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Abstract

Regression models enhance existing techniques in de-
tailed microarchitectural simulation by reducing the num-
ber of required simulations and using simulation data more
efficiently to identify trends and trade-offs. We present a rig-
orous derivation of such models for microprocessor perfor-
mance and power prediction, emphasizing the need to apply
domain-specific knowledge when performing statistical in-
ference. In particular, we propose sampling observations
uniformly at random from a large design space, discuss ap-
proaches for identifying statistically significant predictors,
and detail strategies for effectively modeling predictor in-
teraction and non-linearity. The resulting models enable
computationally efficient statistical inference, requiring the
simulation of only 1 in every 5 million points of a joint
microarchitecture-application design space while achieving
median prediction error rates as low as 4.1 percent for per-
formance and 4.3 percent for power.

1 Introduction

Although cycle-accurate simulators provide detailed insight
into application performance on a wide range of micropro-
cessor configurations, they are computationally expensive
and cannot be used to effectively explore a large design
space. The design space under consideration is often ar-
tificially constrained to accommodate the costs of simula-
tion, leading to narrowly defined studies and conclusions
that may not generalize. This is a fundamental challenge
in simulator-based microarchitectural research that will be-
come increasingly severe as research shifts toward multi-
threaded, multi-core architectures. Introducing statistical
inference into simulation frameworks modestly reduces de-
tail for substantial gains in speed and tractability.

Techniques in statistical inference and machine learning
have become increasingly popular for approximating solu-
tions to intractable problems. These approaches typically

require an initial set of data for model formulation or train-
ing. The model responds to predictive queries by leveraging
trends and correlations in the original data set to perform
statistical inference. Regression modeling follows this pre-
dictive paradigm in a relatively cost effective manner. Once
domain-specific knowledge is used to specify predictors of
a response, formulating the model from observed data re-
quires solving a system of linear equations and predicting
the response requires evaluating a linear equation.

We survey applied statistical regression theory in Sec-
tion 2. In Section 3, we draw from the statistical treatment
of missing data to propose sampling uniformly at random
from a large design space. We apply this statistical theory
to demonstrate a rigorous approach to deriving regression
models in Section 4 that includes (1) association testing,
(2) variable clustering, (3) assessing strength of response-
predictor relationships, and (4) significance testing with F-
tests, to ensure statistically significant parameters are used
as predictors. We also validate underlying regression as-
sumptions, mitigating deviations with variance stabilizing
transformations.

The following summarizes the results of Section 5 from
four different performance and power regression models
formulated with 4,000 samples drawn from a design space
with nearly 1 billion microarchitectural configurations and
22 benchmarks:

• Performance Prediction: Application-specific mod-
els predict performance with a median error as low as
4.1 percent. 50 to 90 percent of predictions achieve
error rates of less than 10 percent depending on the ap-
plication. Maximum outlier error is 20 to 33 percent.

• Power Prediction: Regional models, leveraging only
the most relevant samples, predict power with a me-
dian error as low as 4.3 percent. 90 percent of predic-
tions achieve error rates of less than 10 percent and 96
percent of predictions achieve error rates of less than
15 percent. Maximum outlier error is 24.5 percent.



Collectively, these results suggest significant potential in
accurate and efficient statistical inference for design space
exploration via regression models. This paper details the
model derivation in a recent technical report [1].

2 Regression Theory and Techniques

For a large universe of interest, suppose we have a subset
of n observations for which values of the response and pre-
dictor variables are known. Let y = y1, . . . , yn denote the
vector of observed responses. For a particular point i in this
universe, let yi denote its response and xi = xi,1, . . . , xi,p

denote its p predictors. These variables are constant for a
given point in the universe. Let β = β0, . . . , βp denote
the corresponding set of regression coefficients used in de-
scribing the response as a linear function of predictors plus
a random error ei as shown in Equation (1). Mathemati-
cally, βj may be interpreted as the expected change in yi

per unit change in the predictor variable xi,j . The ei are
independent random variables with zero mean and constant
variance; E(ei) = 0 and V ar(ei) = σ2.

yi = βxi + ei = β0 +
p∑

j=1

βjxij + ei (1)

The method of least squares is commonly used to iden-
tify the best-fitting model for a set of observations by de-
termining β to minimize S(β), the sum of squared devia-
tions between the predicted responses given by the model
and the actual observed responses. S(β) may be minimized
by solving a system of p + 1 partial derivatives of S with
respect to βj , j ∈ [0, p]. The solutions to this system, β̂j ,
are estimates of the coefficients in Equation (1).

