
Regression Modeling Strategies for Microarchitectural

Performance and Power Prediction

Benjamin C. Lee David M. Brooks

Report No. TR-08-06

March 2006

Division of Engineering and Applied Sciences
Harvard University
Cambridge, Massachusetts 02138



Abstract

We propose regression modeling as an effective approach for ac-
curately predicting performance and power for various applications
executing on any microprocessor configuration in a large microarchi-
tectural design space. This report addresses fundamental challenges in
microarchitectural simulation costs via statistical modeling.

Specifically, we derive and validate regression models for perfor-
mance and power. Such models enable computationally efficient statis-
tical inference, requiring the simulation of only 1 in 5 million points of a
joint microarchitecture-application design space while achieving error
rates as low as 4.1 percent for performance and 4.3 percent for power.
Although both models achieve similar accuracy, the sources of accu-
racy are strikingly different. We present optimizations for a baseline
regression model to obtain (1) per benchmark application-specific mod-
els designed to maximize accuracy in performance prediction and (2)
regional power models leveraging only the most relevant samples from
the microarchitectural design space to maximize accuracy in power pre-
diction. Assessing model sensitivity to sample and region sizes, we find
4,000 samples from a design space of approximately 22 billion points,
are sufficient for both application-specific and regional modeling and
prediction. Collectively, our results suggest significant potential in ac-
curate and efficient statistical inference for microarchitectural design
space exploration via regression models.

1 Introduction

Cycle-accurate architectural performance simulators provide detailed in-
sights into application performance on a wide-range of microprocessor con-
figurations. These simulators are often used to identify trends and trade-offs
for metrics of interest in microprocessor design. However, the prohibitively
long simulation times of these tools preclude the exploration of application
characteristics across a large microarchitectural design space. This work
leverages statistical regression to derive simulation-free statistical inference
models using data points sampled from the design space. We find intro-
ducing statistical inference into simulation frameworks modestly reduces
detail in return for tremendous gains in speed and tractability. Although
we consider advantages in computational cost for microarchitectural design
space exploration in this report, these models may also provide increased
profiling efficiency and fast performance prediction for system software and
algorithms, such as thread-scheduling for heterogeneous multi-processors.
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Techniques in statistical inference and machine learning have become
increasingly popular for approximating solutions to intractable problems.
Even when obtaining extensive measurement data is feasible, efficient anal-
ysis of this data often lends itself to statistical modeling. These approaches
typically require an initial set of data for model formulation or training. The
model responds to predictive queries by leveraging trends and correlations
in the original data set to perform statistical inference. Regression modeling
follows this predictive paradigm in a relatively cost effective manner. Once
domain-specific knowledge is used to specify predictors of a response, formu-
lating the model from observed data requires numerically solving a system
of linear equations. Given a regression model, prediction of the response
simply requires evaluating a linear equation. Model formulation and eval-
uation are computationally efficient due to extensive research in numerical
linear algebra.

After surveying applied statistical regression theory in Section 2, we
derive performance and power regression models using a modest number of
sample observations obtained from a large design space via simulation. In
particular, we show 4,000 samples drawn uniformly at random from a design
space with nearly 22 billion points are sufficient to formulate these models in
Section 3. Each sample maps a set of architectural and application-specific
predictors to the observed performance and power. These samples are used
to formulate regression models, which predict the performance and power
of previously unsampled configurations based on the same predictors.

We detail a statistically rigorous approach for deriving regression models
in Section 4 that includes: (1) variable clustering, (2) association testing,
(3) assessing strength of response-predictor relationships, and (4) signifi-
cance testing with F-tests. These techniques ensure statistically significant
architectural and application parameters are used as predictors. We also
state and validate underlying regression assumptions, checking to ensure (1)
residuals exhibit no systematic correlation with the fitted values or predic-
tors and (2) residuals follow a normal distribution. Deviations from these
assumptions are mitigated with variance stabilizing transformations.

Given baseline performance and power models that account for predic-
tor interaction and non-linearity, we present model optimizations to im-
prove prediction accuracy by (1) stabilizing residual variance, (2) deriving
application-specific models, and (3) deriving regional models with samples
most similar in architectural configuration to the predictive query in Section
5.

The following summarizes experimental results from four different per-
formance and power regression models formulated with 4,000 samples drawn
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from a joint microarchitecture-application design space with nearly 1 billion
microarchitectural configurations and 22 benchmarks:

1. Performance Prediction: Application-specific models predict per-
formance with a median error as low as 4.1 percent (mean error as low
as 5.6 percent). 50 to 90 percent of predictions achieve error rates of
less than 10 percent depending on the application. Maximum outlier
error is 20 to 33 percent.

2. Power Prediction: Regional models predict power with a median
error as low as 4.3 percent (mean error as low as 5.6 percent). Nearly
90 percent of predictions achieve error rates of less than 10 percent and
96 percent of predictions achieve error rates of less than 15 percent.
Maximum outlier error is 24.5 percent.

3. Model Optimizations: Given a single set of predictors for both
performance and power models, the model may be reformulated with
different sampled observations and optimized to achieve roughly the
same accuracy. Application-specific models are optimal for perfor-
mance prediction while regional models are optimal for power predic-
tion.

4. Sample Size Sensitivity: Although 4,000 samples are drawn from
the design space, accuracy maximizing applications-specific perfor-
mance models do not require more than 2,000. Additional samples
may improve regional power models by improving observation den-
sity and tightening regions around predictive queries, but diminishing
marginal returns in accuracy advise against many more beyond the
initial 4,000.

Collectively, these results suggest significant potential in accurate and
efficient statistical inference for microarchitectural design space exploration
via regression models.

2 Regression Theory and Techniques

We apply regression modeling techniques to efficiently obtain empirical es-
timates of microarchitectural metrics, such as performance and power. We
apply a general class of models in which a response is modeled as a weighted
sum of predictor variables plus random noise. Since basic linear estimates
may not adequately capture nuances in the response-predictor relationship,

3



we also consider more advanced techniques to account for potential pre-
dictor interaction and non-linear relationships. Lastly, we present standard
statistical techniques for assessing model effectiveness and predictive ability.

2.1 Model Formulations

For a large universe of interest, suppose we have a subset of n observations
for which values of the response and predictor variables are known. Let
y = y1, . . . , yn denote the vector of observed responses. For a particular
point i in this universe, let yi denote its response and xi = xi,1, . . . , xi,p

denote its p predictors. These variables are constant for a given point in
the universe. Let β = β0, . . . , βp denote the corresponding set of regression
coefficients used in describing the response as a linear function of predictors
plus a random error ei as shown in Equation (1). 1 Mathematically, βj may
be interpreted as the expected change in yi per unit change in the predictor
variable xi,j . The ei are independent random variables with zero mean and
constant variance; E(ei) = 0 and V ar(ei) = σ2.

f(yi) = βg(xi) + ei

= β0 +
p∑

j=1

βjgj(xij) + ei (1)

Transformations f and g = g1, . . . , gp may be applied to the response and
predictors, respectively, to improve model fit by stabilizing a non-constant
error variance or accounting for non-linear correlations between the response
and predictors. Throughout this section, we will assume no transformations
are necessary.

