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Outline

n Performance Tuning Challenges

n Performance Optimizations
n Register Blocking
n Matrix Symmetry
n Multiple Vectors

n Performance Bounds Models

n Experimental Evaluation
n 7.3x max speedup over reference (median: 4.2x)

n Conclusions
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Introduction & Background

n Computational Kernels
n Sparse Matrix-Vector Multiply (SpMV): y ? y + A • x

n A: Sparse matrix, symmetric ( i.e. A = AT )
n x,y: Dense vectors

n Sparse Matrix-Multiple Vector Multiply (SpMM): Y ? Y + A • X
n X,Y: Dense matrices

n Performance Tuning Challenges
n Sparse code characteristics

n High bandwidth requirements (matrix storage overhead)
n Poor locality (indirect, irregular memory access)
n Poor instruction mix (low ratio of flops to memory operations)

n SpMV performance less than 10% of machine peak
n Performance depends on kernel, matrix and architecture
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Optimizations: Register Blocking (1/3)
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Optimizations: Register Blocking (2/3)

n BCSR with uniform, aligned grid
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Optimizations: Register Blocking (3/3)

n Fill-in zeros: Trade extra flops for better blocked efficiency
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Optimizations: Matrix Symmetry

n Symmetric Storage
n Assume compressed sparse row (CSR) storage
n Store half the matrix entries (e.g., upper triangle)

n Performance Implications
n Same flops
n Halves memory accesses to the matrix
n Same irregular, indirect memory accesses 

n For each stored non-zero A( i , j )
§ y( i ) += A( i , j ) *  x( j )
§ y( j ) += A( i , j ) *  x( i )

n Special consideration of diagonal elements
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Optimizations: Multiple Vectors

n Performance Implications
n Reduces loop overhead
n Amortizes the cost of reading A for v vectors
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Optimizations: Register Usage (1/3)

n Register Blocking
n Assume column-wise unrolled block multiply
n Destination vector elements in registers ( r )
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Optimizations: Register Usage (2/3)

n Symmetric Storage
n Doubles register usage ( 2r )

n Destination vector elements for stored block
n Source vector elements for transpose block
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Optimizations: Register Usage (3/3)

n Vector Blocking
n Scales register usage by vector width ( 2rv )
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Performance Models

n Upper Bound on Performance
n Evaluate quality of optimized code against bound

n Model Characteristics and Assumptions
n Considers only the cost of memory operations
n Accounts for minimum effective cache and memory latencies
n Considers only compulsory misses (i.e. ignore conflict misses)
n Ignores TLB misses

n Execution Time Model
n Cache misses modeled and verified with PAPI hardware counters
n Charge a i for hits at each cache level

n T = (L1 hits) a1 + (L2 hits) a2 + (Mem hits) amem

n T = (Loads) a1 + (L1 misses)(a2 – a1) + (L2 misses)(amem – a2)
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Evaluation: Methodology 

n Four Platforms
n Sun Ultra 2i, Intel Itanium, Intel Itanium 2, IBM Power 4

n Matrix Test Suite
n Twelve matrices
n Dense, Finite Element, Assorted, Linear Programming

n Reference Implementation
n Non-symmetric storage
n No register blocking (CSR)
n Single vector multiplication



Berkeley Benchmarking and Optimization Group 14

Evaluation: Observations

n Performance
n 2.6x max speedup (median: 1.1x) from symmetry

n {Symmetric BCSR Multiple Vector} vs. {Non-Symmetric BCSR Multiple Vector}

n 7.3x max speedup (median: 4.2x) from combined optimizations
n {Symmetric BCSR Multiple Vector} vs. {Non-symmetric CSR Single Vector}

n Storage
n 64.7% max savings (median: 56.5%) in storage

n Savings > 50% possible when combined with register blocking

n 9.9% increase in storage for a few cases
n Increases possible when register block size results in significant fill

n Performance Bounds
n Measured performance achieves 68% of PAPI bound, on average
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Performance Results: Sun Ultra 2i
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Performance Results: Sun Ultra 2i
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Performance Results: Sun Ultra 2i



Berkeley Benchmarking and Optimization Group 18

Performance Results: Sun Ultra 2i
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Performance Results: Intel Itanium 1
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Performance Results: Intel Itanium 2
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Performance Results: IBM Power 4
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Conclusions

n Matrix Symmetry Optimizations
n Symmetric Performance: 2.6x speedup (median: 1.1x)

n {Symmetric BCSR Multiple Vector} vs. {Non-Symmetric BCSR Multiple Vector}

n Overall Performance: 7.3x speedup (median: 4.15x)
n {Symmetric BCSR Multiple Vector} vs. {Non-symmetric CSR Single Vector}

n Symmetric Storage: 64.7% savings (median: 56.5%)
n Cumulative performance effects
n Trade-off between optimizations for register usage

n Performance Modeling
n Models account for symmetry, register blocking, multiple vectors
n Gap between measured and predicted performance

n Measured performance is 68% of predicted performance (PAPI)
n Model refinements are future work
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Current & Future Directions

n Heuristic Tuning Parameter Selection
n Register block size and vector width chosen independently
n Heuristic to select parameters simultaneously

n Automatic Code Generation
n Automatic tuning techniques to explore larger optimization spaces
n Parameterized code generators

n Related Optimizations
n Symmetry (Structural, Skew, Hermitian, Skew Hermitian)
n Cache Blocking
n Field Interlacing
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Appendices
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Related Work

n Automatic Tuning Systems and Code Generation
n PHiPAC [BACD97], ATLAS [WPD01], SPARSITY[Im00]
n FFTW [FJ98], SPIRAL[PSVM01], UHFFT[MMJ00]
n MPI collective ops (Vadhiyar, et al. [VFD01])
n Sparse compilers (Bik [BW99], Bernoulli [Sto97])

n Sparse Performance Modeling and Tuning
n Temam and Jalby [TJ92]
n Toledo [Tol97], White and Sadayappan [WS97], Pinar [PH99]
n Navarro [NGLPJ96], Heras [HPDR99], Fraguela [FDZ99]
n Gropp, et al. [GKKS99], Geus [GR99]

n Sparse Kernel Interfaces
n Sparse BLAS Standard [BCD+01]
n NIST SparseBLAS [RP96], SPARSKIT [Saa94], PSBLAS [FC00]
n PETSc
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Symmetric Register Blocking

n Square Diagonal Blocking
n Adaptation of register blocking for symmetry
n Register blocks – r x c

n Aligned to the right edge of the matrix

n Diagonal blocks – r x r
n Elements below the diagonal are not included in diagonal block

n Degenerate blocks – r x c’
n c’ < c and c’ depends on the block row
n Inserted as necessary to align register blocks

Register Blocks – 2 x 3

Diagonal Blocks – 2 x 2

Degenerate Blocks – Variable
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Multiple Vectors Dispatch Algorithm

n Dispatch Algorithm
n k vectors are processed in groups of the vector width (v)

n SpMM kernel contains v subroutines: SRi for 1 = i = v
n SRi unrolls the multiplication of each matrix element by i

n Dispatch algorithm, assuming vector width v
n Invoke SRv floor(k/v) times
n Invoke SRk%v once, if k%v > 0
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