
Accurate and Efficient Regression Modeling for
Microarchitectural Performance and Power Prediction

Benjamin C. Lee, David M. Brooks
Division of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts

{bclee,dbrooks}@eecs.harvard.edu

Abstract
We propose regression modeling as an efficient approach for accu-
rately predicting performance and power for various applications
executing on any microprocessor configuration in a large microar-
chitectural design space. This paper addresses fundamental chal-
lenges in microarchitectural simulation cost by reducing the num-
ber of required simulations and using simulated results more effec-
tively via statistical modeling and inference.

Specifically, we derive and validate regression models for per-
formance and power. Such models enable computationally efficient
statistical inference, requiring the simulation of only 1 in 5 million
points of a joint microarchitecture-application design space while
achieving median error rates as low as 4.1 percent for performance
and 4.3 percent for power. Although both models achieve simi-
lar accuracy, the sources of accuracy are strikingly different. We
present optimizations for a baseline regression model to obtain (1)
application-specific models to maximize accuracy in performance
prediction and (2) regional power models leveraging only the most
relevant samples from the microarchitectural design space to max-
imize accuracy in power prediction. Assessing sensitivity to the
number of samples simulated for model formulation, we find fewer
than 4,000 samples from a design space of approximately 22 billion
points are sufficient. Collectively, our results suggest significant po-
tential in accurate and efficient statistical inference for microarchi-
tectural design space exploration via regression models.

Categories and Subject Descriptors B.8.2 [Performance Anal-
ysis and Design Aids]; I.6.5 [Model Development]: Modeling
Methodologies

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Microarchitecture, Simulation, Statistics, Inference,
Regression

1. Introduction
Efficient design space exploration is constrained by the significant
computational costs of cycle-accurate simulators. These simulators

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

provide detailed insight into application performance for a wide
range of microprocessor configurations, exposing performance and
power trends in the microarchitectural design space. Long simula-
tion times require designers to constrain design studies and con-
sider only small subsets of the full design space. However, such
constraints may lead to conclusions that may not generalize to the
larger space. Addressing these fundamental challenges in microar-
chitectural simulation methodology becomes increasingly urgent as
chip multiprocessors introduce additional design parameters and
exponentially increase design space size.

We apply regression modeling to derive simulation-free statisti-
cal inference models, requiring a small number of sampled design
points in a joint microarchitecture-application design space for ini-
tial simulation. Such an approach modestly reduces detail in return
for significant gains in speed and tractability. Although we con-
sider advantages in computational cost for microarchitectural de-
sign space exploration in this paper, these models may also provide
increased profiling efficiency and fast performance prediction for
system software and algorithms, such as thread-scheduling for het-
erogeneous multi-processors.

Techniques in statistical inference and machine learning are in-
creasingly popular for approximating solutions to intractable prob-
lems. Even for applications in which obtaining extensive measure-
ment data is feasible, efficient analysis of this data often lends itself
to statistical modeling. These approaches typically require an initial
set of data for model formulation or training. The model responds
to predictive queries by leveraging trends and correlations in the
original data set to perform statistical inference. Regression mod-
eling follows this predictive paradigm in a relatively cost effective
manner. Once domain-specific knowledge is used to specify pre-
dictors of a response, formulating the model from observed data
requires numerically solving a system of linear equations and pre-
dicting the response simply requires evaluating a linear equation.
Model formulation and evaluation are computationally efficient due
to well optimized numerical linear algebra libraries.

We use a modest number of simulations to obtain sample ob-
servations from a large design space. In Section 3, we describe a
sampling methodology to obtain 4,000 samples drawn uniformly at
random from a design space with approximately 22 billion points.
Each sample maps a set of architectural and application-specific
predictors to observed simulator performance and power. These
samples are used to formulate regression models that predict the
performance and power of previously unsampled configurations
based on the same predictors.

In Section 4, we summarize a statistically rigorous approach
for deriving regression models that includes (1) variable clustering,
(2) association testing, (3) assessing strength of response-predictor
relationships, and (4) significance testing with F-tests. These tech-

niques ensure statistically significant architectural and application-
specific parameters are used as predictors. Given a baseline model
that accounts for predictor interaction and non-linearity, Section 5
presents model optimizations to improve prediction accuracy by (1)
stabilizing residual variance, (2) deriving application-specific mod-
els, and (3) deriving regional models with samples most similar in
architectural configuration to the predictive query.

The following summarizes experimental results of Section 5
from four different performance and power regression models for-
mulated with 4,000 samples drawn from a joint microarchitecture-
application design space with nearly 1 billion microarchitectural
configurations and 22 benchmarks:

1. Performance Prediction: Application-specific models predict
performance with median error as low as 4.1 percent (mean
error as low as 4.9 percent). 50 to 90 percent of predictions
achieve error rates of less than 10 percent depending on the
application. Maximum outlier error is 20 to 33 percent.

2. Power Prediction: Regional models predict power with me-
dian error as low as 4.3 percent (mean error as low as 5.6 per-
cent). Nearly 90 percent of predictions achieve error rates of
less than 10 percent and 97 percent of predictions achieve er-
ror rates of less than 15 percent. Maximum outlier error is 24.5
percent.

3. Model Optimizations: Given a single set of predictors for
both performance and power models, the model may be re-
formulated with different sampled observations and optimized.
Application-specific models are optimal for performance pre-
diction while regional models are optimal for power prediction.