Fitting a regression model to observations, by determining the p + 1
coefficients in β, enables response prediction. The method of least squares
is commonly used to identify the best-fitting model for a set of observations
by minimizing the sum of squared deviations or prediction errors of the
predicted responses (given by the model) from the actual observed responses.
Thus, least squares finds the p + 1 coefficients in Equation (1) to minimize
S(β) in Equation (2).

S(β0, . . . , βp) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(2)

1xi,0 = 1 is implied
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Equation (2) may be minimized by solving a system of p + 1 partial
derivatives of S with respect to βj , j ∈ [0, p]. The solutions to this system,
β̂j , are estimates of the coefficients in Equation (1). Furthermore, the so-
lutions to this system of linear equations may often be expressed in closed
form. Closed form expressions enable using the statistical properties of these
estimates to identify the significance of particular response-predictor corre-
lations (Section 2.4) and the goodness of fit (Section 2.5).

2.2 Predictor Interaction

In some cases, the effect of two predictors xi,1 and xi,2 on the response
cannot be separated; the effect of xi,1 on yi depends on the value of xi,2

and vice versa. The interaction between two predictors may be modeled by
constructing a third predictor xi,3 = xi,1xi,2 to obtain yi = β0 + β1xi,1 +
β2xi,2 + β3xi,1xi,2 + ei

Modeling predictor interactions in this manner makes it difficult to inter-
pret β1 and β2 in isolation. After simple algebraic manipulation to account
for interactions, we find β1 + β3xi,2 is the expected change in yi per unit
change in xi,1 for a fixed xi,2. The difficulties of these explicit interpretations
of β for more complex models lead us to prefer more indirect interpretations
of the model via its predictions (Section 2.6).

2.3 Non-Linearity

Basic linear regression models often assume the response behaves linearly
in all predictors. This assumption is often too restrictive and several tech-
niques for capturing non-linearity may be applied. The most simple of these
techniques is a polynomial transformation on predictors suspected of hav-
ing a non-linear correlation with the response. However, polynomials have
undesirable peaks and valleys. Furthermore, a good fit in one region of the
predictor’s values may unduly impact the fit in another region of values. For
these reasons, we consider splines a more effective technique for modeling
non-linearity.

Spline functions are piecewise polynomials used in curve fitting. The
function is divided into intervals defining multiple different continuous poly-
nomials with endpoints called knots. The number of knots can vary depend-
ing on the amount of available data for fitting the function, but more knots
generally leads to better fits. For example, a linear spline (i.e., piecewise
linear function) on x with three knots at a, b, and c is given by Equation
(3) where (u)+ = u if u > 0 and (u)+ = 0 otherwise.
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y = β0 + β1x + β2(x− a)+ + β3(x− b)+ + β4(x− c)+ (3)

Linear splines may be inadequate for complex, highly curved relation-
ships. Splines of higher order polynomials may offer better fits and cubic
splines have been found particularly effective [6]. Unlike linear splines, cubic
splines may be made smooth at the knots by forcing the first and second
derivatives of the function to agree at the knots. For example, a cubic spline
on x with three knots is given by Equation (4).

y = β0 + β1x + β2x
2 + β3x

3 +
+β4(x− a)3+ + β5(x− b)3+ + β6(x− c)3+

Cubic splines may have poor behavior in the tails before the first knot
and after the last knot [16]. Restricted cubic splines that constrain the
function to be linear in the tails are often better behaved and have the added
advantage of fewer terms relative to cubic splines. A restricted cubic spline
on x with k knots t1, . . . , tk is given by Equation (4) where j = 1, . . . , k − 2
[3].

y = β0 + β1x1 + β2x2 + . . . + βk−1xk−1 (4)
x1 = x

xj+1 = (x− tj)3+ − (x− tk−1)3+(tk − tj)/(tk − tk−1)
+(x− tk)3+(tk−1 − tj)/(tk − tk−1)

(5)

The choice and position of knots are variable parameters when specify-
ing non-linearity with splines. Stone has found the location of knots in a
restricted cubic spline to be much less significant than the number of knots
[15]. Placing knots at fixed quantiles of a predictor’s distribution is a good
approach in most datasets, ensuring a sufficient number of points in each
interval. Recommended equally spaced quantiles are shown in Table 1.

In practice, five knots or fewer are generally sufficient for restricted cubic
splines [15]. Fewer knots may be required for small data sets. As the number
of knots increases, flexibility improves at the risk of over-fitting the data.
In many cases, four knots offer an adequate fit of the model and is a good
compromise between flexibility and loss of precision from over-fitting [6].
For larger data sets with more than 100 samples, five knots may also be a
good choice.
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k Quantiles
3 0.1000 0.5000 0.9000
4 0.0500 0.3500 0.6500 0.9500
5 0.0500 0.2750 0.5000 0.7250 0.9500
6 0.0500 0.2300 0.4100 0.5900 0.7700 0.9500
7 0.0250 0.1833 0.3417 0.5000 0.6583 0.8167 0.9750

Table 1: Recommended knot placement. Knots are placed at fixed
quantiles of the data.[6].

2.4 Significance Testing

Suppose we formulate a model with p predictors that allows for interaction
and non-linearity. There are three contributions to a response estimate: (1)
primary effects (e.g. xi), (2) interaction effects (e.g. xixj), and (3) non-
linear effects (e.g. a restricted cubic spline of xi with k knots, rcs(xi, k)).
The significance of the association between the response and each of these
contributions may be quantified with standard statistical tests.

2.4.1 T-Tests

The statistical properties of the coefficient estimates are used to evaluate the
association between the response and terms in the model. If the errors ei in
Equation (1) are independent normal random variables, then the estimated
coefficients β̂j are also normally distributed. This normality assumption
leads to the relationship in Equation (6) that states the standardized coef-
ficient estimate follows a t distribution with n − p − 1 degrees of freedom.
The estimates β̂j are obtained in closed form by solving a linear system and
their standard deviations sβ̂j

may be obtained analytically from the closed
form estimates.

