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Microarchitectural Design Space

I Trend toward chip multiprocessors (CMP’s) with varying core designs
I Power 4, Pentium 4, UltraSPARC T1
I Tractably quantify trade-offs between core complexity, count
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Design Space Exploration

I Limitations of Existing Simulation Methodology
I Trace sampling, compression reduce per simulation costs
I Existing techniques do not reduce number of simulations
I Space size increases exponentially with parameter count
I Multi-threaded, multi-core simulations further constrained

I Prior Design Space Analyses
I Consider mp design points
I Vary one or two parameters at fine granularity
I Vary multiple parameters at coarse granularity
I Hold majority of parameters at constant values
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Simulation Paradigms

I Objectives
I Comprehensively understand microprocessor design space
I Selectively perform a modest number of simulations
I Efficiently leverage simulation data

I Random Configuration Sampling
I Sample points UAR from design space for simulation
I Controls exponential increase in design count

I Statistical Inference
I Reveals trends, trade-offs from sparse sampling
I Enables prediction for metrics of interest
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Statistical Inference

I Approach
I Models approximate solutions to intractable problems
I Requires initial data to train, formulate model
I Leverages correlations from initial data for prediction

I Regression Modeling
I Efficient formulation :: sample 1K of ≈1B, least squares
I Accurate inference :: 4− 7% median error
I Static accuracy :: no predictive training
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Model Formulation
I Notation

I n observations
I Response :: y = y1, . . . , yn

I Predictor :: xi = xi,1, . . . , xi,p

I Regression Coefficients :: β = β0, . . . , βp

I Random Error :: e = e1, . . . , en where ei ∼ N(0, σ2)
I Transformations :: f , g = g1, . . . , gp

I Model

f (yi) = βg(xi) + ei

= β0 +
p∑

j=1

βjgj(xij) + ei
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Predictor Interaction

I Modeling Interaction
I Suppose effects of predictors x1, x2 cannot be separated
I Construct predictor x3 = x1x2

y = β0 + β1x1 + β2x2 + β3x1x2 + ei

I Example
I Let x1 be pipeline depth, x2 be L2 cache size
I Performance impact of pipelining affected by cache size

Speedup =
Depth

1 + Stalls/Inst
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Predictor Non-Linearity

I Restricted Cubic Splines
I Divide predictor domain into intervals separated by knots
I Piecewise cubic polynomials joined at knots 1

I Higher order polynomials provide better fits

I Location of Knots
I Location of knots less important than number of knots
I Place knots at fixed predictor quantiles

I Number of Knots
I Flexibility, risk of over-fitting increases with knot count
I 5 knots or fewer are often sufficient
I 4 knots balances flexibility, over-fitting

1Stone [SS’86]
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Prediction

I Expected Response
I Suppose coefficients β, predictors’ xi,1, . . . , xi,p are known
I Expected response is weighted sum of predictor values

E
[
yi

]
= E

[
β0 +

p∑
j=1

βjxij

]
+ E

[
ei

]
= β0 +

p∑
j=1

βjxij

Benjamin C. Lee, David M. Brooks :: 18 June 2006 11 :: Workshop on Modeling, Benchmarking, and Simulation



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Experimental Methodology
Correlation Analysis
Model Specification

Outline
Motivation & Background

Simulation Challenges
Simulation Paradigms
Regression Theory

Model Derivation
Experimental Methodology
Correlation Analysis
Model Specification

Model Evaluation
Validation Approach
Performance
Power

Conclusion
Summary
Future Directions

Benjamin C. Lee, David M. Brooks :: 18 June 2006 12 :: Workshop on Modeling, Benchmarking, and Simulation



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Experimental Methodology
Correlation Analysis
Model Specification

Tools and Benchmarks

I Simulation Framework
I Turandot :: a cycle-accurate trace driven simulator
I PowerTimer :: power models derived from circuit analyses
I Baseline simulator models POWER4/POWER5 architecture

I Benchmarks
I SPEC2kCPU :: compute-intensive benchmarks
I SPECjbb :: Java server benchmark

I Statistical Framework
I R :: software environment for statistical computing
I Hmisc and Design packages2

2Harrell [Springer,’01]
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Configuration Sampling