4. Sample Size Sensitivity: Although 4,000 samples are drawn
from the design space, accuracy maximizing applications-
specific performance models do not require more than 2,000.
Additional samples may improve regional power models by
improving observation density and tightening regions around
predictive queries, but diminishing marginal returns in accu-
racy advise against many more than 3,000 samples.

Collectively, these results suggest significant potential in accu-
rate, efficient statistical inference for the microarchitectural design
space via regression models. We provide an overview of the model
derivation and a detailed validation of its predictive ability. Previ-
ous work details the model derivation [8, 9].

2. Regression Theory
We apply regression modeling to efficiently obtain estimates of mi-
croarchitectural design metrics, such as performance and power.
We apply a general class of models in which a response is mod-
eled as a weighted sum of predictor variables plus random noise.
Since basic linear estimates may not adequately capture nuances
in the response-predictor relationship, we also consider more ad-
vanced techniques to account for potential predictor interaction
and non-linear relationships. Lastly, we present standard statistical
techniques for assessing model effectiveness and predictive ability.

2.1 Model Formulations
For a large universe of interest, suppose we have a subset of n
observations for which values of the response and predictor vari-
ables are known. Let y = y1, . . . , yn denote the vector of ob-
served responses. For a particular point i in this universe, let yi

denote its response variable and xi = xi,1, . . . , xi,p denote its p
predictors. These variables are constant for a given point in the
universe. Let β = β0, . . . , βp denote the corresponding set of re-
gression coefficients used in describing the response as a linear
function of predictors plus a random error ei as shown in Equa-

tion (1). Mathematically, βj may be interpreted as the expected
change in yi per unit change in the predictor variable xi,j . The
ei are independent random variables with zero mean and constant
variance; E(ei) = 0 and V ar(ei) = σ2. We consider a joint
microarchitecture-application universe with design metrics of in-
terest as response variables predicted by microarchitectural config-
urations and application characteristics.

f(yi) = g(xi)β + ei

= β0 +

pX
j=1

βjgj(xij) + ei (1)

Fitting a regression model to observations, by determining the
p + 1 coefficients in β, enables response prediction. The method of
least squares is commonly used to identify the best-fitting model
by minimizing S(β), the sum of squared deviations of predicted
responses given by the model from actual observed responses.

S(β0, . . . , βp) =

nX
i=1

yi − β0 −

pX
j=1

βjxij

!2

(2)

S(β) may be minimized by solving a system of p + 1 partial
derivatives of S with respect to βj , j ∈ [0, p]. The solutions to
this system are estimates of the coefficients in Equation (1). Fur-
thermore, solutions to this system of linear equations may often be
expressed in closed form. Closed form expressions enable using the
statistical properties of these estimates to identify the significance
of particular response-predictor correlations (Section 2.4).

2.2 Predictor Interaction
In some cases, the effect of predictors xi,1 and xi,2 on the re-
sponse cannot be separated; the effect of xi,1 on yi depends on
the value of xi,2 and vice versa. This interaction may be mod-
eled by constructing a third predictor xi,3 = xi,1xi,2 to obtain
yi = β0 + β1xi,1 + β2xi,2 + β3xi,1xi,2 + ei. For example,
pipeline depth and L2 cache size do not impact performance in-
dependently; a smaller L2 cache leads to additional memory haz-
ards in the pipeline. These stalls affect, in turn, instruction through-
put gains from pipelining. Thus, their joint impact on performance
must also be modeled.

Modeling predictor interactions in this manner makes it difficult
to interpret β1 and β2 in isolation. After simple algebraic manipu-
lation to account, we find β1 + β3xi,2 is the expected change in yi

per unit change in xi,1 for a fixed xi,2. The difficulties of these ex-
plicit interpretations of β for more complex models lead us to prefer
more indirect interpretations of the model via its predictions.

2.3 Non-Linearity
Basic linear regression models assume the response behaves lin-
early in all predictors. This assumption is often too restrictive (e.g.,
power increases quadratically with pipeline depth for more aggres-
sive designs) and several techniques for capturing non-linearity
may be applied. The most simple of these techniques is a polyno-
mial transformation on predictors suspected of having a non-linear
correlation with the response. However, polynomials have undesir-
able peaks and valleys. Furthermore, a good fit in one region of
the predictor’s values may unduly impact the fit in another region
of values. For these reasons, we consider splines a more effective
technique for modeling non-linearity.

Spline functions are piecewise polynomials used in curve fitting.
The function is divided into intervals defining multiple different
continuous polynomials with endpoints called knots. The number
of knots can vary depending on the amount of available data for

fitting the function, but more knots generally leads to better fits.
Relatively simple linear splines may be inadequate for complex,
highly curved relationships. Splines of higher order polynomials
may offer better fits and cubic splines have been found particularly
effective [4]. Unlike linear splines, cubic splines may be made
smooth at the knots by forcing the first and second derivatives of
the function to agree at the knots. However, cubic splines may have
poor behavior in the tails before the first knot and after the last knot
[13]. Restricted cubic splines that constrain the function to be linear
in the tails are often better behaved and have the added advantage
of fewer terms relative to cubic splines.

The choice and position of knots are variable parameters when
specifying non-linearity with splines. Stone has found the location
of knots in a restricted cubic spline to be much less significant
than the number of knots [13]. Placing knots at fixed quantiles
of a predictor’s distribution is a good approach in most datasets,
ensuring a sufficient number of points in each interval.

