TJ92]
n Toledo [Tol97], White and Sadayappan [WS97], Pinar [PH99]
n Navarro [NGLPJ96], Heras [HPDR99], Fraguela [FDZ99]
n Gropp, et al. [GKKS99], Geus [GR99]

n Sparse Kernel Interfaces
n Sparse BLAS Standard [BCD+01]
n NIST SparseBLAS [RP96], SPARSKIT [Saa94], PSBLAS [FC00]
n PETSc

Berkeley Benchmarking and Optimization Group 26

Symmetric Register Blocking

n Square Diagonal Blocking
n Adaptation of register blocking for symmetry
n Register blocks – r x c

n Aligned to the right edge of the matrix

n Diagonal blocks – r x r
n Elements below the diagonal are not included in diagonal block

n Degenerate blocks – r x c’
n c’ < c and c’ depends on the block row
n Inserted as necessary to align register blocks

Register Blocks – 2 x 3

Diagonal Blocks – 2 x 2

Degenerate Blocks – Variable

Berkeley Benchmarking and Optimization Group 27

Multiple Vectors Dispatch Algorithm

n Dispatch Algorithm
n k vectors are processed in groups of the vector width (v)

n SpMM kernel contains v subroutines: SRi for 1 = i = v
n SRi unrolls the multiplication of each matrix element by i

n Dispatch algorithm, assuming vector width v
n Invoke SRv floor(k/v) times
n Invoke SRk%v once, if k%v > 0

Berkeley Benchmarking and Optimization Group 28

References (1/3)

William D. Gropp, D. K. Kasushik, David E. Keyes, and Barry F. Smith.
Towards realistic bounds for implicit CFD codes. In Proceedings of Parallel
Computational Fluid Dynamics, pages 241.248, 1999.

[GKKS99]

Matteo Frigo and Stephen Johnson. FFTW: An adaptive software architecture
for the FFT. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Seattle, Washington, May 1998.

[FJ98]

Basilio B. Fraguela, Ram´on Doallo, and Emilio L. Zapata. Memory hierarchy
performance prediction for sparse blocked algorithms. Parallel Processing
Letters, 9(3), March 1999.

[FDZ99]

Salvatore Filippone and Michele Colajanni. PSBLAS: A library for parallel
linear algebra computation on sparse matrices. ACM Transactions on
Mathematical Software, 26(4):527.550, December 2000.

[FC00]

Aart J. C. Bik and Harry A. G. Wijshoff. Automatic nonzero structure analysis.
SIAM Journal on Computing, 28(5):1576.1587, 1999.

[BW99]

S. Blackford, G. Corliss, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, C. Hu, W. Kahan, L. Kaufman, B. Kearfott,
F. Krogh, X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington, W. Walster,
C. Whaley, and J. Wolff von Gudenberg. Document for the Basic Linear
Algebra Subprograms (BLAS) standard: BLAS Technical Forum, 2001.
www.netlib.org/blast.

[BCD+01]

J. Bilmes, K. Asanovi´c, C.W. Chin, and J. Demmel. Optimizing matrix
multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology. In Proceedings of the International Conference on
Supercomputing, Vienna, Austria, July 1997. ACM SIGARC. see
http://www.icsi.berkeley.edu/.bilmes/phipac.

[BACD97]

Berkeley Benchmarking and Optimization Group 29

References (2/3)
Roman Geus and S. R¨ ollin. Towards a fast parallel sparse matrix-vector
multiplication. In E. H. D'Hollander, J. R. Joubert, F. J. Peters, and H. Sips,
editors, Proceedings of the International Conference on Parallel Computing
(ParCo), pages 308.315. Imperial College Press, 1999.

[GR99]

K. Remington and R. Pozo. NIST Sparse BLAS: User's Guide. Technical
report, NIST, 1996. gams.nist.gov/spblas.

[RP96]

Markus Puschel, Bryan Singer, Manuela Veloso, and Jose M. F. Moura. Fast
automatic generation of DSP algorithms. In Proceedings of the International
Conference on Computational Science, volume 2073 of LNCS, pages 97.106, San
Francisco, CA, May 2001. Springer.

[PSVM01]

Ali Pinar and Michael Heath. Improving performance of sparse matrix vector
multiplication. In Proceedings of Supercomputing, 1999.

[PH99]

J. J. Navarro, E. Garc´ia, J. L. Larriba-Pey, and T. Juan. Algorithms for sparse matrix
computations on high-performance workstations. In Proceedings of the 10th ACM
International Conference on Supercomputing, pages 301.308, Philadelpha, PA, USA,
May 1996.

[NGLPJ96]

Dragan Mirkovic, Rishad Mahasoom, and Lennart Johnsson. An adaptive software
library for fast fourier transforms. In Proceedings of the International Conference on
Supercomputing, pages 215.224, Sante Fe, NM, May 2000.

[MMJ00]

Eun-Jin Im. Optimizing the performance of sparse matrix-vector multiplication. PhD
thesis, University of California, Berkeley, May 2000.

[Im00]

Dora Blanco Heras, Vicente Blanco Perez, Jose Carlos Cabaleiro
Dominguez, and Francisco F. Rivera. Modeling and improving locality for
irregular problems: sparse matrix-vector product on cache memories as a
case study. In HPCN Europe, pages 201.210, 1999.

[HPDR99]

Berkeley Benchmarking and Optimization Group 30

References (3/3)
Yousef Saad. SPARSKIT: A basic toolkit for sparse matrix computations,
1994. www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html.

[Saa94]

Paul Stodghill. A Relational Approach to the Automatic Generation of Sequential
Sparse Matrix Codes. PhD thesis, Cornell University, August 1997.

[Sto97]

Sivan Toledo. Improving memory-system performance of sparse matrix vector
multiplication. In Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing, March 1997.

[Tol97]

James B. White and P. Sadayappan. On improving the performance of
sparse matrix-vector multiplication. In Proceedings of the International Conference on
High-Performance Computing, 1997.

[WS97]

R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27(1):3.25, 2001.

[WPD01]

Sathish S. Vadhiyar, Graham E. Fagg, and Jack J. Dongarra. Towards an accurate
model for collective communications. In Proceedings of the International Conference
on Computational Science, volume 2073 of LNCS, pages 41.50, San Francisco, CA,
May 2001. Springer.

[VFD01]