I Design Space Size
I For i∈[1, p], Si defines possible values for parameter xi

I S =
∏p

i=1 Si defines design space
I |S| =

∏p
i=1 |Si| defines space size

I B defines set of benchmarks, |B| × |S| potential simulations
I |S| ≈ 109 and |B| = 22

I Sampling Uniformly at Random (UAR)
I Sample n = 4, 000 design points and benchmarks
I Unbiased observations from full range of parameter values
I Trends, trade-offs between parameters at fine granularity
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Predictors :: Microarchitecture
Set Parameters Measure Range |Si|

S1 Depth depth FO4 9::3::36 10
S2 Width width insn b/w 4,8,16 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size log2(entries) 7::1::11 5
S6 D-L1 Cache d-L1 sache size log2(entries) 6::1::10 5
S7 L2 Cache L2 cache size log2(entries) 11::1::15 5

L2 cache latency cycles 6::2::14
S8 Control Latency branch latency cycles 1,2 2
S9 FX Latency ALU latency cycles 1::1::5 5

FX-multiply latency cycles 4::1::8
FX-divide latency cycles 35::5::55

S10 FP Latency FPU latency cycles 5::1::9 5
FP-divide latency cycles 25::5::45

S11 L/S Latency Load/Store latency cycles 3::1::7 5
S12 Memory Latency Main memory latency cycles 70::5::115 10
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Predictors :: Application-Specific

I Application Characteristics
I Collect program characteristics on baseline architecture
I Baseline instruction throughput (BIPS)
I Cache access patterns (i-L1, d-L1, L2 miss rates)
I Branch patterns (branch frequency, mispredict rate)
I Sources of pipeline stalls (per queue stall histograms)

I Application Effects
I Characteristics are significant predictors when interacting

with microarchitectural predictors
I Example :: Impact of d-L1 cache affected by access rates
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Variable Clustering
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Strength of Marginal Relationships
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Regression Model Specification

I Interactions
I Pipeline width/depth interact with

I instruction bandwidth structures (queues, register file)
I cache hierarchy

I Cache hierarchy sizes interact with
I adjacent levels in hierarchy
I application-specific access rates

I Baseline performance interacts with resource sizings

I Restricted Cubic Splines
I Weaker relationships (latencies, caches, queues) :: 3 knots
I Stronger relationships (depth, registers) :: 4 knots
I Baseline application performance :: 5 knots

Benjamin C. Lee, David M. Brooks :: 18 June 2006 19 :: Workshop on Modeling, Benchmarking, and Simulation



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Validation Approach
Performance
Power

Outline
Motivation & Background

Simulation Challenges
Simulation Paradigms
Regression Theory

Model Derivation
Experimental Methodology
Correlation Analysis
Model Specification

Model Evaluation
Validation Approach
Performance
Power

Conclusion
Summary
Future Directions

Benjamin C. Lee, David M. Brooks :: 18 June 2006 20 :: Workshop on Modeling, Benchmarking, and Simulation



Motivation & Background
Model Derivation
Model Evaluation

Conclusion

Validation Approach
Performance
Power

Validation Approach
I Framework

I Formulate models with n∗ < n = 4, 000 samples
I Obtain 100 additional random samples for validation
I Quantify percentage error, 100 ∗ |ŷi − yi|/yi

I Model Variants
I Baseline (B): Model non-transformed response
I Variance Stabilized (S): Model square-root of response
I Regional (S+R): For each query, reformulate model with

samples most similarly configured to query

d =

[ p∑
i=1

(ai − bi

ai

)2
]1/2

I Application-Specific (S+A): Fix sample benchmarks
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Performance Prediction
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Power Prediction
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Performance-Power Comparison

I Performance Accuracy
I 7.4% median error for S+A model
I S+A reduces performance variance across applications
I S+R ineffective since application is primary determinant of

performance

I Power Accuracy
I 4.3% median error for S+R model
I S+R reduces power variance across configurations
I S+A ineffective since resource sizings are primary

determinants of power
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Summary

I Simulation Challenges
I Limited design space studies due to simulation costs
I Existing frameworks reduce per simulation costs only

I Regression Models
I Sampling :: 1K of ≈1B configurations UAR
I Specification :: correlation analyses
I Refinement :: stabilizing transformations

I Model Evaluation
I 7.4%, 4.3% median errors for performance, power
I S+A, S+R more effective for performance, power
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Future Directions