S(β0, . . . , βp) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(2)

2.1 Predictor Interaction

In some cases, the effect of two predictors xi,1 and xi,2

on the response cannot be separated; the effect of xi,1 on yi

depends on the value of xi,2 and vice versa. This interaction
may be modeled by constructing a third predictor xi,3 =
xi,1xi,2 to obtain yi = β0+β1xi,1+β2xi,2+β3xi,1xi,2+ei.
Modeling predictor interaction in this manner makes it dif-
ficult to interpret β1 and β2 in isolation. After simple al-
gebraic manipulations, we find β1 + β3xi,2 is the expected
change in yi per unit change in xi,1 for a fixed xi,2. The dif-
ficulties of these explicit interpretations of β for more com-
plex models lead us to prefer more indirect interpretations
of the model via its predictions.

2.2 Non-Linearity

Basic linear regression models often assume the re-
sponse behaves linearly in all predictors. This assump-
tion is often too restrictive and several techniques for cap-
turing non-linearity may be applied. The most simple of
these techniques is a polynomial transformation on predic-
tors suspected of having a non-linear correlation with the re-
sponse. However, polynomials have undesirable peaks and
valleys. Furthermore, a good fit in one region of the pre-
dictor’s values may unduly impact the fit in another region
of values. For these reasons, we consider splines a more
effective technique for modeling non-linearity.

Spline functions are piecewise polynomials used in curve
fitting. The function is divided into intervals defining multi-
ple different continuous polynomials with endpoints called
knots. The number of knots can vary depending on the
amount of available data for fitting the function, but more
knots generally leads to better fits.

Linear splines may be inadequate for complex, highly
curved relationships. Splines of higher order polynomials
may offer better fits and cubic splines have been found par-
ticularly effective [5]. Unlike linear splines, cubic splines
may be made smooth at the knots by forcing the first and
second derivatives of the function to agree at the knots.
Cubic splines may have poor behavior in the tails before
the first knot and after the last knot [12]. Restricted cubic
splines that constrain the function to be linear in the tails are
often better behaved.

The choice and position of knots are variable parame-
ters when specifying non-linearity with splines. Stone has
found the location of knots in a restricted cubic spline to be
much less significant than the number of knots [12]. Placing
knots at fixed quantiles of a predictor’s distribution is a good
approach in most datasets, ensuring a sufficient number of
points in each interval.

In practice, five knots or fewer are generally sufficient for
restricted cubic splines [12]. Fewer knots may be required
for small data sets. As the number of knots increases, flex-
ibility improves at the risk of over-fitting the data. In many
cases, four knots offer an adequate fit of the model and is a
good compromise between flexibility and loss of precision
from over-fitting [5].

2.3 Significance Testing

Given a model, we may wish to assess the significance
of a group of terms simultaneously. Consider a model y =
β0 + β1x1 + β2x2 + β3x1x2 + e. Testing the significance
of x1 requires testing the null hypothesis H0 : β1 = β3 = 0
with two degrees of freedom.

The F-test compares two nested models (e.g. a full
model and a subset of the full model) using their multiple



correlation statistic R2. Equation (3) computes this statistic
by computing regression error (SSE) as a fraction of to-
tal error (SST ) where yi and ŷi are the true and modeled
response, respectively. R2 quantifies the percentage of vari-
ance in the response captured by the predictors.

R2 = 1− SSE

SST
= 1−

∑n
i=1(yi − ŷi)2∑n

i=1(yi − 1
n

∑n
i=1 yi)2

(3)

Given R2 for the full model and R2
∗ for the smaller

model, define the F-statistic by Equation (4) where p is
the number of coefficients in the full model excluding the
intercept β0 and k is the difference in degrees of freedom
between the models.

Fk,n−p−1 =
R2 −R2

∗
k

× n− p− 1
1−R2

(4)

The p-value is defined as 2P (X≥|c|) for a random vari-
able X and a constant c. In our analyses, X follows an
F-distribution with parameters k, n − p − 1 and c is the F-
statistic. The p-value is the probability an F-statistic value
greater than or equal to the value actually observed would
occur by chance if the null hypothesis were true. If this
probability were extremely small, either the null hypothesis
holds and an extremely rare event has occurred or the null
hypothesis is false. Thus, a small p-value for for a F-test of
two models casts doubt on the null hypothesis and suggests
the additional predictors in the larger model are statistically
significant in predicting the response.

