
An Architectural Assessment of SPEC CPU Benchmark Relevance

Benjamin C. Lee
Computer Science 261

Division of Engineering and Applied Sciences
Harvard University

Cambridge, Massachusetts, USA
bclee@deas.harvard.edu

Abstract

SPEC compute intensive benchmarks are often used to
evaluate processors in high-performance systems. However,
such evaluations are valid only if these benchmarks are rep-
resentative of more comprehensive real workloads. I present
a comparativearchitectural analysisof SPEC CPU bench-
marks and the more realistic SPEC Java Server bench-
mark. This analysis indicates the integer subset of CPU
benchmarks are broadly representative of the branching
and cache characteristics of server and business workloads.

I also leverage the collected data to perform astatis-
tical regression analysis, estimating an application’s per-
formance as a linear function of its observed architec-
tural characteristics. A linear model derived from simulated
SPEC CPU data appears to fit the observed data quite well,
with 94 percent of performance variance explained by four
predictors that incorporate cache and queue usage.

The linear model predicts server benchmark perfor-
mance to within 2 percent of the observed value. Despite
the regression model’s close fit to the observed data, its pre-
dictive ability is constrained by the trace collection facil-
ity. It is infeasible to use the performance of one trace suite
to predict the performance of another trace suite if the un-
derlying trace collection processes differ across suites.

1. Introduction

Challenges in efficient and comparable performance
evaluation led to a standardized set of relevant bench-
mark suites for high-performance computer systems. One
such suite, SPECcpu, is extensively employed in both mi-
croarchitecture and systems communities, but is often
considered not representative of the workloads exe-
cuted by real applications. Despite the frequent claims of
irrelevance, standardization has led to widespread adop-
tion of the SPECcpu benchmarks. Furthermore, developing

alternative benchmarks remains a costly venture. Compar-
ing the architectural characteristics of SPECcpu to those
of a more realistic workload, one can assess the rele-
vance of SPECcpu for modern applications.

In particular, I describe the performance for a subset
of the compute intensive SPECcpu benchmarks in terms
of their architectural characteristics, such as cache activ-
ity and branch prediction rates (Section 4). Throughout
the discussion, I will make comparisons with the more re-
alistic SPECjbb, a benchmark for evaluating performance
of servers running typical Java business applications. Fur-
thermore, I formulate statistical regression models to cap-
ture SPECcpu performance as a function of its architectural
characteristics and evaluate its predictive ability for other
benchmarks. (Section 6).

The following summarizes experimental results from ar-
chitectural simulation (Section 3):

1. Performance evaluations of SPECcpu must differenti-
ate between integer and floating-point benchmarks as
their architectural characteristics are distinctly differ-
ent. Any statistical aggregation (e.g., mean or median)
of the data across these subsets will obscure the sys-
tem’s true performance.

2. The relatively irregular control flow of integer bench-
marks is characterized by more branch instruc-
tions with relatively poor branch prediction, leading to
higher instruction cache misses.

3. The relatively regular control flow of floating-point
benchmarks is characterized by greater branch predic-
tion accuracy. These benchmarks incur more frequent
data cache misses as their access patterns induce more
cache conflicts relative to integer workloads.

4. The architectural characteristics of SPECjbb, the java
server benchmark, generally resemble the integer sub-
set of SPECcpu. However, SPECcpu under-represents
the instruction cache miss rate and over-represents the
data memory traffic of SPECjbb.

5. The performance of SPECcpu benchmarks may be
captured with statistical regression models (94%
of performance variation is explained by predictors
drawn from architectural characteristics). SPECjbb
performance is predicted to within 2 percent, but pre-
dictive ability is limited for other benchmark traces
by differences in trace facilities and instruction sam-
pling methodologies.

2. Related Work

There has been significant work in studying the perfor-
mance of SPEC benchmarks. These benchmarks have been
employed to such an extent that enumerating all the archi-
tecture and systems projects that employ them is infeasi-
ble. There has been, however, relevant work in studying the
SPEC benchmarks for their own sake.