I Model Applications
I Demonstrate applicability to prior studies
I Models enable more aggressive studies
I Construct a CMP simulation framework

I Model Improvements
I Techniques, transformations to further reduce error, bias

I Survey Approaches in Statistical Inference
I Compare regression modeling with machine learning

Benjamin C. Lee, David M. Brooks :: 18 June 2006 27 :: Workshop on Modeling, Benchmarking, and Simulation



Appendix
Links
References
Extra Slides

Publications
www.deas.harvard.edu/∼bclee

B.C. Lee and D.M. Brooks.
Statistically rigorous regression modeling for the microprocessor
design space.
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June 2006.

B.C. Lee and D.M. Brooks.
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performance, power prediction.
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Assessing Fit
I Multiple Correlation Statistic

I R2 is fraction of response variance captured by predictors
I Large R2 suggests better fit to observed data
I R2 → 1 suggests over-fitting (less likely if p < n/20)

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − 1

n

∑n
i=1 yi)2

I Residual Distribution Assumptions
I Residuals are normally distributed, ei ∼ N(0, σ2)
I No correlation between residuals and response, predictors
I Validate by scatterplots and quantile-quantile plots

êi = yi − β̂0 −
p∑

j=0

β̂jxij
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Predictor Non-Linearity I

I Polynomial Transformations
I Undesirable peaks and valleys
I Differing trends across regions

I Linear Splines
I Piecewise linear regions separated by knots
I Inadequate for complex, highly curved relationships

I Restricted Cubic Splines
I Higher order polynomials provide better fits
I Continuous at knots
I Linear constraint on tails
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Predictor Non-Linearity II

I Location of Knots
I Location of knots less important than number of knots
I Place knots at fixed predictor quantiles

I Number of Knots
I Flexibility, risk of over-fitting increases with knot count
I 5 knots or fewer are often sufficient 3

I 4 knots is a good compromise between flexibility, over-fitting
I Fewer knots required for small data sets

3Stone [SS’86]
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Significance Testing I

I Approach
I Given two nested models, hypothesis H0 states additional

predictors in larger model have no response association
I Test H0 with F-statistics and p-values

I Example
I Predictor interaction requires comparing nested models
I Consider a model y = β0 + β1x1 + β2x2 + β3x1x2.
I Test significance of x1 with null hypothesis H0 : β1 = β3 = 0
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Significance Testing II
I F-Statistic

I Compare two nested models using their R2 and F-statistic
I R2 is fraction of response variance captured by predictors

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − 1

n

∑n
i=1 yi)2

I F-statistic of two nested models follows F distribution

Fk,n−p−1 =
R2 − R2

∗
k

× n− p− 1
1− R2

I P-Values
I Probability F-statistic greater than or equal to observed

value would occur under H0

I Small p-values cast doubt on H0
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Treatment of Missing Data

I Missing Completely at Random (MCAR)
I Treat unobserved design points as missing data
I Sampling UAR ensures observations are MCAR
I Data is missing for reasons unrelated to characteristics or

responses of the configuration

I Informative Missing
I Data is more likely missing if their responses are

systematically higher or lower
I “Missingness” is non-ignorable and must also be modeled
I Sampling UAR avoids such modeling complications
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Performance Associations I
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Performance Associations II
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Performance Associations III
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Significance Tests

I Microarchitectural Predictors
I Majority of F-tests imply significance (p-values < 2.2E − 16)
I Several predictors were less significant

I Control latency (p-value = 0.1247)
I Reservation station size (p-value = 0.1239)
I L1 instruction cache size (p-value = 0.02941)

I Application-Specific Predictors
I Majority of F-tests imply significance (p-values < 2.2E − 16)
I Pipeline stalls classified by structure are less significant

I Completion and reorder queue stalls (p-values > 0.4)
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Related Work

I Statistical Significance Ranking
I Yi :: Plackett-Burman, effect rankings
I Joseph :: Stepwise regression, coefficient rankings
I Bound parameter values to improve tractability
I Require simulation for estimation

I Synthetic Workloads
I Eeckhout :: Profile workloads to obtain synthetic traces
I Nussbaum :: Superscalar and SMP simulation
I Obtain distribution of instructions and data dependencies
I Require simulation with smaller traces for estimation
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