2.4 Assessing Fit

A model’s fit is usually assessed by examining residuals
and the degree to which regression error contributes to the
total error. Residuals, defined in Equation (5), are examined
to validate three assumptions: (1) the residuals are not cor-
related with any predictor variable or the response predicted
by the model, (2) the randomness of the residuals should be
the same for all predictor and response values, and (3) the
residuals have a normal distribution. The first two assump-
tions are typically validated by plotting residuals against
each of the predictors and predicted responses since such
plots may reveal systematic deviations from randomness.
The third assumption is usually validated by a quantile-
quantile plot in which the quantiles of one distribution are
plotted against another. Practically, this means ranking the
residuals ê(1), . . . , ê(n), obtaining n ranked samples from
the normal distribution s(1), . . . , s(n), and producing a scat-
ter plot of (ê(i), s(i)) that should appear linear if the residu-
als follow a normal distribution.

êi = yi − β̂0 −
p∑

j=0

β̂jxij (5)

Additionally, fit may be assessed by the R2 statistic from
Section 2.3. Larger values of R2 suggests better fits for the
observed data. However, a value too close to R2 = 1 may
indicate over-fitting, a situation in which the worth of the
model is exaggerated and future observations will not agree
with the model’s predicted values. Over-fitting typically
occurs when too many predictors are used to estimate rela-
tively small data sets. Studies in which models are validated
on independent data sets have shown a regression model is
likely to be reliable when the number of predictors p is less
than n/20, where n is the sample size [5].

2.5 Prediction

Evaluating Equation (6) for a given xi will give the ex-
pectation of yi and, equivalently, an estimate ŷi for yi. This
result follows from observing the additive property of ex-
pectations, the expectation of a constant is the constant, and
the random errors have mean zero.

ŷi = E
[
yi

]
= E

[
β0 +

p∑
j=1

βjxij

]
+ E

[
ei

]
= β0 +

p∑
j=1

βjxij (6)

3 Experimental Methodology

We use Turandot, a generic and parameterized, out-of-
order, superscalar processor simulator [9, 10]. Turandot
is enhanced with PowerTimer to obtain power estimates
based on circuit-level power analyses and resource utiliza-
tion statistics [2, 3]. The modeled baseline architecture is
similar to the current POWER4/POWER5.

We use R, a free software environment for statistical
computing, to script and automate the statistical analyses
described in Section 2 [13]. Within this environment, we
use the Hmisc and Design packages from Harrell [5].

We consider SPECjbb, a Java server benchmark, and 21
compute intensive benchmarks from SPEC2k (ammp, ap-
plu, apsi, art, bzip2, crafty, equake, facerec, gap, gcc, gzip,
lucas, mcf, mesa, mgrid, perl, sixtrack, swim, twolf, vpr,
wupwise). We report experimental results based on Pow-
erPC traces of these benchmarks. The SPEC2k traces were
sampled from the full reference input set to obtain 100 mil-
lion instructions per benchmark program. Systematic vali-
dation was performed to compare the sampled traces against
the full traces to ensure accurate representation [6].



Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width insn b/w 4,8,16 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size log2(entries) 7::1::11 5
S6 D-L1 Cache d-L1 sache size log2(entries) 6::1::10 5
S7 L2 Cache L2 cache size log2(entries) 11::1::15 5

L2 cache latency cycles 6::2::14
S8 Control Latency branch latency cycles 1,2 2
S9 FX Latency ALU latency cycles 1::1::5 5

FX-multiply latency cycles 4::1::8
FX-divide latency cycles 35::5::55

S10 FP Latency FPU latency cycles 5::1::9 5
FP-divide latency cycles 25::5::45

S11 L/S Latency Load/Store latency cycles 3::1::7 5
S12 Memory Latency Main memory latency cycles 70::5::115 10

Table 1. Range and grouping of microarchitectural parameters. Parameters within a group are varied
together. A range of i::j::k denotes a set of possible values from i to k in steps of j.

3.1 Configuration Sampling

We report experimental results for sample sizes of up to
n = 4, 000 samples. Each sampled configuration is simu-
lated with a benchmark also chosen uniformly at random,
mapping predictors (configuration’s parameter values) to
observed responses (performance and power).