β̂j − βj

sβ̂j

∼ tn−p−1 (6)

A commonly tested null hypothesis states the j-th term in the model has
no association with the response (H0 : βj = 0). This hypothesis is tested by
evaluating Equation (6) under the null hypothesis to obtain β̂j/sβ̂j

, a value
often referred to as the t-statistic. The t-statistic is typically computed for
every coefficient estimate β̂j as a first step toward determining significance
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of the j-th term in the model. Note the t-statistic follows the t-distribution.
Also note the j-th term may be a primary, interaction, or non-linear term.

The p-value is defined as 2P (X≥|c|) for a random variable X and a
constant c. In our analyses, X ∼ tn−p−1 and c is the t-statistic, β̂j/sβ̂j

.
The p-value may be interpreted as the probability a t-statistic value greater
than or equal to the value actually observed would occur by chance if the
null hypothesis were true. If this probability were extremely small, either
the null hypothesis holds and an extremely rare event has occurred or the
null hypothesis is false. Thus, a small p-value for β̂j casts doubt on the
hypothesis βj = 0 and suggests the effect from the j-th term in the model
is statistically significant in predicting the response.

2.4.2 F-Tests

Although t-tests are often used for assessing the significance of individual
terms, it is often more useful to assess a group of terms simultaneously.
Consider a model y = β0 +β1x1 +β2x2 +β3x1x2 +e. Testing the significance
of x1 requires testing the null hypothesis H0 : β1 = β3 = 0 with two degrees
of freedom. More generally, performing significance tests on a subset of the
β’s is preferable to individual t-tests for complex models with interaction
and non-linear terms.

The F-test is a standard statistical test for comparing two nested mod-
els (e.g. a full model and a subset of the full model) using their multiple
correlation statistic, R2. Equation (9) computes this statistic by computing
regression error (SSE) as a fraction of the total error (SST ). From the
equation, R2 will be zero when the error from the regression model is just
as large as the error from simply using the mean to predict the response.
Thus, R2 is the percentage of variance in the response variable captured by
the predictor variables.

SSE =
n∑

i=1

(yi − ŷi)2 (7)

SST =
n∑

i=1

(
yi −

1
n

n∑
i=1

yi

)2

(8)

R2 = 1− SSE

SST
(9)

Given R2 for the full model and R2
∗ for a model constructed by dropping

a number of terms from the full model, define the F-statistic by Equation
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(10) where p is the number of coefficients in the full model excluding the
intercept β0 and k is the difference in degrees of freedom between the models.
Since the F-statistic follows the F-distribution, a p-value may be calculated,
as shown for t-tests, and the significance of the dropped terms may be
assessed.

Fk,n−p−1 =
R2 −R2

∗
k

× n− p− 1
1−R2

(10)

2.5 Assessing Fit

The model’s fit to the observations used to formulate the model measures
how well it captures observed trends. Fit is usually assessed by examining
residuals and the degree to which regression error contributes to the total
error. Residuals, defined in Equation (11) are examined to validate three
assumptions: (1) the residuals are not correlated with any predictor variable
or the response predicted by the model, (2) the randomness of the residuals
should be the same for all predictor and response values, and (3) the resid-
uals have a normal distribution. The first two assumptions are typically
validated by plotting residuals against each of the predictors and predicted
responses (i.e. (êi, xij) for each j ∈ [0, p] and (êi, ŷi) for each i ∈ [1, n])
since such plots may reveal systematic deviations from randomness. The
third assumption is usually validated by a quantile-quantile plot in which
the quantiles of one distribution are plotted against another. Practically,
this means ranking the residuals ê(1), . . . , ê(n), obtaining n ranked samples
from the normal distribution s(1), . . . , s(n), and producing a scatter plot of
(ê(i), s(i)) that should appear linear if the residuals follow a normal distri-
bution.

êi = yi − β̂0 −
p∑

j=0

β̂jxij (11)

Additionally, fit may be assessed by the R2 statistic from Section 2.4.
Larger values of R2 suggests better fits for the observed data. However, a
value too close to R2 = 1 may indicate over-fitting, a situation in which the
worth of the model is exaggerated and future observations will not agree
with the model’s predicted values. Over-fitting typically occurs when too
many predictors are used to estimate relatively small data sets. Studies in
which models are validated on independent data sets have shown a regression
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model is likely to be reliable when the number of predictors p is less than
n/20, where n is the sample size [7].

2.6 Prediction

Once β is determined, evaluating Equation (1) for a given xi will give the
expectation of yi and, equivalently, an estimate ŷi for yi (Equation (12)).
This result follows from observing the additive property of expectations, the
expectation of a constant is the constant, and the random errors have mean
zero.

ŷi = E[yi]

= E

[
β0 +

p∑
j=1

βjxij

]
+ E[ei]

= β0 +
p∑

j=1

βjxij (12)

3 Experimental Methodology

Before developing regression models to predict performance and power for
any configuration within the microarchitectural design space, we must first
obtain a number of observations within this space via simulation. These
observations are inputs to a statistical computing package used to perform
the regression analysis and formulate the models.

3.1 Simulation Framework

We use Turandot, a generic and parameterized, out-of-order, superscalar
processor simulator [12, 13]. Turandot is enhanced with PowerTimer to
obtain power estimates based on circuit-level power analyses and resource
utilization statistics [5, 2]. The modeled baseline architecture is similar to
the current POWER4/POWER5.

3.2 Benchmarks

We consider a Java server benchmark, SPECjbb, and 21 compute intensive
benchmarks from SPEC2k (ammp, applu, apsi, art, bzip2, crafty, equake,
facerec, gap, gcc, gzip, lucas, mcf, mesa, mgrid, perl, sixtrack, swim, twolf,
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vpr, wupwise). We report experimental results based on PowerPC traces of
these benchmarks. The SPEC2k traces used in this study were sampled from
the full reference input set to obtain 100 million instructions per benchmark
program. Systematic validation was performed to compare the sampled
traces against the full traces to ensure accurate representation [8].

3.3 Statistical Analysis

The n = 4, 000 observations from the full design space provide sufficient data
for statistical regression analysis. We use R, a free software environment
for statistical computing, to script and automate the statistical analyses
described in Section 2 [17]. Within this environment, we use the Hmisc and
Design packages implemented by Harrell [6].

3.4 Configuration Sampling

The approach to obtaining observations from a large microprocessor design is
critical to efficient formulation of regression models. Table 2 identifies twelve
groups of parameters varied simultaneously. Parameters within a group
are varied together to avoid fundamental design imbalances. The range of
values considered for each parameter group is specified by a set of values,
S1, . . . , S12. The Cartesian product of these sets, S =

∏12
i=1 Si, defines the

entire design space. The cardinality of this product is |S| =
∏12

i=1 |Si| =
9.38E + 08, or approximately one billion, design points. Fully assessing the
performance for each of the 22 benchmarks on these configurations further
scales the number of simulations to well over 20 billion.