2.1. SPEC Workload Studies

A subset of researchers in the architecture community
believe SPEC benchmarks are unnecessarily long for sim-
ulation purposes. A short, synthetic benchmark that is sta-
tistically equivalent to a longer, real benchmark is one ap-
proach to reduce simulation time. Statistical equivalence of-
ten refers to equal instruction mix and frequencies. Thus,
most studies and characterizations of the SPEC benchmarks
aim to identify their smaller equivalent subsets. Eeckhout,
et al., have studied statistical simulation in the context
of workloads and benchmarks for architectural simulators
[1, 2, 3, 4]. Nussbaum,et al. has examined similar statis-
tical approaches for simulating superscalar and symmet-
ric multiprocessor systems [5, 6]. Both researchers claim
detailed microarchitectural simulations for specific bench-
marks are not feasible early in the design process. Instead,
benchmarks should be profiled to obtain relevant program
characteristics, such as instruction mix and data dependen-
cies between instructions. A smaller synthetic benchmark is
then constructed with similar characteristics.

In contrast, I profile benchmarks for microarchitectural
characteristics instead of higher level program characteris-
tics. Furthermore, I characterize complete benchmarks for
comparison to other complete benchmarks believed to be
more representative of real workloads, aiming to evaluate
the relevance of the SPEC benchmarks. Researchers study-
ing synthetic benchmarks based on the SPEC suites implic-
itly make strong assumptions about the relevance of SPEC
benchmarks to synthesize new benchmarks that are inher-
ently less relevant at the application level.

Henning provided one of the first performance evalua-
tions for SPECcpu 2000 on the Alpha 21164 and Alpha
21264 chips, comparing integer and floating-point bench-
mark performance and considering level-3 cache misses [7].

Although evaluating performance in hardware via counters
improves accuracy, the level of architectural detail is con-
strained by counter availability. Simulated evaluation often
provides greater detail with only modest costs in accuracy.
The simulator I employ has been validated against a hard-
ware implementation.

The techniques I use to compare SPECcpu and SPECjbb
are similar to those of KleinOsowski and Lilja [8]. These
authors characterize the SPECcpu benchmarks by instruc-
tion mix and level-1 cache miss rates as measured in an
architectural simulator. They use these characteristics as
points at which to compare the architectural behavior of
SPEC benchmarks against MinneSPEC, their proposed syn-
thetic approximation to the full SPECcpu suite. Similarly, I
employ an architectural simulator, Turandot, to compare the
full SPECcpu suite against an alternative benchmark. How-
ever, the simulator used in my work provides much more de-
tail regarding misses at multiple levels of cache and branch-
ing behavior.

2.2. Statistical Regression Modeling

Although statistical techniques are typically used to gen-
erate synthetic benchmarks, there is no prior work, to my
knowledge, that applies statistical regression techniques to
predict performance from the architectural characteristics of
an application. The closest such work is Yi and Lilja’s work
in developing a statistically rigorous approach for improv-
ing simulation methodology by identifying statistically sig-
nificant architectural design parameters [13, 14, 15]. Given
a set ofN parameters, they employ Plackett-Burman ex-
perimental designs to identifyn < N significant parame-
ters that have the greatest effect on a particular metric and
thus should vary in a design space exploration [16]. In con-
trast to ad-hoc approaches to design space studies, Yi and
Lilja’s work provides computer architects with a statisti-
cally significant set of design parameters to consider (e.g.
cache sizes, pipeline depth).

My approach to and objectives for statistical model-
ing differ. I apply regression modeling to predict perfor-
mance as a function of significant architectural characteris-
tics where significance is evaluated by t-tests and p-values.

3. Experimental Methodology

3.1. Microarchitectural Modeling

I employ Turandot, a cycle-based microprocessor sim-
ulator [10], to obtain performance measurements and rel-
evant architectural statistics. The simulator is configured
to simulate a single-threaded pipeline, resembling the IBM
POWER4 architecture (Table 1). The simulated memory
hierarchy implements a Harvard architecture (separate in-

Processor Core

Decode Rate 4 non-branch instructions per cycle
Dispatch Rate 9 instructions per cycle
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy latency
L1 ICache Size 32KB, 1-way, 128B blocks, 1-cy latency
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy latency
Memory 77-cy latency

Pipeline Dimensions

Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 1. Microarchitectural Parameters.

struction and data caches at the first level) with a unified
second level cache.

3.2. Performance and Architectural Metrics

Performance is evaluated in terms of achieved instruc-
tion throughput (instructions per cycle). Table 2 lists the ar-
chitectural characteristics examined for each benchmark. In
addition to throughput, I consider instruction and data cache
accesses and misses at level one and two. Data cache trailing
accesses refer to data cache probes to lines being brought in
(e.g.trailing-edge effect).