The approach to obtaining observations from a large mi-
croprocessor design is critical to efficient formulation of re-
gression models. Table 1 identifies twelve groups of pa-
rameters varied simultaneously. Parameters within a group
are varied together to avoid fundamental design imbalances.
The range of values considered for each parameter group
i is specified by a set of values, Si. The Cartesian prod-
uct of these sets, S =

∏12
i=1 Si, defines the entire design

space. The cardinality of this product is |S| =
∏12

i=1 |Si| =
9.38E + 08, or approximately one billion, design points.
Fully assessing the performance for each of the 22 bench-
marks on each configuration further scales the number of
simulations to well over 20 billion.

Traditional techniques of sweeping design parameter
values to consider all points in a large design space is im-
practical despite continuing research to reduce simulation
costs via trace sampling [4, 11]. Although these techniques
reduce per simulation costs by a constant factor, they do not
reduce the number of required simulations. Other studies
have reduced these sets to an upper and lower bound (|Si| =
2), but this approach masks performance and power trends
between the bounding values and precludes any meaningful
statistical inference or prediction [7, 14]. Thus, sampling

must occur in the design space to control the exponentially
increasing number of design points as the number of param-
eter sets and their cardinality increase.

We propose sampling configurations uniformly at ran-
dom (UAR) from S. This approach provides observations
from the full range of parameter values and enables high-
resolution identification of trends and trade-offs. Further-
more, sampling UAR does not bias the observations toward
any particular configuration. From the law of large num-
bers, 1 the expected number of samples with each configu-
ration value is the same. Our approach is similar to Monte
Carlo methods, which generate suitable random samples
and observe their frequency distribution. Although we per-
form random sampling, we formulate non-parametric re-
gression models instead of analyzing frequency.

3.2 Treatment of Missing Data

Suppose we treat the configurations for which responses
are not observed as missing data from a hypothetical data
set with all |S| observations. Sampling UAR ensures the
observations are missing completely at random (MCAR).
Under MCAR, data elements are missing for reasons un-
related to any characteristics or responses of the element.
In the microarchitectural context, the fact a design point is
unobserved is unrelated to the performance, power, or con-
figuration of the design.

In contrast, informative missing describes the case when

1Theorems stating the difference between expected and actual values
approaches zero as the number value-generating trials increases



Performance
instruction throughput (bips)

L1 Cache
I-L1 misses D-L1 misses
I-L2 misses D-L2 misses

Branches
branch rate branch stalls

branch mispredictions
Stalls

inflight cast
dmissq reorderq
storeq rename
resv

Table 2. Application Predictors

Processor Core
Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy
L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 32KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions
Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 3. Baseline Architecture.

elements are more likely to be missing if their responses
are systematically higher or lower. For example, simulator
limitations may prevent data collection for very low per-
formance architectures and the “missingness” of a configu-
ration is correlated with its performance. In this case, the
“missingness” is non-ignorable and we must formulate an
additional model to predict whether a design point can be
observed by the simulator. By sampling UAR from the de-
sign space, we ensure the observations are MCAR and avoid
such modeling complications.

4 Model Derivation

We consider 12 architectural predictors in Table 1. We
also consider 15 application-specific predictors drawn from
an application’s characteristics (Table 2) when executing on
a baseline configuration (Table 3). These characteristics
may be significant predictors of performance when inter-
acting with architectural predictors. For example, the per-
formance effect of increasing the data L1 cache will have
a larger impact on applications with a high data L1 miss
rate. Such potential interactions suggest both architectural
and application-specific predictors are necessary.
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Figure 1. Variable Clustering

4.1 Variable Clustering

Variable clustering reveals key predictor interactions.
Figure 1 presents the results of hierarchical variable cluster-
ing based on squared Spearman rank correlation coefficients
where a larger ρ2 indicates a greater correlation between
variables. If over-fitting is a concern, redundant predictors
may be eliminated within a cluster.

L1 and L2 misses due to instruction cache accesses are
highly correlated. We found the absolute number of L2
cache misses from the L1 instruction cache accesses negli-
gible and eliminate il2miss rate. Similarly, the branch
rate is highly correlated with the number of branch induced
stalls and we eliminate br stall.

Pipeline depth is highly correlated with latency since
we scale the original functional unit latencies with depth
[8]. Including both predictors enables us to differentiate
the performance impact of individual functional unit latency
changes from the global latency changes as depth varies.
Similarly, we keep both d-L1 cache miss rate and the base-
line performance predictors to differentiate cache perfor-
mance from global performance.