In practice, five knots or fewer are generally sufficient for re-
stricted cubic splines [13]. Fewer knots may be required for small
data sets. As the number of knots increases, flexibility improves at
the risk of over-fitting the data. In many cases, four knots offer an
adequate fit of the model and is a good compromise between flexi-
bility and loss of precision from over-fitting [4]. For larger data sets
with more than 100 samples, five knots may also be a good choice.

2.4 Significance Testing
Although T-tests are often used to assess the significance of individ-
ual terms, it is often more useful to assess a group of terms simul-
taneously. Consider a model y = β0 +β1x1 +β2x2 +β3x1x2 +e.
Testing the significance of x1 requires testing the null hypothesis
H0 : β1 = β3 = 0 with two degrees of freedom. More gener-
ally, given two nested models, the null hypothesis states the ad-
ditional predictors in the larger model have no association with
the response. For example, suppose x1 and x2 are pipeline depth
and width, respectively. We must then compare a model without
depth(x1) and its width interaction(x1x2) against the full model to
assess depth’s significance.

The F-test is a standard statistical test for comparing two nested
models using their multiple correlation statistic, R2. Equation (3)
computes this statistic as regression error (SSE) relative to total
error (SST). R2 will be zero when the error from the regression
model is just as large as the error from simply using the mean to
predict the response. Thus, R2 is the percentage of variance in the
response variable captured by the predictor variables.

R2 = 1− SSE

SST

= 1−
Pn

i=1(yi − ŷi)
2Pn

i=1(yi − 1
n

Pn
i=1 yi)2

(3)

Given R2 for the full model and R2
∗ for a model constructed

by dropping terms from the full model, define the F-statistic by
Equation (4) where p is the number of coefficients in the full model
excluding the intercept β0 and k is the difference in degrees of
freedom between the models.

Fk,n−p−1 =
R2 −R2

∗

k
× n− p− 1

1−R2
(4)

The p-value is defined as 2P (X≥|c|) for a random variable X
and a constant c. In our analyses, X follows the F distribution with
parameters k, n − p − 1 and c is the F-statistic. The p-value may
be interpreted as the probability a F-statistic value greater than or
equal to the value actually observed would occur by chance if the
null hypothesis were true. If this probability were extremely small,

either the null hypothesis holds and an extremely rare event has oc-
curred or the null hypothesis is false. Thus, a small p-value for for
a F-test of two models casts doubt on the null hypothesis and sug-
gests the additional predictors in the larger model are statistically
significant in predicting the response.

2.5 Assessing Fit
The model’s fit to the observations used to formulate the model
measures how well the model captures observed trends. Fit is usu-
ally assessed by examining residuals and the degree to which re-
gression error contributes to the total error. Residuals, defined in
Equation (5), are examined to validate three assumptions: (1) the
residuals are not correlated with any predictor variable or the re-
sponse predicted by the model, (2) the randomness of the residuals
is the same for all predictor and predicted response values, and (3)
the residuals have a normal distribution. The first two assumptions
are typically validated by plotting residuals against each of the pre-
dictors and predicted responses (i.e., (êi, xij) for each j ∈ [1, p]
and (êi, ŷi) for each i ∈ [1, n]) since such plots may reveal sys-
tematic deviations from randomness. The third assumption is usu-
ally validated by a quantile-quantile plot in which the quantiles of
one distribution are plotted against another. Practically, this means
ranking the residuals ê(1), . . . , ê(n), obtaining n ranked samples
from the normal distribution s(1), . . . , s(n), and producing a scatter
plot of (ê(i), s(i)) that should appear linear if the residuals follow a
normal distribution.

êi = yi − β̂0 −
pX

j=0

β̂jxij (5)

Fit may also be assessed by the R2 statistic where a larger R2

suggests better fits for the observed data. However, a value too
close to R2 = 1 may indicate over-fitting, a situation in which
the worth of the model is exaggerated and future observations will
not agree with the model’s predicted values. Over-fitting typically
occurs when too many predictors are used to model relatively small
data sets. A regression model is likely reliable when the number of
predictors p is less than n/20, where n is the sample size [4].

2.6 Prediction
Once β is determined, evaluating Equation (6) for a given xi will
give the expectation of yi and, equivalently, an estimate ŷi for
yi. This result follows from observing the additive property of
expectations, the expectation of a constant is the constant, and the
random errors have mean zero.

ŷi = E
ˆ
yi

˜
= E

ˆ
β0 +

pX
j=1

βjxij

˜
+ E

ˆ
ei

˜
= β0 +

pX
j=1

βjxij (6)

3. Experimental Methodology
Before developing regression models to predict performance and
power for any configuration within the microarchitectural design
space, we must first obtain a number of observations within this
space via simulation. These observations are inputs to a statistical
computing package used to perform the regression analysis and
formulate the models.