Turandot provides statistics regarding the application’s
branching characteristics. Branch stalls specify the num-
ber of cycles spent fetching from an incorrect path. The
branch count is categorized into conditional branch, branch-
to-link-register, and branch-to-count-register instructions.
The branch prediction logic speculates on the branch con-
dition for the first type and speculates on the branch targets
within the registers for the last two types.

The simulator also tracks the cause of microprocessor
stalls. The “ibuf” and “inflight” statistics track the number
of fetch cycles stalled due to a full instruction buffer and
constraints on the number of in-flight instructions, respec-
tively. Similarly, the simulator tracks the memory unit stalls
due to a full miss queue from limits on the number of out-
standing cache misses and a full cast out queue from cache
lines cast out and waiting to be handled by a coherency pro-
cessor. Store and reorder queue occupancy is also moni-
tored. Lastly, the “resv” and “rename” statistics track dis-
patch stalls due to full issue queues and rename stalls due to
lack of instructions decoded, respectively.

3.3. Benchmarks

The Standard Performance Evaluation Corpora-
tion (SPEC) publishes a standard set of benchmarks
designed for performance measurements of compute inten-
sive workloads [9]. Standardization implies comparability
of these measurements across different systems. Ta-
ble 3 lists a suite of 21 benchmarks from the SPEC CPU

Instruction Throughput

instruction count cycle count

Instruction Cache

probe count
I-L1 misses I-L2 misses
I-TLB1 misses I-TLB2 misses

Data Cache

probe count
D-L1 misses D-L2 misses
D-TLB1 misses D-TLB2 misses
trailing accesses
D-L1 lines cast out

Branches

branch count branch stalls
cond branches cond mispredict
link branches link mispredict
counter branches counter mispredict

Stalls

ibuf inflight
dmissq cast
storeq reorderq
resv rename

Table 2. Architectural Characteristics.

Integer

bzip2 crafty gap
gcc gzip mcf
perlbmk twolf vpr

Floating-Point

ammp applu apsi
art equake facerec
lucas mesa mgrid
sixtrack swim wupwise

Java Server Benchmark

jbb

Table 3. Benchmarks.

2000 benchmarks (SPECcpu) categorized into integer and
floating-point workloads (SPECint and SPECfp, respec-
tively). Each of these workloads were developed in C or
Fortran from real applications, such as compression, com-
pilation, and scientific computing.

I compare SPECcpu against a benchmark for evaluating
the performance of server-side Java (SPECjbb). This bench-
mark emulates a three-tier client/server system. Although
implementations of the Java Virtual Machine (JVM), Just-
In-Time (JIT) compiler, garbage collection, threads, and as-
pects of the operating system are exercised, business logic
representative of current applications (including XML pro-
cessing and BigDecimal computation) and object manipu-
lation dominate [9]. This benchmark measures CPU, cache,
memory hierarchy performance, as well as the scalability of
shared memory processors.1

I report experimental results from benchmark traces gen-
erated with the tracing facilityAria [11] using the full ref-
erence input set. However, sampling reduced the total trace
length to 100 million instructions per benchmark program.
The sampled traces were validated against the full traces
[12]. I compared the SPECcpu traces with a SPECjbb trace
generated in the same manner.

1 SMP scalability is beyond the scope of this paper.

4. Architectural Analysis

I consider the architectural characteristics of SPECcpu
and compare them against those of SPECjbb. This com-
parison is intended to evaluate the relevance of SPECcpu
by comparing the degree to which it captures architectural
characteristics of real world applications. For example, if
SPECjbb were to incur significantly higher cache miss rates
relative to SPECcpu, one could further the argument of
SPECcpu irrelevance.

I consider four sets of architectural data, including (1) in-
struction cache, (2) data cache, (3) branch, and (4) through-
put characteristics. Intuitively, cache and branch character-
istics are primary determinants of processor and applica-
tion performance. The large memory latencies that may re-
sult from poor cache performance will likely overshadow
most other processor latencies. Branch characteristics de-
termine strongly impact the amount of useful computation
in the processor and the number of pipeline stalls associated
with executing incorrectly predicted paths. Thus, cache and
branching characteristics will collectively dominate any dis-
cussion of performance.

In each category, I compare summary statistics (min,
median, mean, max) for both integer and floating-point
workload characteristics in SPECcpu against the those in
SPECjbb. Green denotes floating-point workloads, blue de-
notes integer workloads, and red denotes the Java server
benchmark in figures throughout this section unless other-
wise noted. The full data set is available in the appendices.

