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Microarchitectural Design Space

Increasing diversity of interesting, viable designs
Examples :: Power 4, Pentium 4, UltraSPARC T1
Tractably quantify trends across comprehensive design space
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Microarchitectural Simulation Challenges

Cycle-Accurate Simulation
Accurately identifies trends in design space
Tracks instructions’ progress through microprocessor
Estimates performance, power, temperature, . . .

Simulation Costs
Long simulation times (minutes,hours per design)
Number of potential simulations scale exponentially (mp)

p :: parameter count
m :: parameter resolution
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Microarchitectural Sampling

Temporal Sampling
Sample from instruction traces in time domain
Reduce simulation costs via size of inputs
Synthetic traces from profiled workloads 1

Sampled traces from phase analysis 2

Spatial Sampling
Sample from design space
Reduce simulation costs via number of simulations

1Eeckhout [ISPASS’00]
2Sherwood [ASPLOS’02], Wunderlich [ISCA’03]
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Simulation Paradigm

Comprehensively understand design space
Specify large, high-resolution design space
Consider all design parameter simultaneously

Selectively simulate modest number of designs
Sample points randomly from design space for simulation
Decouple resolution of design space and simulation

Efficiently leverage simulation data with inference
Reveal trends, trade-offs from sparse sampling
Enable predictions for metrics of interest
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Regression Theory

Statistical Inference
Models approximate solutions to intractable problems
Requires initial data to train, formulate model
Leverages correlations from initial data for prediction

Regression Models
Low formulation costs (1K samples from 1B designs)
Accurate inference (4− 7% median error)
Efficient computation (100’s of predictions per second)
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Model Formulation

Notation
n observations . {simulated design samples}
Response :: ~y = y1, . . . , yn . {e.g., performance, power }
Predictor :: ~xi = xi,1, . . . , xi,p . {e.g., depth, cache}

Regression Coefficients :: ~β = β0, . . . , βp

Random Error :: ~e = e1, . . . , en where ei ∼ N(0, σ2)
Transformations :: f ,~g = g1, . . . , gp

Model

f (y) = β0 +
p∑

j=1

βjgj(xj) + e
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Predictor Interaction

Modeling Interaction
Suppose effects of predictors x1, x2 cannot be separated
Construct predictor x3 = x1x2

y = β0 + β1x1 + β2x2 + β3x1x2 + ei

Example
Let x1 be pipeline depth, x2 be L2 cache size
Performance impact of pipelining affected by cache size

Speedup =
Depth

1 + Stalls/Inst
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Predictor Non-Linearity I

Restricted Cubic Splines
Divide predictor domain into intervals separated by knots
Piecewise cubic polynomials joined at knots
Higher order polynomials provide better fits 3

3Stone [SS’86]
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Predictor Non-Linearity II

Location of Knots
Location of knots less important than number of knots 4

Place knots at fixed predictor quantiles

Number of Knots
Flexibility, risk of over-fitting increases with knot count
5 knots or fewer are often sufficient
4 knots balances flexibility, risk of over-fitting

4Harrell [Springer’01]
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Prediction

Expected Response
β are known from least squares
xi,1, . . . , xi,p are known for a given query i
Expected response is weighted sum of predictor values

E
[
y
]

= E
[
β0 +

p∑
j=1

βjxj

]
+ E

[
e
]

= β0 +
p∑

j=1

βjxj

Benjamin C. Lee, David M. Brooks 13 :: ASPLOS-XII



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Experimental Methodology
Derivation Overview
Model Specification

Outline
Motivation & Background

Simulation Challenges
Simulation Paradigm
Regression Theory

Model Derivation
Experimental Methodology
Derivation Overview
Model Specification

Model Evaluation
Performance
Power

Conclusion

Benjamin C. Lee, David M. Brooks 14 :: ASPLOS-XII



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Experimental Methodology
Derivation Overview
Model Specification