Traditional techniques of sweeping design parameter values to consider
all points in a large design space is impossible despite continuing research in
reducing simulation costs via trace compression [11, 1] and sampling [4, 14].
Although per simulation costs are reduced by a constant factor, these tech-
niques do not reduce the number of required simulations. Other studies have
reduced the cardinality of these sets to an upper and lower bound [9], but
this approach masks performance and power trends between the bounding
values and precludes any meaningful statistical inference or prediction. For
these reasons, sampling must occur in the design space to control the expo-
nentially increasing number of design points as the number parameter sets
and their cardinality increase.

We propose sampling configurations uniformly at random (UAR) from S.
This approach provides observations from the full range of parameter values
and enables identification of trends and trade-offs between the parameter
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Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width insn b/w 4,8,16 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size log2(entries) 7::1::11 5
S6 D-L1 Cache d-L1 sache size log2(entries) 6::1::10 5
S7 L2 Cache L2 cache size log2(entries) 11::1::15 5

L2 cache latency cycles 6::2::14
S8 Control Latency branch latency cycles 1,2 2
S9 FX Latency ALU latency cycles 1::1::5 5

FX-multiply latency cycles 4::1::8
FX-divide latency cycles 35::5::55

S10 FP Latency FPU latency cycles 5::1::9 5
FP-divide latency cycles 25::5::45

S11 L/S Latency Load/Store latency cycles 3::1::7 5
S12 Memory Latency Main memory latency cycles 70::5::115 10

Table 2: Range and grouping of microarchitectural parameters. Pa-
rameters within a group are varied together. A range of i::j::k denotes a set
of possible values from i to k in steps of j.
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sets. Furthermore, sampling UAR does not bias the observations toward
any particular configurations. From the law of large numbers, the expected
number of samples with each configuration value is the same. Our approach
is different from Monte Carlo methods. Monte Carlo methods generate
suitable random samples and observe the frequency of samples following
some property or properties. Although we perform random sampling, we
formulate regression models instead of frequency analyses.

Suppose we treat the configurations for which responses are not observed
as missing data from a full data set with all |S| observations. Then sampling
UAR ensures the observations are missing completely at random (MCAR).
Under MCAR, data elements are missing for reasons unrelated to any char-
acteristics or responses of the configuration. In this context, the fact a design
point is unobserved is unrelated to the performance, power, or configuration
of the design.

In contrast, informative missing describes the case when elements are
more likely to be missing if their responses are systematically higher or
lower. For example, simulator limitations may prevent data collection for
very low performance architectures and the “missingness” of a configuration
is correlated with its performance. In this case, the “missingness” is non-
ignorable and we must formulate an additional model to predict whether
a design point can be observed by the simulator. By sampling UAR from
the design space, we ensure the observations are MCAR and avoid such
modeling complications.

We report experimental results for sample sizes of up to n = 4, 000 sam-
ples. Each sampled configuration is simulated with a benchmark also chosen
UAR, providing one set of observed responses (performance and power) for
every 5 million sets of predictors (configurations and applications) in the de-
sign space. We demonstrate the efficiency of this extremely sparse sampling
for data collection, model formulation, and statistical inference in Section 5.

4 Model Derivation

We formulate regression models for performance based on the n = 4, 000
sampled observations. To identify potential response-predictor relationships
we first examine descriptive statistics for parameters in the data set. We
then formulate a regression model, using our domain-specific understanding
of microarchitectural design to specify predictors’ primary effects, second-
and third-order interactions, and non-linearities. Given an initial model, we
perform significance testing to prune statistically insignificant predictors.
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Performance
bips

L1 Cache
I-L1 misses D-L1 misses
I-L2 misses D-L2 misses

Branches
branch rate branch stalls

branch mispredictions
Stalls

inflight cast
dmissq reorderq
storeq rename
resv

Table 3: Application characteristics. Measured application behavior
when executing on baseline architecture.

The fit of the refined model is assessed by examining its residuals.

4.1 Predictors

We consider the 12 architectural predictors drawn from the parameters in
Table 2. We also consider 15 application-specific predictors drawn from an
application’s characteristics (Table 3) when executing on a baseline config-
uration (Table 4). These characteristics may be significant predictors of
performance when interacting with architectural predictors. For example,
the performance effect of increasing the data L1 cache will have a larger
impact on applications with a high data L1 miss rate. The baseline ap-
plication performance may also impact the performance effects of further
increasing architectural resources. For example, an application with no
bottlenecks and high baseline performance would benefit less from addi-
tional physical registers compared to an application experiencing heavy reg-
ister pressure. These potential interactions suggest both architectural and
application-specific predictors are necessary.

4.2 Summary Statistics

4.2.1 Variable Clustering

A variable clustering analysis reveals key variable interactions. Figure 1
presents the results of hierarchical variable clustering based on squared
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Processor Core
Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy
L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 32KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions
Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 4: Baseline Architecture. Configuration for which application
characteristics are initially measured.

Spearman rank correlation coefficients as similarity measures where a larger
ρ2 indicates a greater correlation between variables. If the number of pre-
dictors is large relative to the number of observations, over-fitting the model
may be a concern and redundant predictors may be eliminated by selecting
only one predictor from each cluster.

L1 and L2 misses due to instruction cache accesses are highly corre-
lated. We found the absolute number of L2 cache misses from the instruc-
tion probes to be negligible and eliminate il2miss rate from consideration.
Similarly, the branch rate is highly correlated with the number of branch
induced stalls and we eliminate br stall.

Pipeline depth is highly correlated with latency since we scale the orig-
inal functional unit latencies with depth [10]. Since final latencies are a
function of original latencies and pipeline depth, we choose to keep these
original latency variables. Including both predictors enables us to differen-
tiate the performance impact of individual functional unit latency changes
from the global latency changes as depth varies. Similarly, we keep both d-
L1 cache miss rate and the baseline performance predictors to differentiate
cache performance from global performance.

Overall, the total number of observations is sufficiently large to avoid
over-fitting. All other variables are correlated to a lesser degree, if at all,
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Figure 1: Variable clustering. The horizontal lines at which variables
connect specify the correlation coefficient. A larger ρ2 suggests greater cor-
relation between variables.

and should not be eliminated from consideration.

4.2.2 Performance Associations

Plotting each of the predictors against the response may reveal particularly
strong associations or identify non-linearities. We stratify each predictor into
four groups such that each group covers equally sized intervals of predictor
value and plot the mean of each group against performance (Figures 2–3).
The numbers on the left axis specify each group’s range and those on the
right axis specify the number of observations within the range.