4.1. Instruction Cache

Figures 1–2 summarize the instruction cache character-
istics normalized to the maximum observed value and Ap-
pendix A presents the detailed data. The probe frequency
refers to the fraction of total instructions resulting in an
instruction cache probe. As shown in Figure 1L, integer
benchmarks tend to probe the cache more frequently than
floating-point benchmarks (median probe freq: 21 versus
16 percent). These benchmarks not only access the instruc-
tion cache more frequently, but Figure 1R and Figure 2L
show they also tend to incur higher miss rates at both lev-
els of cache. However, in absolute terms, instruction L1 and
L2 cache misses are less than 5.0 and 0.1 percent, respec-
tively. TLB misses are also negligible.

The L1, L2 miss rates indicate the fraction of instruc-
tion probes incurring a miss in the L1, L2 cache. Since
L2miss/L1miss is the percentage of L1 misses that are also
L2 misses,1− (L2miss/L1miss) quantifies the percentage
of L1 misses resolved in the L2 cache (i.e. L2 cache ef-
fectiveness). For example, an effectiveness of 95 percent
means 95 percent of L1 cache misses are resolved in the L2
cache. Cache effectiveness follows a bimodal distribution

for floating-point benchmarks with roughly half of these
benchmarks exhibiting less than 15 percent effectiveness
and the other half exhibiting greater than 80 percent ef-
fectiveness (see Appendix A). In contrast, all but two in-
teger workloads exhibit greater than 90 percent effective-
ness. These trends are shown in Figure 2R.

Floating-point scientific computing applications are usu-
ally dominated by loops to iterate over and perform com-
putation on the data. Furthermore, these applications exert
less pressure on the cache since the loop body may reside in
cache from previous loop iterations. Although these are rea-
sonable inferences from the observed data, explicitly veri-
fying this behavior is beyond the scope of this paper.

Although SPECjbb’s probe frequency is only 13 percent
higher than that of SPECcpu’s integer subset, the cache miss
rates from SPECcpu are not representative of those from
the Java server benchmark. The integer benchmarks under-
represent the L1 miss rate by a factor of 2 and L2 miss rate
by a factor of 40 (comparing JBB miss rates against median
integer miss rates). Despite this large difference in cache
and memory accesses, SPECjbb L2 cache effectiveness to
resolve instruction misses is only 20 percent less than the
integer median. SPECfp is even less representative. From
these measurements, SPECcpu does not appear to fully cap-
ture the instruction cache characteristics of SPECjbb.

4.2. Branches

Figures 3–4 summarize the branch characteristics nor-
malized to the maximum observed value and Appendix B
presents the detailed data. As shown in Figure 3L, inte-
ger benchmarks tend to have more complex control flow
with branches comprising a larger percentage of all instruc-
tions (median branch rate: 15 versus 5 percent). Figure 3R
shows SPECint branches are also less predictable than their
floating-point counterparts with only 92 percent accuracy.
Collectively, the branch frequency and misprediction rate
explain the factor of 3 difference in the number of branch
induced stalls (i.e. cycles fetching from incorrect path) ob-
served in Appendix B. In contrast with the relatively com-
plex control flow for integer workloads, the regular loops
in scientific computing applications likely provide a larger
number of easily predicted branches. The branches at the
bottom of each loop to check conditions on the induction
variable are almost always predicted correctly, especially in
loops with many iterations.

The branch prediction logic speculates on the branch
condition for conditional branches and speculates on the
branch targets for branch-to-link-register and branch-to-
count-register instructions. As shown in Figure 4R, condi-
tional branches comprise more than 95 percent of the to-
tal. Although integer workloads experience better branch
target prediction, branches with such predictions are infre-

Figure 1. (Left) Number of instruction cache probes per 100 instructions; (Right) Percentage of instruction cache probes
missing in L1. Percentages are normalized with respect to the maximum observation.

Figure 2. (Left) Percentage of instruction probes missing in both L1 and L2; (Right) Percentage of L1 instruction cache
misses resolved in L2 cache. Percentages are normalized with respect to the maximum observation.

Figure 3. (Left) Number of branches per 100 instructions; (Right) Percentage of branches mispredicted. Values are normal-
ized with respect to maximum observation.

Figure 4. (Left) Percentage of branches mispredicted, categorized by type of branch and normalized with respect to the max-
imum observation. (Right) Distribution of branch types. Note y-axis starts at 90 percent. Unlike other figures in this section,
red denotes conditional branches, green denotes branch-to-link-register instructions, and blue denotes branch-to-count-
register instructions.

quent and their poor performance for conditional branches
dominate the overall performance impact of branches.