Set Parameters Measure Range |Si|
S1 Depth Depth FO4 9::3::36 10
S2 Width Width insn b/w 4,8,16 3

L/S Reorder Queue entries 15::15::45
Store Queue entries 14::14::42
Functional Units count 1,2,4

S3 Physical General Purpose (GP) count 40::10::130 10
Registers Floating-Point (FP) count 40::8::112

Special Purpoes (SP) count 42::6::96
S4 Reservation Branch entries 6::1::15 10

Stations Fixed-Point/Memory entries 10::2::28
Floating-Point entries 5::1::14

S5 I-L1 Cache I-L1 Cache Size log2(entries) 7::1::11 5
S6 D-L1 Cache D-L1 Cache Size log2(entries) 6::1::10 5
S7 L2 Cache L2 Cache Size log2(entries) 11::1::15 5

L2 Cache Latency cycles 6::2::14
S8 Main Memory Main Memory Latency cycles 70::5::115 10
S9 Control Latency Branch Latency cycles 1,2 2
S10 Fixed-Point ALU Latency cycles 1::1::5 5

Latency FX-Multiply Latency cycles 4::1::8
FX-Divide Latency cycles 35::5::55

S11 Floating-Point FPU Latency cycles 5::1::9 5
Latency FP-Divide Latency cycles 25::5::45

S12 Memory Latency Load/Store Latency cycles 3::1::7 5

Table 1. Parameters within a group are varied together. A range of i::j::k denotes a set of possible values from i to k in steps of j.

3.1 Simulation Framework
We use Turandot, a generic and parameterized, out-of-order, super-
scalar processor simulator [10]. Turandot is enhanced with Power-
Timer to obtain power estimates based on circuit-level power anal-
yses and resource utilization statistics [1]. The modeled baseline
architecture is similar to the POWER4/POWER5. The simulator
has been validated against both a POWER4 RTL model and a hard-
ware implementation. We do not use any particular feature of the
simulator in our models and believe our approach may be generally
applied to other simulatorx frameworks. We evaluate performance
in billions of instructions per second (bips) and power in watts.

3.2 Benchmarks
We consider SPECjbb, a Java server benchmark, and 21 compute
intensive benchmarks from SPEC2k (ammp, applu, apsi, art, bzip2,
crafty, equake, facerec, gap, gcc, gzip, lucas, mcf, mesa, mgrid,
perl, sixtrack, swim, twolf, vpr, wupwise). We report experimental
results based on PowerPC traces of these benchmarks. The SPEC2k
traces used in this study were sampled from the full reference input
set to obtain 100 million instructions per benchmark program. Sys-
tematic validation was performed to compare the sampled traces
against the full traces to ensure accurate representation [5].

3.3 Statistical Analysis
We use R, a free software environment for statistical computing, to
script and automate the statistical analyses described in Section 2.
Within this environment, we use the Hmisc and Design packages
implemented by Harrell [4].

3.4 Configuration Sampling
Table 1 identifies twelve groups of parameters varied simultane-
ously. Parameters within a group are varied together in a conser-
vative effort to avoid fundamental design imbalances. The range
of values considered for each parameter group is specified by a
set of values, S1, . . . , S12. The Cartesian product of these sets,
S =

Q12
i=1 Si, defines the entire design space. The cardinality of

this product is |S| =
Q12

i=1 |Si| = 9.38E + 08, or approximately
one billion, design points. Fully assessing the performance for each

of the 22 benchmarks on these configurations further scales the
number of simulations to well over 20 billion.

The approach to obtaining observations from a large micropro-
cessor design space is critical to efficient formulation of regression
models. Traditional techniques of sweeping design parameter val-
ues to consider all points in the large design space, S, is impossible
despite continuing research in reducing simulation costs via trace
sampling [12, 14]. Although these techniques reduce per simula-
tion costs by a constant factor, they do not reduce the number of
required simulations. Other studies have reduced the cardinality of
these sets to an upper and lower bound [6, 15], but this approach
masks performance and power trends between the bounds and pre-
cludes any meaningful statistical inference. For these reasons, sam-
pling must occur in the design space to control the exponentially in-
creasing number of design points as the number of parameter sets
and their cardinalities increase.

We propose sampling configurations uniformly at random
(UAR) from S. This approach provides observations from the full
range of parameter values and enables identification of trends and
trade-offs between the parameter sets. We can include an arbitrarily
large number of values into a given Si since we decouple the num-
ber of simulations from the set cardinality via random sampling.
Furthermore, sampling UAR does not bias the observations toward
particular configurations. Prior design space studies have consid-
ered points around a baseline configuration and may be biased
toward the baseline. Our approach is different from Monte Carlo
methods, which generate suitable random samples and observe
the frequency of samples following some property or properties.
Although we perform random sampling, we formulate regression
models instead of analyzing frequency.

We report experimental results for sample sizes of up to n =
4, 000 samples. Each sampled configuration is simulated with a
benchmark also chosen UAR, providing one set of observed re-
sponses (performance and power) for every 5 million sets of pre-
dictors (configuration-application pairs) in the design space.

Performance
bips

L1 Cache
I-L1 misses D-L1 misses
I-L2 misses D-L2 misses

Branches
branch rate branch stalls

branch mispredictions
Stalls

inflight cast
dmissq reorderq
storeq rename
resv

Table 2. Measured application characteristics on a baseline archi-
tecture.

Processor Core
Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy
L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 32KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions
Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 3. Baseline architecture.

4. Model Derivation
To identify potential response-predictor relationships we first ex-
amine a number of descriptive statistics for parameters in the data
set. We then formulate a regression model, accounting for predic-
tors’ primary effects, second- and third-order interactions, and non-
linearities. Given an initial model, we perform significance testing
to prune statistically insignificant predictors from the model. The
fit of the refined model is assessed by examining its residuals.