For architectural predictors, pipeline depth and width are strong, mono-
tonic factors as shown in Figure 2L. The number of physical registers may
be a significant, but non-linear, predictor. The number of reservation sta-
tions seems to have limited association with performance. The performance-
latency relationships are counter-intuitive as performance increases with la-
tency in Figure 2R. This trend is an artifact of latency scaling as pipeline
depth varies; deeper pipelines increase instruction throughput but also in-
crease latencies measured in cycles. Lastly, Figure 3L demonstrates a posi-
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Figure 4: Association Plots. Application baseline stall behavior.
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Figure 6: Strength of Marginal Relationships. A lack of fit for predic-
tors with high ρ2 will more consequentially impact performance prediction.

tive correlation between L2, but not L1, cache size and performance.
For application-specific predictors, branching behavior exhibits no obvi-

ous trends as shown in Figure 3R. Figure 4 indicates roughly half the stall
characteristics have monotonic relationships with performance (i.e., dmissq,
cast, reorderq, resv). Although instruction L1 miss rate seems to have
limited predictive ability, probably due to the small number of such misses
in absolute terms, data cache access patterns are good predictors of per-
formance as shown in Figure 5L. Lastly, Figure 5R shows a benchmark’s
observed sample and baseline performance are highly correlated.
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4.2.3 Strength of Marginal Relationships

Figure 6 plots the non-monotonic generalization of the Spearman rank cor-
relation coefficient for each of the pre-specified predictor variables. This
information will guide our choice in the number of spline knots and predic-
tor interactions. A lack of fit for predictors with higher ρ2 will have a greater
negative impact on performance prediction. For architectural predictors, a
lack of fit will be more consequential (in descending order of importance) for
width, depth, physical registers, functional unit latencies, cache sizes, and
reservation stations. However, application-specific baseline performance is
the most significant predictor.

4.3 Model Specification

We choose to model non-linearities for architectural predictors using re-
stricted cubic splines. The strength of predictors’ marginal relationships
with performance will guide our choice in the number of knots. Predictors
with stronger relationships will use 4 knots (e.g. depth, registers) and those
with weaker relationships will use 3 knots (e.g. latencies, cache sizes, reserva-
tion stations). Despite their importance, width and certain latencies do take
a sufficient number of unique values to apply splines and we consider their
linear effects only. With the exception of baseline performance for which
we assign 5 knots, we do not model non-linearities for application-specific
predictors to control model complexity.

We draw on domain-specific knowledge to specify second- and third-
order interactions. Generally, we expect pipeline dimensions to interact with
structures that control instruction bandwidth and caches that impact hazard
counts. We also expect the memory hierarchy to interact with application-
specific access rates. Lastly, we include interactions with baseline perfor-
mance to account for diminishing/increasing marginal returns from low/high
baseline performance.

4.4 Model Refinement

We check predictor significance to refine and check the efficiency of the
model. We assess the significance of predictor p by comparing, with F-tests,
the initial model to a smaller model with all terms involving p removed. Vari-
ables ctl lat (p-value=0.1247), stall inflight (p-value=0.7285), and stall storeq
(p-value=0.4137) appear insignificant. The high p-values for the F-test in-
dicate these predictors do not significantly contribute to a better fit when
included to form a larger model and may be removed.
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Predictor R2 −R2
∗ DF −DF∗ F-test P-value

depth* -6.2688 -60 24.72 < 2.2e-16
width* -6.4709 -19 80.58 < 2.2e-16
phys reg* -11.713 -11 251.95 < 2.2e-16
resv -0.0177 -2 2.10 0.1239
i-L1$ size* -0.0906 -11 1.9491 0.02941
d-L1$ size* -0.4206 -29 3.4322 1.629e-09
L2$ size* -5.4024 -45 28.412 < 2.2e-16
ctl lat -0.010 -1 2.3585 0.1247
fx lat* -2.4166 -1 571.92 < 2.2e-16
fp lat* -0.4383 -2 51.861 < 2.2e-16
mem lat* -0.5321 -1 125.89 < 2.2e-16
i-L1miss rate* -1.9947 -16 29.505 < 2.2e-16
d-L1miss rate* -1.5303 -19 19.061 < 2.2e-16
d-L2miss rate* -0.917 -14 15.502 < 2.2e-16
branch rate* -0.5629 -2 66.607 < 2.2e-16
branch mispred* -0.1231 -5 5.8246 2.293e-05
stall inflight -0.0005 -1 0.1205 0.7285
stall dmissq* -0.2938 -1 69.53 < 2.2e-16
stall cast* -0.1825 -1 43.198 5.61e-11
stall storeq -0.0028 -1 0.6684 0.4137
stall reorderq* -0.1033 -1 24.440 7.994e-07
stall resv* -0.1033 -1 24.440 7.944e-07
stall rename* -0.1033 -1 24.440 7.944e-07
base bips* -5.1509 -29 42.035 < 2.2e-16

Table 5: Significance Testing. F-test results for each predictor where
lower p-values indicate greater significance. * denotes inclusion in general
model (Figure 15).
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Figure 7: Residual Plots. Quartiles of residuals, stratifying 4000 fitted
performance into groups of 100, before (L) and after(R) variance stabiliza-
tion. The x-coordinate is the mean predicted performance of the 100 group
members.

We examine the residuals to assess model fit. Figure 7L plots the median,
lower, and upper quartiles of the residuals for 40 groups, each with 100 ob-
servations, against modeled performance. For each group, the x-coordinate
is the mean performance of the observations in the group. The plot re-
veals significant correlations between residuals and fitted values; residuals
are larger for the smallest and largest fitted values. We apply a standard
variance stabilizing technique to mitigate the magnitude of these correla-
tions, performing a square root transformation on performance. Figure 7R
shows stabilized residuals for performance. Variance stabilization also cause
the residuals to follow a normal distribution more closely as shown in Fig-
ure 8. The observed linear trend indicates the residuals follow the normal
distribution when normal and residual quantiles are plotted on the x-axis
and y-axis, respectively.

Figure 15 presents the final model specification using standard syntax
for the R statistical package.

5 Model Evaluation

5.1 Model Variants and Optimizations

We use data sets of varying size drawn from the n = 4, 000 random obser-
vations to formulate regression models. We refer to the cardinality of these
sets as the sample size, denoted by by n∗. Each model may require different
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Figure 8: Quantile-Quantile Plots. Quantiles of residuals (y-axis) plotted
against normal quantiles (x-axis). A line is drawn between the second and
third quartile of the residuals to check linearity.

sample sizes to maximize accuracy. We also obtain 100 additional random
samples for predictive queries and validation. We compare and contrast
the predictive ability of four regression models, differing in specification and
data used to perform the fit:

• Baseline (B): Model specified without variance stabilization and for-
mulated with a naive subset of nB < n observations (e.g. first 1,000
obtained).

