

Statistical Inference for

Efficient Microarchitectural and Application Analysis

15 FO4

16 KB (I-S), 8 KB (D-S)

Depth :: 30 FO4 Width :: 2 Inst/Cy

Reg :: 70 GPR

2.5

L2 : 4 MB

256 KB (I-\$), 8 KB (D-\$)

3

3.5

Width 2 Inst/C

Reg 70 GPR

L2:05MB

2

1.5

L1

CHALLENGES

Costly parameter space exploration, optimization

- Exponentially increasing parameter space size
- Parameters :: Hardware design, software tuning
- Hardware :: Cycle-accurate simulation
- Software :: Execution-based profiling

OBJECTIVES

Comprehensively understand parameter space

Specify large, high-resolution parameter space

Selectively measure modest number of points

Sample points randomly from space for measurement

Efficiently leverage measured data with inference

Enable prediction for metrics of interest from sparse sampling

REGRESSION & SPLINE MODELS

$$f(y) = \beta_0 + \sum_{j=1}^p \beta_j g_j(x_j) + \epsilon$$

- \square Response (y) modeled as weighted sum of predictors (x)
- \Box Interaction specified by products ($x_1 = x_1, x_2$)
- \Box Non-linearity captured by restricted cubic splines (g = rcs(x,k))

Derivation Overview

- Hierarchical Clustering :: eliminate redundant predictors
- Correlation Analysis :: assess predictor strength
- □ Model :: specify predictor interaction, non-linearity
- Residual Analysis :: assess model bias
- □ Significance Testing :: assess predictive ability of model terms

Optimizations

Regional Sampling :: train model with most relevant samples

MICROARCHITECTURAL DESIGN

- Depth, width, register file, reservation stations, L1/L2 cache
- Simulated with Turandot/PowerTimer based on POWER4/5

Validation :: Regression vs Simulation

- Performance :: 7.4% median error
- Power :: 4.3% median error

APPLICATION TUNING

- Semicoarsening Multigrid (SMG) :: node topology, workload size
- High-Perf. Linpack (HPL) :: block size, node topology, factoring
- Executed on IBM Blue Gene/L, Intel Xeon clusters (ALC/MCR)

Validation :: Regression vs Execution

- SMG Performance :: 8.5% median error
- HPL Performance :: 3.1% median error

Case Study :: Application Performance Gradients

- 1. Run 600 samples from 3K parameter sets to formulate model
- 2. Compute modeled execution time for every point in space
- 3. Compute numerical performance gradients with local differences

Future Work

Combine microarchitecture, application models in joint prediction

Figure 5 :: Performance Gradients

- 1. Simulate 1K samples from 375K designs to formulate model 2. Identify modeled bips³/w optimal design for each benchmark
 - 3. K-means cluster optima to identify compromise designs

Case Study :: Heterogeneous Multiprocessors

[mcf][jbb mesa][gcc gzip][ammp applu equake twolf]