Tools and Benchmarks

Simulation Framework
Turandot :: a cycle-accurate trace driven simulator
PowerTimer :: power models derived from circuit analyses
Baseline simulator models POWER4/POWER5 architecture

Benchmarks
SPEC2kCPU :: compute-intensive benchmarks
SPECjbb :: Java server benchmark

Statistical Framework
R :: software environment for statistical computing
Hmisc and Design packages5

5Harrell [Springer,’01]
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Spatial Sampling

Design Space
Si :: set of values for parameter xi, i∈[1, p]
S =

∏p
i=1 Si :: design space

B :: set of benchmarks
|S| ≈ 109 and |B| = 22

Sampling Uniformly at Random (UAR)
Sample n = 4, 000 designs and benchmarks for simulation
Decouple resolution of design space and simulation
Unbiased observations from full range of parameter values
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Predictors :: Microarchitecture
Set Parameters Measure Range |Si|

S1 Depth depth FO4 9::3::36 10
S2 Width width insn b/w 4,8,16 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size log2(entries) 7::1::11 5
S6 D-L1 Cache d-L1 cache size log2(entries) 6::1::10 5
S7 L2 Cache L2 cache size log2(entries) 11::1::15 5

L2 cache latency cycles 6::2::14
S8 Control Latency branch latency cycles 1,2 2
S9 FX Latency ALU latency cycles 1::1::5 5

FX-multiply latency cycles 4::1::8
FX-divide latency cycles 35::5::55

S10 FP Latency FPU latency cycles 5::1::9 5
FP-divide latency cycles 25::5::45

S11 L/S Latency Load/Store latency cycles 3::1::7 5
S12 Memory Latency Main memory latency cycles 70::5::115 10
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Predictors :: Application-Specific

Application Characteristics
Collect program characteristics on baseline architecture
Instruction throughput
Cache access patterns
Branch patterns
Sources of pipeline stalls

Application Effects
Significant interactions with microarchitectural predictors
Example :: Impact of d-L1 cache affected by access rates
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Derivation Overview

Hierarchical Clustering
Performance Associations and Correlations

qualitative scatterplots, quantitative ρ2

Model Specification
predictor interaction, non-linearity

Assessing Fit
R2 statistic

Residual Analysis
normality (quantile-quantile), randomness (scatterplots)

Significance Testing
hypothesis testing, F-statistic, p-values
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Model Specification

Interactions
Pipeline width/depth interact with

instruction bandwidth structures (queues, register file)
cache hierarchy

Cache hierarchy sizes interact with
adjacent levels in hierarchy
application-specific access rates

Baseline performance interacts with resource sizings

Restricted Cubic Splines
Weaker relationships (latencies, caches, queues) :: 3 knots
Stronger relationships (depth, registers) :: 4 knots
Baseline performance :: 5 knots
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Validation Approach

Framework
Formulate models with n < 4, 000 samples
Obtain 100 additional random samples for validation
Quantify percentage error, 100 ∗ |ŷi − yi|/yi

Model Variants
Baseline (B) :: Non-transformed response
Stabilized (S) :: Square-root of response
Regional (S+R) :: Per query with similar samples
Application (S+A) :: Per benchmark with similar samples

Benjamin C. Lee, David M. Brooks 24 :: ASPLOS-XII



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Performance
Power

Regional Sampling
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Performance Prediction
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Performance Sensitivity :: S+A
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Simulation Paradigm
Comprehensively understand design space
Selectively simulate modest number of designs
Efficiently leverage simulation data with inference

Model Evaluation
7.4%, 4.3% median errors for performance, power
S+A, S+R more accurate for performance, power

Future Directions
Demonstrate for comprehensive design studies 6

Expand design space and benchmark suite
Extend to CMP’s and interconnect modeling

6Lee [HPCA’07] :: www.deas.harvard.edu/∼bclee
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Controlling Simulation Costs

Hybrid Simulation
Decouples simulation of microprocessor structures
Leverages fast, specialized simulators for particular units 7