4.1 Predictors
In addition to the 12 architectural predictors (Table 1), we also con-
sider 15 application-specific predictors drawn from an application’s
characteristics (Table 2) when executing on a baseline configura-
tion (Table 3). These characteristics may be significant predictors
of performance when interacting with architectural predictors and
include baseline performance (base bips), cache access patterns,
branch patterns, and sources of pipeline stalls (e.g. stalls from lim-
its on the number of inflight instructions). For example, the perfor-
mance effect of increasing the data L1 cache size will have a larger
impact on applications with a high data L1 miss rate. The baseline
application performance may also impact the performance effects
of further increasing architectural resources. An application with
no bottlenecks and high baseline performance would benefit less
from additional registers compared to an application experiencing
heavy register pressure. These potential interactions suggest both
architectural and application-specific predictors are necessary.

Figure 1. Predictor Strength

4.2 Summary Statistics
We provide a brief overview of analyses used to identify relevant
predictors for an initial performance regression model. The associ-
ated figures are omitted due to space constraints. Details are avail-
able in a technical report [8].

4.2.1 Variable Clustering
A variable clustering analysis reveals key parameter interaction by
computing squared correlation coefficients as similarity measures.
A larger ρ2 suggests a greater correlation between variables. If
overfitting is a concern, redundant predictors may be eliminated
by selecting only one predictor from each cluster.

Our clustering analysis indicates L1 and L2 misses due to in-
struction cache accesses are highly correlated. We find the absolute
number of L2 cache misses from the instruction cache to be neg-
ligible and eliminate il2miss rate. Similarly, the branch rate is
highly correlated with the number of branch induced stalls and we
eliminate br stall. All other variables are correlated to a lesser
degree and need not be eliminated from consideration. We find the
number of observations sufficiently large to avoid over-fitting.

4.2.2 Performance Associations
Plotting each of the predictors against the response may reveal
particularly strong associations or identify non-linearities. For ar-
chitectural predictors, we find pipeline depth and width strong,
monotonic factors. The number of physical registers may be a sig-
nificant, but non-linear, predictor. Correlations between L2, but
not L1, cache size and performance also appear significant. For
application-specific predictors, data cache access patterns may be
good predictors of performance. We also find roughly half the
stall characteristics have monotonic relationships with performance
(i.e., dmissq, cast, reorderq, resv). A benchmark’s observed
sample and baseline performance are highly correlated.

4.2.3 Strength of Marginal Relationships
We consider the squared correlation coefficient between each pre-
dictor variable and observed performance in Figure 1 to choose the
number of spline knots. A lack of fit for predictors with higher ρ2

will have a greater negative impact on performance prediction. For
architectural predictors, a lack of fit will be more consequential (in

Figure 2. Residual Correlations

Figure 3. Residual Distribution

descending order of importance) for width, depth, physical regis-
ters, functional unit latencies, cache sizes, and reservation stations.
An application’s baseline performance is the most significant pre-
dictor for its performance on other configurations.

Overall, application-specific predictors are most highly cor-
related with observed performance. An application’s interaction
with the microarchitecture, not the microarchitecture itself, is the
primary determinant of performance. For example, the degree to
which an application is memory bound, captured by baseline cache
miss rates, are much more highly correlated with performance than
the cache sizes.

4.3 Model Specification and Refinement
After a first pass at removing insignificant predictors, we formulate
an initial performance regression model. We model non-linearities
for architectural predictors using restricted cubic splines. As shown
in Figure 1, the strength of predictors’ marginal relationships with
performance will guide our choice in the number of knots. Predic-
tors with stronger relationships and greater correlations with per-
formance will use 4 knots (e.g. depth, registers) and those with
weaker relationships will use 3 knots (e.g. latencies, cache sizes,
reservation stations). Despite their importance, width and certain
latencies do not take a sufficient number of unique values to apply
splines and we consider their linear effects only. With the excep-
tion of baseline performance, for which we assign 5 knots, we do
not model non-linearities for application-specific predictors to con-
trol model complexity.

We draw on domain-specific knowledge to specify interactions.
We expect pipeline width to interact with register file and queue
sizes. Pipeline depth likely interacts with cache sizes that impact
hazard rates. We also expect the memory hierarchy to interact
with adjacent levels (e.g. L1 and L2 cache size interaction) and
application-specific access rates. Interactions with baseline perfor-
mance account for changing marginal returns in performance from
changing resource sizes. Although we capture most relevant inter-
actions, we do not attempt to capture all significant interactions via
an exhaustive search of predictor combinations. The results of Sec-
tion 5 suggest such a high-level representation is sufficient.

Figure 2 plots residual quartiles for 40 groups, each with 100
observations, against median modeled performance of each group,
revealing significant correlations between residuals and fitted val-
ues.1 Residuals are larger for the smallest and largest fitted values.
We apply a standard variance stabilizing square root transforma-
tion on performance to reduce the magnitude of the correlations
as shown in Figure 2. The resulting model predicts the square-root
of performance (i.e.

√
y instead of y). Variance stabilization also

cause residuals to follow a normal distribution more closely as in-
dicated by the linear trend in Figure 3.

To further improve model efficiency, we consider each pre-
dictor’s contribution to its predictive ability. We assess the sig-
nificance of predictor p by comparing, with F-tests, the initial
model to a smaller model with all terms involving p removed [8].
Although we found most variables significant with p-values less
than 2.2e − 16, br lat (p-value=0.1247), stall inflight (p-
value=0.7285), and stall storeq (p-value=0.4137) appear in-
significant. High p-values indicate these predictors do not signif-
icantly contribute to a better fit when included in a larger model.