With branches comprising 17 percent of all instructions
and an 8 percent misprediction rate, SPECjbb branch char-
acteristics are comparable to those of SPECint. The obser-
vations suggest a positive correlation between instruction
cache activity and branch frequency; more branches lead to
more activity. SPECjbb’s instruction cache probe frequency
and branch frequency is 12 and 16 percent higher than those
of SPECint. No stronger conclusions may be drawn, how-
ever, since the relationship between branches and the in-
struction cache depend on branching distances, an unob-
served statistic. With regard to branches, SPECint seems
representative of SPECjbb, a proxy for real workloads.

4.3. Data Cache

Figures 5–6 summarize the data cache characteris-
tics normalized to the maximum observed value and
Appendix C presents the detailed data. Integer and floating-
point benchmarks have comparable cache access rates with
loads/stores comprising approximately 40 percent of all in-
structions. However, floating-point workloads experience
higher miss rates at both levels of cache (median L1: 9 ver-
sus 15 percent; median L2: 0.6 percent versus 6.8 percent).
Thus, integer workloads could be considered more com-
pute intensive when compared against floating-point
workloads. TLB misses from load and store operations oc-
cur with negligible frequency.

The complete data set in Appendix C reveals additional
information about data cache accesses. Both SPECint and
SPECfp include a single benchmark that skew average

cache activity. Integer workloadmcf for combinatorial
optimization and floating-point workloadart for image
recognition both experience L1 and L2 miss rates greater
than 50 and 25 percent, respectively. As SPECcpu is a com-
pute intensive benchmark, it may be appropriate that only
two benchmarks are memory bound.

With probe frequencies and L1 miss rates comparable
to SPECint and only 0.5 percent of data memory accesses
incurring L2 cache misses, SPECjbb is more compute in-
tensive that SPECcpu. Thus, SPECcpu appears to capture
the data cache characteristics of SPECjbb and both bench-
marks seem equally suitable for evaluating system research
targeted at improving CPU performance.

4.4. Performance

This study emphasizes the architectural characteristics of
commonly used benchmarks and their potential relevance.
Figure 7 presents the instruction throughput (measured in
instructions per cycle). The performance results illustrate
the dangers of averaging performance across benchmarks
due to outliers (e.g. mcf, art, lucas) that skew the mean.
SPECjbb performance, however, is well represented by the
majority of SPECcpu benchmarks, achieving performance
comparable to SPECcpu median throughput.

5. Regression Theory and Practice

Given the significant performance insights provided by
the preceding architectural analysis, I evaluate the feasibil-
ity of using this data set to statistically predict a bench-
mark’s instruction throughput as a function of its archi-

Figure 5. (Left) Number of data cache probes per 100 instructions; (Right) Percentage of data cache probes missing in L1.
Percentages are normalized with respect to the maximum observation.

Figure 6. (Left) Percentage of data cache probes missing in both L1 and L2; (Right) Percentage of L1 data cache misses
resolved in L2 cache. Percentages are normalized with respect to the maximum observation.

Figure 7. Performance Summary.

tectural characteristics. This section provides a brief back-
ground on regression, including the method of least squares
to derive coefficients for a linear model, the statistical prop-
erties of these coefficients, assessing the fit of a regression
model, and prediction with such a model.

5.1. Least Squares

Fitting a straight line to a plot of points(xi, yi) produces
a linear model for predictingy from x, wherei ∈ [1, n], n is
the number of data points, andx, y are known as the predic-
tor and response variables, respectively. To perform this fit,
the slope and intercept of the lineyi = β0 + β1xi must be
found. More generally, predictingyi from p predictors re-
quires fitting ap-th order polynomial by determiningp + 1
coefficients in Equation (1). A transformationf may be nec-
essary to convert a non-linear correlation between a predic-
tor and the response into a linear one.

yi = β0 +
p∑

j=1

βjfj(xij) (1)

The method of least squares is the most common method
for determining coefficients in a curve fitting problem. Least
squares determines the best-fitting curve to a set of points
by minimizing the sum of squared deviations of the pre-
dicted values (given by the curve) from the actual observa-
tions. In particular, least squares would find thep + 1 coef-
ficients in Equation (1) to minimize Equation (2).