4.2 Performance Associations

Plotting each of the predictors against the response
may reveal particularly strong associations or identify non-
linearities. We stratify each predictor into four groups such
that each group covers equally sized intervals of predictor
values and plot the mean of each group’s performance (Fig-
ures 2–3). The numbers on the left axis specify each group’s
range and those on the right axis specify the number of ob-
servations within the range. The figures are effectively sum-
marized scatterplots of predictors versus performance mea-
sured in billions of instructions per second (bips).

For architectural predictors, pipeline depth and width
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Figure 2. Predictor Association. (1) Pipeline dimensions, (2) unscaled latencies, (3) memory hierar-
chy, (4) application baseline branching.
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Figure 3. Predictor Association. Application (1,2) stalls, (3) cache behavior, (4) baseline performance.



are strong, monotonic factors (Figure 2.1). We also ob-
serve diminishing marginal returns on performance from in-
creasing register file size. The number of physical registers
may be a significant, but non-linear, predictor. The num-
ber of reservation stations seems to have limited association
with performance. The performance-latency relationships
are counter-intuitive as performance increases with latency
(Figure 2.2). This trend is an artifact of latency scaling as
pipeline depth varies; deeper pipelines increase instruction
throughput but also increase latencies measured in cycles.
Lastly, we find a positive correlation between L2, but not
L1, cache size and performance (Figure 2.3).

For application-specific predictors, branching behavior
exhibits no obvious trends (Figure 2.4). Roughly half the
stall characteristics (dmissq, cast, reorderq, resv)
have monotonic relationships with performance (Figure
3.1,Figure 3.2). Although instruction L1 miss rate seems
to have limited predictive ability, probably due to the small
number of such misses in absolute terms, data cache access
patterns are good predictors of performance (Figure 3.3).
Lastly, a benchmark’s observed sample and baseline perfor-
mance are highly correlated (Figure 3.4).

4.3 Strength of Marginal Relationships

Figure 4 plots the non-monotonic generalization of the
Spearman rank correlation coefficient for each of the pre-
specified predictor variables and performance. This infor-
mation will guide our choice in the number of spline knots
and predictor interactions. A lack of fit for predictors with
higher ρ2 will have a greater negative impact on perfor-
mance prediction. For architectural predictors, a lack of fit
will be more consequential (in descending order of impor-
tance) for width, depth, physical registers, functional unit
latencies, cache sizes, and reservation stations. Application-
specific baseline performance is the most significant predic-
tor. Collectively, application-specific predictors are most
highly correlated with performance indicating the applica-
tion’s interactions with the microarchitecture are primary
determinants of performance. Microarchitectural predictors
considered in isolation are less significant.

4.4 Model Specification

We model non-linearities for architectural predictors
with restricted cubic splines. The strength of predictors’
marginal relationships with performance in Figure 4 guides
our choice in the number of knots. Predictors with stronger
relationships will use 4 knots (e.g. depth, registers) and
those with weaker relationships will use 3 knots (e.g. cache
sizes, reservation stations). Despite their importance, width
and latencies do not take a sufficient number of unique val-
ues to apply splines and we consider their linear effects

Figure 4. Predictor Strength

only. With the exception of baseline performance for which
we assign 5 knots, we do not model non-linearities for
application-specific predictors to control model complexity.

We draw on domain-specific knowledge to specify in-
teractions. We expect pipeline width to interact with reg-
ister file and queue sizes. Pipeline depth likely interacts
with cache sizes that impact hazard rates. We also expect
the memory hierarchy to interact with adjacent levels in
the memory hierarchy (e.g. L1 and L2 cache size inter-
action) and application-specific access rates. Interactions
with baseline performance account for changing marginal
returns in performance from changing resource sizes.

4.5 Model Refinement

Figure 5 plots residual quartiles for 40 groups, each with
100 observations, against median modeled performance
of each group, revealing significant correlations between
residuals and fitted values.2 Residuals are larger for the
smallest and largest fitted values. We apply a standard vari-
ance stabilizing square root transformation on performance
to reduce the magnitude of the correlations as shown in Fig-
ure 5. The resulting model predicts the square-root of per-
formance (i.e.

√
y instead of y). Variance stabilization also

cause residuals to follow a normal distribution more closely
as indicated by the linear trend in Figure 6.