5. Model Evaluation
5.1 Model Variants and Optimizations
We use data sets of varying size drawn from n∗ < n = 4, 000
random observations to formulate regression models. We refer to
n∗ as the sample size for a particular model; each model may
require different sample sizes to maximize accuracy. We arbitrarily
chose 4,000 points for the initial data set, reflecting our lack of prior
intuition regarding the number of samples required for accurate
modeling. We subsequently assess model sensitivity to sample size,
demonstrating n∗ < 2, 000 samples are sufficient.

Separately, we obtain 100 additional random samples for pre-
dictive queries and validation against the simulator. We compare
the predictive ability of four regression models, differing in speci-
fication and data used to perform the fit:

1 Residuals are defined in Equation (5)

Model Min 1st Quartile Median Mean 3rd Quartile Max
B (1k) 0.571 7.369 13.059 16.359 20.870 56.881
S (2k) 0.101 5.072 10.909 13.015 17.671 51.198
S+R (1k) 0.360 4.081 8.940 10.586 15.183 35.000
S+A (1k,ammp) 0.029 1.815 4.055 4.912 7.318 20.298
S+A (1k,equake) 0.181 4.132 7.385 8.064 11.202 20.825
S+A (1k,mesa) 0.170 5.736 10.775 10.810 15.025 33.129

Table 4. Summary of performance prediction error with specified error minimizing sample and region sizes.

Figure 4. Empirical CDF of prediction error with error minimizing sample and region sizes. Equake achieves median accuracy and is plotted
for S+A (L). Prediction results for S+A (R).

• Baseline (B): Model specified in Section 4 without variance
stabilization and formulated with a naive subset of nB < n
observations (e.g. first 1,000 obtained).

• Variance Stabilized (S): Model specified with a square-root
transformation on the response and formulated with a naive
subset of nS < n observations.

• Regional (S+R): Model is reformulated for each query by spec-
ifying a naive subset of nS+R < n observations. These ob-
servations are further reduced to include the rS+R < nS+R

designs with microarchitectural configurations most similar
to the predictive query. We refer to rS+R as the region size.
Similarity is quantified by the normalized euclidean distance
between two vectors of architectural parameter values, d =qPp

i=1 |1− bi/ai|2.

• Application-Specific (S+A): We use a new set of nA = 4, 000
of observations for varying microarchitectural configurations,
but a fixed benchmark. An application-specific model is ob-
tained by eliminating application-specific predictors from the
general model and reformulating the model with a naive subset
of nS+A < nA. We consider S+A models for six benchmarks:
ammp, applu, equake, gcc, gzip, and mesa.

5.2 Performance Prediction
Table 4 summarizes model predictive accuracy in terms of percent-
age error, 100∗|ŷi−yi|/yi. Each model is presented with error min-
imizing sample and region sizes. We present the ammp, equake, and
mesa application-specific models that achieve the greatest, median,
and least accuracy, respectively. Variance stabilization reduces me-
dian error from 13.1 to 10.9 percent and regional or application-
specific models may further reduce median error from 10.9 to 8.9 or

4.1 percent, respectively. Application-specific models predict per-
formance most accurately with median error ranging from 4.1 to
10.8 percent. The spread between the mean and median suggest a
number of outliers.

Figure 4L plots the empirical cumulative distribution (CDF) of
prediction errors, quantifying the number of predictions with less
than a particular error. The legend specifies the accuracy maximiz-
ing sample size for each model. The best performance models are
application-specific. The equake-specific model is a representative
S+A model, achieving the median accuracy over the six bench-
marks we consider. 70 and 90 percent of equake predictions have
less than 10 and 15 percent error, respectively. The flattening CDF
slopes also indicate the number of outliers decrease with error.

Figure 4R considers absolute accuracy by plotting observed
and predicted performance for each point in the validation set.
Although predictions trend very well with actual observations, the
figure suggests slight systematic biases. The model tends to over-
estimate performance in the range of [0.3,0.5] BIPS. This bias
is likely due to imperfect normality of the residuals. The normal
distribution of residuals is an underlying assumption to regression
modeling. We initially found a significant deviation from normality
and attempted a correction with a square-root transformation of
the response variable. This transformation significantly reduced the
magnitude of, but did not eliminate, the normality deviations [8].
Other transformations on the response or predictors may further
mitigate these biases.

5.3 Performance Sensitivity Analyses
Although 4,000 observations are available for model formulation,
the accuracy maximizing models use at most 2,000 observations
to determine regression coefficients. We performed a sensitivity
analysis for both regional and application-specific models. The

Figure 5. S+A Performance Model Sensitivity: Varying bench-
marks.

regional model, with the region and sample size, has two free
parameters. We find regional model accuracy generally insensitive
to region size rS+R, only observing a few smaller outlier errors
with smaller region sizes. Similarly, larger sample sizes (nS+R >
2, 500) reduce the magnitude of outlier errors. Larger sample sizes
increase observation density in the design space and enable tighter
regions around a predictive query, thereby improving accuracy.
There is little additional benefit from increasing the sample size
beyond 3,000 [8].

For application-specific models, increasing nS+A from 1,000
to 2,500 in increments of 500 provides no significant accuracy im-
provements. We also consider the sensitivity of application-specific
models to benchmark differences in Figure 5. While the ammp-
specific model performs particularly well with 91 percent of its pre-
dictions having less than 10 percent error, the mesa-specific model
is least accurate with 47 percent of its predictions having less than
10 percent error and a single outlier having more than 30 percent
error. The differences in accuracy across benchmarks may result
from using the same predictors deemed significant for an average
of all benchmarks and simply refitting their coefficients to obtain
models for each benchmark. Predictors originally dropped/retained
may become significant/insignificant when a particular benchmark,
and not all benchmarks, is considered.