Trace Sampling/Compression
Reduces redundant simulation
Simulate unique, representative instruction segments 8

Synthetic Workloads
Reduces size of simulator inputs
Profiles workload to construct smaller, synthetic traces 9

7Li, Lee, Brooks, Hu, Skadron [HPCA’06]
8Liu, Asanovic [ISPASS’06], Sherwood, et al., [ASPLOS’02]
9Eeckhout, Nussbaum, Smith, DeBosschre [IEEE Micro’03]
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Variable Clustering
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Performance Associations
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Assessing Fit
Multiple Correlation Statistic

R2 is fraction of response variance captured by predictors
Large R2 suggests better fit to observed data
R2 → 1 suggests over-fitting (less likely if p < n/20)

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − 1

n

∑n
i=1 yi)2

Residual Distribution Assumptions
Residuals are normally distributed, ei ∼ N(0, σ2)
No correlation between residuals and response, predictors
Validate by scatterplots and quantile-quantile plots

êi = yi − β̂0 −
p∑

j=0

β̂jxij
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Appendix
Appendix
References
Extra Slides

Predictor Non-Linearity I

Polynomial Transformations
Undesirable peaks and valleys
Differing trends across regions

Linear Splines
Piecewise linear regions separated by knots
Inadequate for complex, highly curved relationships

Restricted Cubic Splines
Higher order polynomials provide better fits
Continuous at knots
Linear constraint on tails
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Predictor Non-Linearity II

Location of Knots
Location of knots less important than number of knots
Place knots at fixed predictor quantiles

Number of Knots
Flexibility, risk of over-fitting increases with knot count
5 knots or fewer are often sufficient 10

4 knots is a good compromise between flexibility, over-fitting
Fewer knots required for small data sets

10Stone [SS’86]
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Significance Testing I

Approach
Given two nested models, hypothesis H0 states additional
predictors in larger model have no response association
Test H0 with F-statistics and p-values

Example
Predictor interaction requires comparing nested models
Consider a model y = β0 + β1x1 + β2x2 + β3x1x2.
Test significance of x1 with null hypothesis H0 : β1 = β3 = 0
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Significance Testing II
F-Statistic

Compare two nested models using their R2 and F-statistic
R2 is fraction of response variance captured by predictors

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − 1

n

∑n
i=1 yi)2

F-statistic of two nested models follows F distribution

Fk,n−p−1 =
R2 − R2

∗
k

× n− p− 1
1− R2

P-Values
Probability F-statistic greater than or equal to observed
value would occur under H0

Small p-values cast doubt on H0
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Treatment of Missing Data

Missing Completely at Random (MCAR)
Treat unobserved design points as missing data
Sampling UAR ensures observations are MCAR
Data is missing for reasons unrelated to characteristics or
responses of the configuration

Informative Missing
Data is more likely missing if their responses are
systematically higher or lower
“Missingness” is non-ignorable and must also be modeled
Sampling UAR avoids such modeling complications
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Performance Associations I
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Performance Associations II
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Performance Associations III
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Significance Tests

Microarchitectural Predictors
Majority of F-tests imply significance (p-values < 2.2E − 16)
Several predictors were less significant

Control latency (p-value = 0.1247)
Reservation station size (p-value = 0.1239)
L1 instruction cache size (p-value = 0.02941)

Application-Specific Predictors
Majority of F-tests imply significance (p-values < 2.2E − 16)
Pipeline stalls classified by structure are less significant

Completion and reorder queue stalls (p-values > 0.4)
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Related Work

Statistical Significance Ranking
Yi :: Plackett-Burman, effect rankings
Joseph :: Stepwise regression, coefficient rankings
Bound parameter values to improve tractability
Require simulation for estimation

Synthetic Workloads
Eeckhout :: Profile workloads to obtain synthetic traces
Nussbaum :: Superscalar and SMP simulation
Obtain distribution of instructions and data dependencies
Require simulation with smaller traces for estimation
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