In Table 4, we assess the significance of predictor p by
comparing, with F-tests, the initial model to a smaller model
with all terms involving p removed. Variables ctl lat,
stall inflight, and stall storeq appear insignif-

2Residuals are defined in Equation (5)



Figure 5. Residual Correlations

Figure 6. Residual Distribution

Predictor R2 − R2
∗ DF − DF∗ F-test P-value

depth* -6.2688 -60 24.72 < 2.2e-16
width* -6.4709 -19 80.58 < 2.2e-16
phys reg* -11.713 -11 251.95 < 2.2e-16
resv -0.0177 -2 2.10 0.1239
i-L1$ size* -0.0906 -11 1.9491 0.02941
d-L1$ size* -0.4206 -29 3.4322 1.629e-09
L2$ size* -5.4024 -45 28.412 < 2.2e-16
ctl lat -0.010 -1 2.3585 0.1247
fx lat* -2.4166 -1 571.92 < 2.2e-16
fp lat* -0.4383 -2 51.861 < 2.2e-16
mem lat* -0.5321 -1 125.89 < 2.2e-16
i-L1miss rate* -1.9947 -16 29.505 < 2.2e-16
d-L1miss rate* -1.5303 -19 19.061 < 2.2e-16
d-L2miss rate* -0.917 -14 15.502 < 2.2e-16
branch rate* -0.5629 -2 66.607 < 2.2e-16
branch mispred* -0.1231 -5 5.8246 2.293e-05
stall inflight -0.0005 -1 0.1205 0.7285
stall dmissq* -0.2938 -1 69.53 < 2.2e-16
stall cast* -0.1825 -1 43.198 5.61e-11
stall storeq -0.0028 -1 0.6684 0.4137
stall reorderq* -0.1033 -1 24.440 7.994e-07
stall resv* -0.1033 -1 24.440 7.944e-07
stall rename* -0.1033 -1 24.440 7.944e-07
base bips* -5.1509 -29 42.035 < 2.2e-16

Table 4. Predictor Significance Testing. * de-
notes inclusion in model.

icant. The high p-values for the F-test indicate these pre-
dictors do not significantly contribute to a better fit when
included to form a larger model and may be removed.

5 Model Evaluation

We use subsets of the n = 4, 000 random observations
to formulate regression models, referring to the cardinal-
ity of these sets as the sample size, denoted by n∗. Each
model may require different sample sizes to maximize ac-
curacy. We also obtain 100 additional random validation
samples for predictive queries. We compare and contrast
the predictive ability of four regression models, differing in
specification and data fit:

• Baseline (B): Model specified in Section 4 and formu-
lated with a naive subset of nB < n observations (e.g.
first 1,000 obtained).

• Variance Stabilized (S): Model specified with a vari-
ance stabilizing square-root transformation and formu-
lated with a naive subset of nS < n observations.

• Regional (S+R): Model is reformulated for each query
by specifying a naive subset of nS+R < n observa-
tions further reduced to include the rS+R < nS+R de-
signs with microarchitectural configurations most sim-
ilar to the predictive query. We refer to rS+R as the
region size. Similarity is quantified by the relative eu-



Figure 7. Empirical CDF of Performance (T)
and Power (B) Prediction Errors.

clidean distance between two vectors of parameter val-

ues, d =
√∑p

i=1 |1− bi/ai|2.

• Application-Specific (S+A): We use a new set of
nA = 4, 000 observations for varying configura-
tions, but a fixed benchmark, eliminating application-
specific predictors from the general model and refor-
mulating the model with a naive subset of nS+A < nA.
We consider six representative benchmarks (ammp,
applu, equake, gcc, gzip, mesa).

5.1 Performance Prediction

Figure 7T plots the empirical cumulative distribution
function (CDF) of prediction errors, specifying error min-
imizing sample sizes for each model in the legend. The
error distribution is a more effective measure of accuracy
when compared to the usually reported median and mean.
Variance stabilization reduces median error from 13.1 to
10.9 percent; regional or application-specific models fur-
ther reduce error. Application-specific models predict per-
formance with the greatest accuracy. The representative
equake-specific model achieves the median accuracy over
the six benchmarks we consider. 70 and 90 percent of
equake predictions have less than 10 and 15 percent errors,
respectively. The flattening CDF slopes indicate the num-
ber of outliers decrease with error. We found no significant
correlations between outliers and their configurations.