5.4 Power Prediction
The power model uses the performance model specification, re-
placing only the response variable. Such a model recognizes sta-
tistically significant architectural parameters for performance pre-
diction are likely also significant for power prediction. The power
model also recognizes an application’s impact on dynamic power
is a function of its microarchitectural resource utilization.

Table 5 summarizes the predictive accuracy of each power
model. Variance stabilization has a significant impact on accu-
racy, reducing median error from 22.1 to 9.3 percent. Application-
specific power modeling, with a median error between 10.3 and
11.3 percent, does not contribute significantly to accuracy. Re-
gional power modeling achieves the greatest accuracy with only
4.3 percent median error.

Figure 6L plots the empirical CDF’s of power prediction er-
rors, emphasizing the differences in regional and application-
specific modeling. Variance stabilization provides the first signifi-
cant reduction in error and regional modeling provides the second.
Application-specific modeling appears to have no impact on overall

accuracy. The most accurate regional model achieves less than 10
percent error for nearly 90 percent of its predictions. The maximum
error of 24.5 percent appears to be an outlier as 96 percent of pre-
dictions have less than 15 percent error. Again, the flattening CDF
slopes also indicate the number of outliers decrease with error.

Figure 6R demonstrates very good absolute accuracy, especially
for low power configurations less than 30 watts. The magnitude of
prediction errors tend to increase with power and is most notable
for high-power configurations greater than 100 watts. Configura-
tions in the 100 watt region are dominated by deep pipelines for
which power scales quadratically. This region in the design space
contains relatively few configurations, all of which are leveraged
for prediction in the regional model. Regions formed at the bound-
aries of the design space are often constrained by the bias toward
configurations away from the boundary and, hence, produce a bias
toward more conservative estimates.

5.5 Power Sensitivity Analyses
Like the performance models, we find application-specific power
models show no sensitivity to the sample size nS+A. The application-
specific power models are also insensitive to the benchmark chosen
[8]. In contrast, Figure 7L suggests region size rS+R affects pre-
dictive ability. As the region size decreases from 4,000 to 1,000
in increments of 1,000, the model becomes increasingly localized
around the predictive query. This locality induces shifts in the er-
ror distribution toward the upper left quadrant of the plot such that
a larger percentage of predictions has smaller errors. Similarly,
Figure 7R indicates the sample size nS+R from which the region
is drawn influences accuracy. As the sample size increases from
1,000 to 4,000, outlier error is progressively reduced from a max-
imum of 38 percent to a maximum of 25 percent. As with region
size, we see shifts in the error distribution toward the upper left
quadrant. Larger sample sizes increases observation density and
enables tighter regions around a query.

5.6 Performance and Power Comparison
Compared against performance models, power models realize
larger gains from variance stabilization. Although the best perfor-
mance and power models achieve comparable median error rates of
4 to 5 percent, the source of accuracy gains are strikingly different.
The greatest accuracy gains in performance modeling arise from
eliminating application variability (S to S+A). Given a particular
architecture, performance varies significantly across applications
depending on its source of bottlenecks. Keeping the application
constant in the model eliminates this variance. Regional modeling
is relatively ineffective since application performance is dominated
by its interaction with the microarchitecture and not the microar-
chitecture itself.

In contrast, power models are best optimized by specifying re-
gions around each predictive query (S to S+R), thereby reducing
microarchitectural variability. This is especially true for high power
ranges in which power tends to scale quadratically with aggres-
sive deeper pipelines, but linearly for more conservative configura-
tions. Compared to regional performance models, regional power
models are much more sensitive to region and sample sizes, prob-
ably because the regional optimization is much more effective for
power prediction. Application-specific models add little accuracy
since architectural configurations are primary determinants in un-
constrained power. Power scaling effects for application-specific
resource utilization are relatively small. Agressive clock gating,
power gating, or DVFS techniques will likely increase the signifi-
cance of application-specific predictors in power prediction. Com-
bining the approaches of application-specific and regional model-
ing may capture these effects.

Model Min 1st-Q Median Mean 3rd-Q Max
B (1k) 0.252 8.381 22.066 39.507 55.227 244.631
S (2k) 0.168 3.796 9.316 13.163 21.849 45.004
S+R (1k) 0.076 2.068 4.303 5.6038 8.050 24.572
S+A (2k,ammp) 0.117 5.109 10.753 12.672 17.508 39.651
S+A (2k,equake) 0.112 4.806 11.332 13.190 19.141 44.429
S+A (2k,mesa) 0.021 5.150 10.316 13.491 20.233 45.158

Table 5. Summary of power prediction error with specified error minimizing sample and region sizes.

Figure 6. Empirical CDF of prediction errors with error minimizing sample and region sizes (L). Prediction results for S+R (R).

Figure 7. S+R Power Model Sensitivity: Varying rS+R with fixed sample size nS+R = 4, 000 (L). Varying nS+R with fixed region size
rS+R = 1, 000 (R).

6. Related Work
Ipek, et al., consider predicting performance of memory, core and
CMP design spaces with artificial neural networks (ANN) [3].
ANN’s are automated and do not require statistical analyses. Train-
ing implements gradient descent to optimize network edge weights
and prediction requires evaluation of nested weighted sums of non-
linear sigmoids. Leveraging statistical significance testing during
model formulation, regression may be more computationally effi-
cient. Training and prediction require numerically solving and eval-
uating linear systems. Furthermore, we perform regression for a
substantially larger design space.