S(β0, . . . , βp) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(2)

Equation (2) may be maximized by solving a system of
p + 1 partial derivatives ofS with respect toβj , j ∈ [0, p].
The solutions to this system,̂βj , are estimates of the co-
efficients in Equation (1). Furthermore, the solutions to this
system of linear equations may be expressed in closed form.
The statistical properties of these estimates are used to de-
termine the goodness of fit.

5.2. Statistical Properties

The statistical properties of the coefficient estimates are
used to evaluate the reliability of the linear model in the
presence of deviations from observed values. These devia-
tions may be treated as errors or noise in Equation (3), a
revised version of the statistical model in Equation (1). In
this model, the errorsei are independent random variables
with zero mean and some constant variance;E(ei) = 0 and
V ar(ei) = σ2.

yi = β0 +
p∑

j=1

βjfj(xij) + ei (3)

If the errorsei are independent normal random variables,
then the estimated coefficientŝβj are also normally dis-
tributed. This normality assumption leads to the relation-
ship in Equation (4), which enables hypothesis tests using
the tn−p−1 distribution. The estimateŝβj are obtained in
closed form by solving a linear system and their standard
deviationssβ̂j

may be obtained analytically from the closed
form estimates.

β̂j − βj

sβ̂j

∼ tn−p−1 (4)

Hypothesis testing employs Equation (4) and thetn−p−1

distribution. A commonly tested null hypothesis states the

j-th predictor in the model has no predictive value (H0 :
βj = 0). This hypothesis is tested by evaluating Equation
(4) under the null hypothesis to obtain thet-test, β̂j/sβ̂j

.
The t-test is typically computed for every coefficient esti-
mateβ̂j as a first step toward determining significance of
predictorxj in the model. Note the t-test follows at distri-
bution withn− p− 1 degrees of freedom.

Thep-valueis defined as2P (X≥|c|) for a random vari-
ableX and a constantc. In our analyses,X ∼ tn−p−1 and
c = β̂j/sβ̂j

. The p-value may be interpreted as the proba-
bility a value for the t-test greater than or equal to the value
actually observed would occur by chance if the null hypoth-
esis were true. If this probability were extremely small, ei-
ther the null hypothesis holds and an extremely rare event
has occurred or the null hypothesis is false. Thus, a small
p-value forβ̂j casts doubt on the hypothesisβj = 0 and
suggests thej-th predictor is statistically significant in pre-
dicting the response.

5.3. Assessing Fit

Goodness of fit is often assessed by examining residu-
als, defined in Equation (5) as the differences between ob-
served and predicted values. Residuals are often examined
graphically since plotting residuals against each of the pre-
dictors (i.e. a scatterplot of(êi, xij) for eachj ∈ [0, p])
may reveal systematic deviations from the standard statisti-
cal model.2 Ideally, there should be no correlation between
the residuals and the predictor.

êi = yi − β̂0 −
p∑

j=0

β̂jxij (5)

In addition to verifying standard assumptions, the multi-
ple correlation statistic,R2, is often computed to assess pre-
dictor effectiveness for the data used to create the model.
Equation (8) computes this statistic by computing regres-
sion error (SSE) as a fraction of the total error (SST). From
the equation,R2 will be zero when the error from the re-
gression model is just as large as the error from simply us-
ing the mean to predict the response. Thus,R2 is the per-
centage of variance in the response variable captured by the
predictor variables. MaximizingR2 while minimizing the
number of predictors is desirable. Furthermore, the statis-
tically significant predictors, identified by low p-values in
Section 5.2, are most likely to achieve this goal.

SSE =
n∑

i=1

(yi − ŷi)2 (6)

2 “Standard statistical model” refers to normality assumptions in Sec-
tion 5.2.

SST =
n∑

i=1

(
yi −

1
n

n∑
i=1

yi

)2

(7)

R2 = 1− SSE

SST
(8)

5.4. Prediction

Once a regression model satisfies standard normality as-
sumptions and is found to be a good fit to the observed data,
it may be used to predict the response from a new set of pre-
dictor values. Givenxn+1 = {xn+1,1, . . . , xn+1,p}, yn+1

may be predicted by simply evaluating the model atxn+1.