• Variance Stabilized (S): Model specified with a variance stabilizing
square-root transformation on the response and formulated with a
naive subset of nS < n observations.

• Regional (S+R): Model is formulated using the rS+R < nS+R < n
observations with microarchitectural configurations most similar to
each predictive query’s configuration. We refer to rS+R as the region
size drawn from the larger sample size. Similarity is quantified by
the relative euclidean distance between two vectors of architectural
parameter values, d =

√∑p
i=1 |1− bi/ai|2.

• Application-Specific (S+A): We use a new set of nA = 4, 000 of
observations for varying microarchitectural configurations, but a fixed
benchmark. An application-specific model is obtained by eliminat-
ing application-specific predictors from the general model (Figure 16)
and reformulating the model with a naive subset of nS+A < nA. We

25



Model Min 1st-Q Median Mean 3rd-Q Max

B (1k) 0.571 7.369 13.059 16.359 20.870 56.881

S (2k) 0.101 5.072 10.909 13.015 17.671 51.198

S+R (1k) 0.360 4.081 8.940 10.586 15.183 35.000

S+A (1k,ammp) 0.029 1.815 4.055 4.912 7.318 20.298

S+A (1k,applu) 0.270 4.066 8.497 8.804 12.230 24.423

S+A (1k,equake) 0.181 4.132 7.385 8.064 11.202 20.825

S+A (1k,gcc) 0.151 4.170 8.813 9.364 13.073 27.327

S+A (1k,gzip) 0.313 3.546 6.982 7.486 10.549 17.984

S+A (1k,mesa) 0.170 5.736 10.775 10.810 15.025 33.129

Table 6: Summary of Performance Prediction Error. The error min-
imizing sample and region sizes is specified.

consider S+A models for six benchmarks: ammp, applu, equake, gcc,
gzip, and mesa.

5.2 Performance Prediction

Table 6 summarizes the predictive accuracy of each model by presenting
the percentage error, 100 ∗ |ŷi − yi|/yi. Each model is presented with error
minimizing sample and region sizes. Variance stabilization reduces median
error from 13.1 to 10.9 percent and applying regional or application-specific
models may further reduce median error. Application-specific models pre-
dict performance with the greatest accuracy with median error ranging from
4.1 to 10.8 percent. The spread between the mean and median suggest a
number of outliers.

Figure 9L plots the empirical cumulative distribution (CDF) of predic-
tion errors, quantifying the number of predictions with less than a particular
error. We believe the error distribution is a more effective measure of accu-
racy when compared to the usually reported median and mean. The best
performance models are application-specific. The equake-specific model is
a representative S+A model, achieving the median accuracy over the six
benchmarks we consider. 70 and 90 percent of equake predictions have less
than 10 and 15 percent errors, respectively. The flattening CDF slopes also
indicate the number of outliers decrease with error.

In addition to relative accuracy, Figure 9R considers absolute accuracy
by plotting observed and predicted performance for each point in the valida-
tion set. Although predictions trend very well with actual observations, the
figure suggests slight systematic biases. The model tends to over-estimate
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Figure 9: Empirical CDF of prediction errors with error minimizing sample
and region sizes. Equake achieves median accuracy and is plotted for S+A
(L). Prediction results for S+A (R).

performance in the range of [0.3,0.5] . This bias is likely due to imperfect nor-
mality of the residuals. The normal distribution of residuals is an underlying
assumption to regression modeling. We initially found a significant deviation
from normality and attempted a correction with a square-root transforma-
tion of the response variable. This transformation significantly reduced, but
did not eliminate the normality deviations (Figure 7). A different variance
stabilizing transformation on the response or additional transformations on
the predictors may further reduce these biases.

5.3 Performance Sensitivity Analyses

We assess the sensitivity of regional and application-specific models to region
sizes, sample sizes, and choice of benchmarks. Although 4,000 observations
are available for model formulation, the optimal models use at most 2,000
observations to determine regression coefficients. Regional model accuracy is
modestly sensitive to region size, rS+R, with smaller, tighter regions around
the predictive query yielding better accuracy (Figure 10L). As the region
size decreases, the CDF shifts to the upper left quadrant, resulting in lower
median/mean errors and smaller outlier errors. Increasing the sample size,
nS+R, from which the region is drawn improves observation density in the
design space, enables tighter regions, and improves accuracy (Figure 10R).
However, there appears to be no additional benefit from increasing the sam-
ple size beyond 3,000.

The application-specific models are insensitive to sample size. Increas-
ing nS+A from 1,000 to 4,000 for the equake-specific model has no impact
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Figure 10: S+R Performance Model Sensitivity: Varying rS+R with fixed
nS+R = 4, 000 (L) and nS+R with fixed rS+R = 1, 000 (R).

on accuracy (Figure 11L). This observation for the equake-specific model is
representative of other benchmark models. Application-specific model ac-
curacy varies with the benchmark (Figure 11R). While the ammp-specific
model performs particularly well with 91 percent of its predictions having
less than 10 percent error, the mesa-specific model is least accurate with
47 percent of its predictions having less than 10 percent error and a single
outlier having more than 30 percent error. Application-specific models also
appear to reduce outlier error more effectively for different benchmarks. The
differences in accuracy across benchmarks likely result from using the same
predictors deemed significant for an average of all benchmarks and simply
refitting their coefficients to obtain models for each benchmark. Predic-
tors originally dropped/retained may become significant/insignificant when
a particular benchmark, and not all benchmarks, is considered.

5.4 Power Prediction

The power model uses the performance model specification, replacing only
the response variable. Such a model recognizes statistically significant ar-
chitectural parameters for performance prediction are likely also significant
for power prediction. The model also recognizes an application’s power im-
pact as dynamic power dissipation is often a function of application-specific
microarchitectural resource utilization.

Table 7 summarizes the predictive accuracy of each power model. Vari-
ance stabilization has a significant impact on accuracy, reducing median
error from 22.0 to 9.3 percent. Application-specific power modeling, with a
median error between 9.9 and 11.5 percent, and does not contribute signifi-
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Figure 11: S+A Performance Model Sensitivity: Varying nS+A (L) and
benchmark (R).

Model Min 1st-Q Median Mean 3rd-Q Max

B (1k) 0.252 8.381 22.066 39.507 55.227 244.631

S (2k) 0.168 3.796 9.316 13.163 21.849 45.004

S+R (1k) 0.076 2.068 4.303 5.6038 8.050 24.572

S+A (2k,ammp) 0.185 4.687 11.519 13.538 20.965 50.090

S+A (2k,applu) 0.081 4.846 11.006 13.067 18.191 44.662

S+A (2k,equake) 0.112 4.806 11.332 13.190 19.141 44.429

S+A (2k,gcc) 0.190 5.123 9.950 12.752 16.647 43.757

S+A (2k,gzip) 0.504 5.120 9.925 12.405 17.946 39.552

S+A (2k,mesa) 0.021 5.150 10.316 13.491 20.233 45.158

Table 7: Summary of Power Prediction Error. The error minimizing
sample and region sizes is specified.

cantly to accuracy. Regional power modeling achieves the greatest accuracy
with only 4.3 percent median error. The spread between the mean and
median suggest a number of outliers.