6.1 Statistical Significance Ranking
Joseph, et al., derive performance models using stepwise regres-
sion, an automatic iterative approach for adding and dropping pre-
dictors from a model depending on measures of significance [6].
Although commonly used, stepwise regression has several signifi-
cant biases cited by Harrell [4]. In contrast, we use domain-specific
knowledge of microarchitectural design to specify non-linear ef-
fects and interaction between predictors. Furthermore, the authors
consider only two values for each predictor and do not predict per-
formance, using the models only for significance testing.

Yi, et al., identify statistically significant processor parameters
using Plackett-Burman design matrices [15]. Given these critical
parameters, they suggest fixing all non-critical parameters to rea-
sonable constants and performing more extensive simulation by
sweeping a range of values for the critical parameters. We use vari-
ous statistical techniques to identify significant parameters (Section
4), but instead of performing further simulation, we rely on regres-
sion models based on these parameters to explore the design space.

6.2 Synthetic Traces
Eeckhout, et al., have studied statistical simulation in the context of
workloads and benchmarks for architectural simulators [2]. Nuss-
baum, Karkhanis, and Smith have examined similar statistical ap-
proaches for simulating superscalar and symmetric multiprocessor
systems [11, 7]. Both researchers claim detailed microarchitecture
simulations for specific benchmarks are not feasible early in the
design process. Instead, benchmarks should be profiled to obtain
relevant program characteristics, such as instruction mix and data
dependencies between instructions. A smaller synthetic benchmark
is then constructed with similar characteristics.

The statistical approach we propose and the approaches pro-
posed by Eeckhout and Nussbaum are fundamentally different. In-
troducing statistics into simulation frameworks reduces accuracy in
return for gains in speed and tractability. While Eeckhout and Nuss-
baum suggest this trade-off for simulator inputs (i.e. workloads),
we propose this trade-off for simulator outputs (i.e. performance
and power results).

7. Conclusions and Future Work
We derive and validate performance and power regression models.
Such models enable computationally efficient statistical inference,
requiring the simulation of only 1 in 5 million points of a large de-
sign space while achieving median error rates as low as 4.1 percent
for performance and 4.3 percent for power. Whereas application-
specific models are most accurate for performance prediction, re-
gional models are most accurate for power prediction.

Given their accuracy, our regression models may be applied
to specific parameter studies. The computational efficiency of ob-
taining predictions also suggest more aggressive studies previously
not possible via simulation. We use the same model specification
for both performance and power. Similarly, applictation-specific
models contain the same predictors regardless of benchmark. Fine-

grained model customization would require additional designer ef-
fort, but may improve accuracy. Techniques in statistical inference
are necessary to efficiently handle data from large scale simula-
tion and are particularly valuable when archives of observed per-
formance or power data are available.

Acknowledgments
We thank Patrick Wolfe at Harvard University for his valuable feed-
back regarding our regression strategies. This work is supported by
NSF grant CCF-0048313 (CAREER), Intel, and IBM. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation, Intel or IBM.

References
[1] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. G. Emma,

and M. G. Rosenfield. New methodology for early-stage,
microarchitecture-level power-performance analysis of microproces-
sors. IBM Journal of Research and Development, 47(5/6), Oct/Nov
2003.

[2] L. Eeckhout, S. Nussbaum, J. Smith, and K. DeBosschere. Statistical
simulation: Adding efficiency to the computer designer’s toolbox.
IEEE Micro, Sept/Oct 2003.

[3] E.Ipek, S.A.McKee, B. de Supinski, M. Schulz, and R. Caruana.
Efficiently exploring architectural design spaces via predictive
modeling. In ASPLOS-XII: Architectural support for programming
languages and operating systems, October 2006.

[4] F. Harrell. Regression modeling strategies. Springer, New York, NY,
2001.

[5] V. Iyengar, L. Trevillyan, and P. Bose. Representative traces for
processor models with infinite cache. In Symposium on High
Performance Computer Architecture, February 1996.

[6] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis.
In Symposium on High Performance Computer Architecture, Austin,
Texas, February 2006.

[7] T. Karkhanis and J. Smith. A first-order superscalar processor model.
In International Symposium on Computer Architecture, June 2004.

[8] B. Lee and D. Brooks. Regression modeling strategies for microar-
chitectural performance and power prediction. Technical Report
TR-08-06, Harvard University, March 2006.

[9] B. Lee and D. Brooks. Statistically rigorous regression modeling
for the microprocessor design space. In ISCA-33: Workshop on
Modeling, Benchmarking, and Simulation, June 2006.

[10] M. Moudgill, J. Wellman, and J. Moreno. Environment for powerpc
microarchitecture exploration. IEEE Micro, 19(3):9–14, May/June
1999.

[11] S. Nussbaum and J. Smith. Modeling superscalar processors via
statistical simulation. In International Conference on Parallel
Architectures and Compilation Techniques, Barcelona, Sept 2001.

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 2002.

[13] C. Stone. Comment: Generalized additive models. Statistical Science,
1:312–314, 1986.

[14] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical
sampling. In International Symposium on Computer Architecture,
June 2003.

[15] J. Yi, D. Lilja, and D. Hawkins. Improving computer architecture
simulation methodology by adding statistical rigor. IEEE Computer,
Nov 2005.