6. Regression Analysis

After considering the architectural characteristics of
SPECcpu and SPECjbb, I proceed to evaluate the poten-
tial for statistical performance model. In particular, is it
possible to derive models to predict instruction through-
put as a function of the architectural characteristics pre-
sented in Section 4? Given the large data set collected from
the previous study, an exploratory data analysis with re-
gression modeling is a natural starting point for answer-
ing this question. After a regression model is formulated
from the SPECcpu data, I evaluate its predictive abil-
ity for performance of SPECjbb and variants of the original
SPECcpu benchmarks obtained by changing the sam-
pling method used to generate the traces.

6.1. Regression Model

I apply the statistical methodology of Section 5 to bench-
marks’ architectural characteristics and performance evalu-
ation. I develop a regression model in the form of Equation
(1). In the simplest case, transformations are unnecessary
andf(xi) = xi. In the context of this work,y is the in-
struction throughput,xij is the observed j-th architectural
characteristic observed for the i-th benchmark (e.g.L1 data
cache miss rate for art), and estimates forβj are obtained
by the method of least squares.

A linear regression model is applicable only if perfor-
mance is linearly correlated with predictors drawn from the
architectural data. A case for linear modeling may be pre-
sented via scatterplots of instruction throughput versus po-
tential predictors. For example, Figure 8 is such a plot for
two possible predictors drawn from data cache characteris-
tics. These plots demonstrate a linear correlation between
the value of interest (ipc) and the possible predictors (data
probe and L1 cache miss rates). Figure 8 is representative
of the trends observed for most architectural characteristics
I considered. A linear model is a natural first step; transfor-
mations on the predictors may be applied to refine the ini-
tial model if necessary.

Figure 8. Scatterplots: Plots instruction throughput
against data cache probe frequencies and L1 data cache
miss rates.

Predictor Coeff. Estimate Std. Err. p-value

β0 Intercept 1.55E+00 1.27E+00 0.308
β1 iprobe rate 1.89E+00 5.93E+00 0.771
β2 iL1miss rate 6.25E+00 3.52E+00 0.174
β3 iL2miss rate 9.19E+01 1.09E+03 0.938
β4 dproberate -5.65E-01 1.33E+00 0.699
β5 dL1missrate -2.11E+00 1.53E+00 0.26
β6 dL2missrate -5.43E-01 3.31E+00 0.88
β7 stall ibuf -3.45E-09 2.23E-09 0.22
β8 stall inflight -3.23E-08 8.01E-08 0.714
β9 stall dmissq 3.45E-09 3.96E-09 0.448
β10 stall cast 6.66E-08 5.18E-08 0.289
β11 stall storeq -9.62E-08 2.74E-07 0.748
β12 stall reorderq -7.30E-08 5.16E-07 0.896
β13 stall resv -1.62E-09 9.71E-09 0.878
β14 stall rename -9.86E-10 6.61E-09 0.891
β15 br rate -1.24E+00 7.57E+00 0.88
β16 br stall -1.05E-08 5.17E-08 0.852
β17 br mis rate -2.57E-01 3.07E+00 0.939

Table 4. Initial Linear Regression: All architectural
characteristics included in model.

Table 4 displays the coefficient estimates for a model em-
ploying 17 different architectural characteristics (p = 17).
These coefficients are estimated by fitting the performance
and architectural characteristics of the 21 SPECcpu traces
(n = 21). In this context, the p-value is the probability
that the least squares method computes a non-zero coeffi-
cient estimate forβj listed in the table, given that the true
βj = 0. In other words, the p-value is the probability of es-
timating a significant non-zero relationship betweenyi and
predictorxij when, in reality, no such relationship exists.
Thus, statistically significant predictors would have low p-
values. The p-values in Table 4 indicate many of these pa-
rameters are not statistically significant.

By ranking predictors according to their p-values, the
iL1miss rate, dL1missrate, stallibuf, and stallcast appear

Figure 9. Residual Plots: Plots residuals against the four
predictors in the refined model.

to have some predictive ability. Indeed, a refined linear
model of these four parameters alone is a good fit of the ob-
served data (Table 5), confirmed when checking our model
assumptions and assessing goodness of fit.

6.2. Goodness of Fit

Goodness of fit is often assessed by examining residu-
als and computing the multiple correlation statisticR2. Fig-
ure 9 plots the residuals (êi = yi − β̂0 −

∑p
j=1 β̂jxij)

against each of the four predictors in Table 5. For each pre-
dictor, there is no apparent deviation from randomness in
the residuals and there is no obvious correlation between
the residuals and the predictor’s value. These plots validate
the assumptions about independent errors in Section 5.2 and
strengthen the case for a linear model to capture the rela-
tionship between performance and these particular architec-
tural measurements.