Figure 12L plots the empirical CDF’s of power prediction errors, empha-
sizing the differences in regional and application-specific modeling. Variance
stabilization provides the first significant reduction in error and regional
modeling provides the second. Application-specific modeling appears to
have no impact on overall accuracy. The most accurate regional model
achieves less than 10 percent error for nearly 90 percent of its predictions.
The maximum error of 24.5 percent appears to be an outlier as 96 percent
of predictions have less than 15 percent error. Again, the flattening CDF
slopes also indicate the number of outliers decrease with error.
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Figure 12: Empirical CDF of prediction errors with error minimizing sample
and region sizes (L). Prediction results for S+R (R).

Figure 12R demonstrates very good absolute accuracy, especially for low
power configurations less than 30 watts. The magnitude of prediction errors
tend to increase with power and is most notable for high-power configura-
tions greater than 100 watts. Configurations in the 100 watt range predom-
inantly have deep pipelines for which power dissipation scales quadratically.
This power range contains relatively few configurations, but all configura-
tions in this range are leveraged for prediction in the regional model. Region
identified at the boundaries of the design space are often constrained by the
bias toward configurations away from the boundary and, hence, produce a
bias toward more conservative estimates.

5.5 Power Sensitivity Analyses

The sensitivity analyses for power are the same as those for performance.
We assess the sensitivity of regional and application-specific models to region
sizes, sample sizes, and choice of benchmarks. Regional model accuracy is
strongly impacted by the region size, rS+R (Figure 13L). As the region size
decreases from 4,000 to 1,000, the the model becomes increasingly localized
around the predictive query. This locality induces shifts in the error distribu-
tion toward the upper left quadrant of the plot such that a larger percentage
of predictions has smaller errors. Similarly, the sample size, nS+R, heavily
influences accuracy (Figure 13R). As the sample size increases from 1,000 to
4,000, outlier error is progressively reduced from a maximum of 42 percent
to a maximum of 24 percent. As with region size, we see shifts in the error
distribution toward the upper left quadrant.

The application-specific power models are insensitive to both sample size
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Figure 13: S+R Power Model Sensitivity: Varying rS+R with fixed nS+R =
4, 000(L) and nS+R with fixed rS+R = 1, 000 (R).

Figure 14: S+A Power Model Sensitivity: Varying nS+A(L) and bench-
mark(R).

and benchmark. Increasing nS+A from 1,000 to 4,000 for the representative
equake-specific model has no impact on accuracy (Figure 14L), suggesting
additional observations are unlikely to improve S+A power model accuracy.
Application-specific power models also exhibit similar accuracy across sev-
eral different benchmarks (Figure 14R). This insensitivity to benchmarks
suggests the accuracy of power estimates are more heavily influenced by the
query’s microarchitectural configuration and significantly less impacted by
the particular executing application.
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5.6 Performance and Power Comparison

Compared against performance models, power models realize larger gains
from variance stabilization. Although the best performance and power mod-
els achieve comparable median error rates of 4 to 5 percent, the source of
accuracy gains are strikingly different. The greatest accuracy gains in per-
formance modeling arise from eliminating application variability (S to S+A).
Given a particular architecture, performance varies significantly across ap-
plications depending on its source of bottlenecks. Fixing the application in
the model eliminates this variance. Regional modeling does not contribute
much more to accuracy since application performance is dominated by its
interaction with the microarchitecture and not the microarchitecture itself.

In contrast, power models are best optimized by specifying tighter re-
gions around each predictive query (S to S+R), thereby reducing microar-
chitectural variability. This is especially true for high power ranges since
power tends to scale quadratically with aggressive deeper pipelines and lin-
early for more conservative configurations. Application-specific models add
little accuracy since architectural configurations and resource sizings are
primary determinants in unconstrained power. The effects of scaling un-
constrained power for application-specific resource utilization are relatively
small. Thus, formulating a power model from observations with minimal
differences in resource sizing reduces this variance and associated errors.

Compared to regional performance models, regional power models are
much more sensitive to region and sample sizes, probably because the re-
gional optimization is much more effective for power prediction. In both per-
formance and power models, larger sample sizes for regional power models
increase observation density, enable tighter regions around a configuration
of interest, and improve accuracy.

6 Related Work

Our work is unique in its joint consideration of architectural and application-
specific parameters for performance and power prediction. In contrast, there
has been significant work in optimizing the performance of microprocessor
simulators. Typical approaches include (1) reducing the number of config-
urations to be simulated by identifying statistically significant parameters
or (2) statistically simplifying and reducing the size of instruction traces to
approximate metrics of interest.
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6.1 Statistical Significance Ranking

Yi, et al., have studied improving computer architecture simulation by
adding statistical rigor [18]. This rigor is achieved by identifying critical,
statistically significant processor parameters using Plackett-Burman design
matrices to design optimal multi-factorial experiments. Given these criti-
cal parameters, they suggest fixing all non-critical parameters to reasonable
constants and performing more extensive simulation by sweeping a range
values for the critical parameters.

In deriving regression models, we perform a number of tests to ensure
model predictors are statistically significant: (1) variable clustering, (2)
response-predictor association testing, (3) assessing the strength of marginal
relationships by calculating Spearman rank correlation coefficients, and (4)com-
puting F-tests and p-values for each predictor. Once a modest number of
observations have been sampled via simulation, significant parameters are
used as predictors in a regression model to predict metrics of interest. In-
stead of performing further simulation, we rely on the regression model to
explore the design space.

Joseph, et al. derive performance regression models using stepwise re-
gression, an automatic iterative approach to adding and dropping predictors
from a model depending on measures of significance [9]. Although com-
monly used, stepwise regression has several problems cited by Harrell [6]:
(1) R2 values are biased high, (2) standard errors of regression coefficients
are biased low leading to falsely narrow confidence intervals, (3) p-values
are too small, and (4) coefficients are biased high. In contrast, we prefer to
use domain-specific knowledge of microarchitectural design to specify non-
linear effects and interaction between predictors. Furthermore, the authors
consider only two values for each predictor and do not predict performance,
using the models only for significance testing.