5.2 Power Prediction

The power model uses the performance model specifi-
cation, replacing only the response variable. Such a model
recognizes statistically significant architectural parameters
for performance prediction are likely also significant for
power prediction. Furthermore, an application’s impact
on dynamic power dissipation is a function of application-
specific microarchitectural resource utilization.

Figure 7B plots the empirical CDF’s of power predic-
tion errors, emphasizing the differences in regional and
application-specific modeling. Variance stabilization pro-
vides the first significant accuracy improvement, reducing
median error from 22.0 to 9.3 percent. Regional modeling
provides the second accuracy gain, reducing median error
from 9.3 to 4.3 percent. Application-specific modeling ap-
pears to have no impact on overall accuracy. The most ac-
curate regional model achieves less than 10 percent error
for nearly 90 percent of its predictions. The maximum er-
ror of 24.5 percent appears to be an outlier as 96 percent of
predictions have less than 15 percent error.

5.3 Performance and Power Comparison

Although the best performance and power models
achieve comparable median error rates, the source of ac-
curacy gains are strikingly different. The greatest accuracy
gains in performance modeling arise from eliminating ap-
plication variability (S to S+A). Given a particular archi-
tecture, performance varies significantly across applications
depending on its source of bottlenecks. Holding the appli-
cation constant eliminates this variance. Regional modeling
does not contribute much more to accuracy since applica-
tion performance is dominated by its interaction with the
microarchitecture and not the microarchitecture itself.

In contrast, power models are best optimized by spec-
ifying regions around each predictive query (S to S+R),
thereby reducing microarchitectural variability. This is
especially true for high power ranges since power tends
to scale quadratically with deeper pipelines and linearly
for shallower pipelines. Application-specific models add
little accuracy since architectural configurations and re-
source sizings are primary determinants in unconstrained
power. The effects of scaling unconstrained power to ob-
tain dynamic power dissipation as a function of application-
specific resource utilization may be relatively small.

6 Related Work

Yi, et al., identify significant microprocessor parameters
using Plackett-Burman designs. They suggest fixing non-
critical parameters to reasonable constants and performing



extensive simulation by sweeping a range of values for criti-
cal parameters. We ensure model predictors are statistically
significant, but instead of performing further simulation, we
rely on regression models to explore the design space.

Joseph, et al., derive performance models using stepwise
regression, an automatic iterative approach to adding and
dropping predictors from a model depending on measures
of significance [7]. Although commonly used, stepwise re-
gression has several problems cited by Harrell [5]. Further-
more, they consider only two values for each predictor and
do not predict performance, using the models only for sig-
nificance testing. In contrast, we leverage prior knowledge
of microarchitectural design to derive predictive models.

Eeckhout, et al., study statistical simulation for simpli-
fying workloads in architectural simulation [4]. Nussbaum,
et al., examine similar statistical superscalar and symmetric
multiprocessor simulation [11]. Both profile benchmarks to
obtain relevant program characteristics, such as instruction
mix and data dependencies between instructions, construct-
ing a smaller, synthetic benchmark with similar character-
istics. The statistical approach we propose and those pro-
posed by Eeckhout and Nussbaum are fundamentally dif-
ferent. Introducing statistics into simulation frameworks re-
duces accuracy in return for gains in speed and tractability.
While Eeckhout and Nussbaum suggest this trade-off for
simulator inputs (i.e., workloads), we propose this trade-off
for outputs (i.e., performance and power results).

7 Conclusions and Future Directions

Regression models enable computationally efficient sta-
tistical inference, requiring the simulation of only 1 in 5
million points in a joint microarchitecture-application de-
sign space while achieving median error rates as low as 4.1
percent for performance and 4.3 percent for power. Despite
a basic variance stabilizing transformation, our models pro-
duce non-random residuals. Different transformations on
the response and predictors may mitigate the resulting bias.
We use the same model specification for both performance
and power and for each application-specific model regard-
less of application. A rigorous derivation to specify dif-
ferent models for each metric would require additional de-
signer effort, but may improve accuracy.

Given their accuracy for random design points and low
computational costs of obtaining predictions, we may pur-
sue more aggressive design studies previously not possi-
ble via simulation. We also intend to compare regression
accuracy and costs to those of other statistical techniques,
such as machine learning and neural networks. Although
the specific techniques differ, statistical techniques for in-
ference are necessary to efficiently handle data from large
scale simulation and are particularly valuable when archives
of observed performance or power data are available.
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