6.2 Synthetic Traces

Eeckhout, et al., have studied statistical simulation in the context of work-
loads and benchmarks for architectural simulators [4]. Nussbaum, et al.
has examined similar statistical approaches for simulating superscalar and
symmetric multiprocessor systems [14]. Both researchers claim detailed mi-
croarchitecture simulations for specific benchmarks are not feasible early in
the design process. Instead, benchmarks should be profiled to obtain rele-
vant program characteristics, such as instruction mix and data dependencies
between instructions. A smaller synthetic benchmark is then constructed
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with similar characteristics.
A synthetic benchmark that is statistically equivalent to a longer, real

benchmark is an approach to reduce simulation time. However, we perform
simulations only to obtain the necessary samples from the full design space to
develop regression models. We have not yet determined whether collecting
these samples with real or synthetic traces will affect the final accuracy
of these models. The longer simulation time from using real benchmarks
amortized over repeated use of the resulting models may be preferable if
model accuracy benefits.

The statistical approach we propose and the approaches proposed by
Eeckhout and Nussbaum are fundamentally different. Introducing statistics
into simulation frameworks reduces accuracy in return for gains in speed
and tractability. While Eeckhout and Nussbaum suggest this trade-off for
simulator inputs (i.e., workloads), we propose this trade-off for simulator
outputs (i.e., performance and power results).

7 Conclusions and Future Directions

We detail the derivation and validation of performance and power re-
gression models. Such models enable computationally efficient statistical
inference, requiring the simulation of only 1 in 5 million points in a joint
microarchitecture-application design space while achieving error rates as low
as 4.1 percent for performance and 4.3 percent for power. Although both
models achieve similar accuracy, the sources of accuracy differ markedly.
Whereas application-specific models are most accurate for performance pre-
diction, regional models are most accurate for power prediction.

Given their accuracy when validating against random design points, our
regression models may be applied to specific parameter studies. We intend
to reproduce prior design space studies with our purely analytical model,
validating its ability to capture performance and power trade-offs. The low
computational costs of obtaining predictions also suggest more aggressive
studies previously not possible via simulation.

Additional model refinements may further improve accuracy. Despite a
basic variance stabilizing transformation, our models still produce slightly
non-normal residual distributions. Different transformations on the response
and predictors may eliminate the resulting bias. Although we present per
benchmark application-specific models, a coarse-grained partitioning of the
application domain would result in fewer models, lowering sampling costs,
at the cost of accuracy. Quantifying this trade-off is future work. Lastly, we
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use the same model specification for both performance and power. We also
use the same specification for each application-specific model regardless of
application. A rigorous derivation to specify different models would require
additional designer effort, but may also yield accuracy improvements.

We also intend to compare and contrast the accuracy and costs of re-
gression modeling with other statistical techniques, such as machine learning
and neural networks. Although the specific techniques may differ, we believe
statistical techniques for inference are necessary to efficiently handle data
from large scale simulation. Statistical approaches are particularly valuable
when archives of observed performance or power data are available.
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sqrt(bips)~( # first-order effects

rcs(depth,4) + width + rcs(gpr_phys,4)

+ rcs(dmem_lat,3) + load_lat + fix_lat + rcs(fpu_lat,3)

+ rcs(l2cache_size,3) + rcs(icache_size,3) + rcs(dcache_size,3)

+ il1miss_rate + dl1miss_rate + dl2miss_rate

+ br_rate + br_mis_rate

+ stall_dmissq + stall_cast + stall_reorderq

+ stall_resv + stall_rename

+ rcs(base_bips,5)

# second-order effects

# interactions of pipe dimensions and in-flight queues

+ rcs(depth,4) %ia% rcs(gpr_phys,4)

+ width %ia% rcs(gpr_phys,4)

# interactions of depth and hazards

+ rcs(depth,4) %ia% rcs(l2cache_size,3)

+ rcs(depth,4) %ia% dl2miss_rate

+ rcs(depth,4) %ia% br_mis_rate

# interactions of width and i-cache

+ width %ia% il1miss_rate

+ width %ia% br_rate

+ width %ia% br_mis_rate

# interactions of L1 cache size and access rates

+ rcs(icache_size,3) %ia% il1miss_rate

+ rcs(dcache_size,3) %ia% dl1miss_rate

+ rcs(dcache_size,3) %ia% dl2miss_rate

# interactions of L2 cache size and access rates

+ rcs(l2cache_size,3) %ia% il1miss_rate

+ rcs(l2cache_size,3) %ia% dl1miss_rate

+ rcs(l2cache_size,3) %ia% dl2miss_rate

# interactions of stalls with bottleneck locations

+ width %ia% stall_resv

+ width %ia% stall_rename

# diminishing marginal returns with higher base perf

+ rcs(depth,4) %ia% rcs(base_bips,5)

+ width %ia% rcs(base_bips,5)

+ rcs(l2cache_size,3) %ia% rcs(base_bips,5)

+ rcs(dcache_size,3) %ia% rcs(base_bips,5)

+ rcs(icache_size,3) %ia% rcs(base_bips,5)

# third-order effects

# depth interactions with memory hierarchy and stalls

+ rcs(depth,4):rcs(dcache_size,3):rcs(l2cache_size,3)

+ rcs(depth,4):rcs(dcache_size,3):dl1miss_rate

+ rcs(depth,4):rcs(l2cache_size,3):il1miss_rate

+ rcs(depth,4):rcs(l2cache_size,3):dl1miss_rate

+ rcs(depth,4):rcs(dmem_lat,3):dl2miss_rate

# width interactions with memory hierarchy and stalls

+ width:rcs(icache_size,3):il1miss_rate

+ width:rcs(l2cache_size,3):dl1miss_rate

+ width:rcs(l2cache_size,3):il1miss_rate

);

Figure 15: General Model. Model specification in standard R syntax.
Restricted cubic splines for parameter p with k knots is denoted as rcs(p,k).
Interaction of non-linear and all terms is denoted by %ia% and :, respectively.
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sqrt(bips)~( # first-order effects

rcs(depth,4) + width + rcs(gpr_phys,4)

+ rcs(dmem_lat,3) + load_lat + fix_lat + rcs(fpu_lat,3)

+ rcs(l2cache_size,3) + rcs(icache_size,3) + rcs(dcache_size,3)

# second-order effects

# interactions of pipe dimensions and in-flight queues

+ rcs(depth,4) %ia% rcs(gpr_phys,4)

+ width %ia% rcs(gpr_phys,4)

# interactions of depth and hazards

+ rcs(depth,4) %ia% rcs(l2cache_size,3)

# third-order effects

+ rcs(depth,4):rcs(dcache_size,3):rcs(l2cache_size,3)

);

Figure 16: Application-Specific Model. Model specification in standard
R syntax as in Figure 15.
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