The multiple correlation statistic,R2, measures the
percent of the variance in the predicted value (yi) ex-
plained uniquely by the predictors (xij). In this partic-
ular model,R2 = 0.94. Qualitatively, this suggests the
four-dimensional “curve” fit to the 21 data points is a rela-
tively good fit. Thus, a simple linear model for predicting
instruction throughput of benchmarki is given in Equa-
tion (9), when the following predictors are observed for
benchmarki:

• xi1: instruction L1 cache miss rate

• xi2: data L1 cache miss rate

• xi3: number of fetch cycles stalled due to a full instruc-
tion buffer

• xi4: number of memory cycles stalled due to a full cast
out queue

Predictor Coeff. Estimate Std. Err. p-value

β0 Intercept 1.41E+00 4.27E-02 4.01E-16
β1 il1miss rate 5.74E+00 2.56E+00 0.0396
β2 dl1missrate -2.41E+00 2.30E-01 1.41E-08
β3 stall ibuf -2.69E-09 3.69E-10 1.81E-06
β4 stall cast 6.58E-08 1.04E-08 1.04E-05

Table 5. Refined Linear Regression: Subset of architec-
tural characteristics included in model.

Figure 10. SPECcpuv2 Prediction: Plots measured sim-
ulator data (observed) against predictions from the re-
gression model.

yi = 1.405 + (5.738)xi1 − (2.410)xi2 (9)
−(2.689× 10−09)xi3 + (6.58× 10−08)xi4

6.3. Predictive Ability

To assess the predictive ability of the linear model, eval-
uate Equation (9) for benchmarks not used in formulating
the model. Since the model is based on SPECcpu data, I
evaluate the model against SPECjbb and eight benchmarks
in another set of SPECcpu traces. From this point forward,
the original and alternative traces will be referred to as
SPECcpuv1 and SPECcpuv2, respectively.Aria generated
traces for SPECcpuv1 by splicing multiple significant pro-
gram segments into a single 100 million instruction trace.
In contrast,Simpointgenerated traces for SPECcpuv2 by
identifying a single continuous program segment of signifi-
cance [17]. Thus, the architectural characteristics of the two
sets of traces should be different, but comparable.

The regression model of Equation (10), evaluated for
SPECjbb’s observed architectural characteristics, predicted
1.141 instructions per cycle compared to the 1.118 instruc-
tions per cycle measured from Turandot. Thus, the archi-
tectural characteristics of SPECcpu are good predictors for
SPECjbb performance, with only a 2 percent error.

However, the regression model is unable to predict the
instruction throughput of SPECcpuv2. Figure 10 compares
observed throughput reported by the simulator against pre-
dicted throughput from evaluating Equation (10) with each
benchmark’s architectural characteristics reported by the
simulator. Not only are the absolute predictions inaccurate,
the relative predictions are also inaccurate. In other words,
ranking these benchmarks first by observed and then by pre-
dicted performance would lead to different orderings.

6.4. Experimental Ignorability

Studies in probabilistic inference must distinguish be-
tween the methodology for measuring a certain event and
the value obtained from the measurement. Theignorabil-
ity of a study’s design or data collection mechanism refers
to cases in which methodology may be safely ignored. If
a data collection mechanism is not ignorable, a naive infer-
ence model will result in misleading results. These concepts
are often illustrated in theMonty Hall Problem.

The Monty Hall Problem, named after the host of a game
show, supposes a contestant is given a choice of three doors.
A car is behind one door and goats are behind the oth-
ers. Without loss of generality, suppose the contestant picks
door 1 and Monty Hall, who knows what is behind each
door, opens door 3 to reveal a goat. He then gives the con-
testant the choice of staying with door 1 or switching to
door 2. Initially, the car is equally likely to be behind each
of the doors.

The decision to stay or switch depends on the probability
model formulated by the contestant. A model that ignores
methodology suggests, given it is not behind door 3, the car
is equally likely to be behind door 1 or 2. Thus, there is no
reason to switch.

However, the methodology for observing data is not ig-
norable. Monty Hall does not randomly choose a door to re-
veal, but reveals based on a methodology that never opens
the first door chosen by the contestant and never opens
the door containing the car. Ignoring this information about
how the goat is observed will produce the misleading prob-
ability model that suggests no reason to switch.

The contestant picks door 1 which hides a car with prob-
ability 1/3. Conversely, one of the other two doors hides a
car with probability 2/3. After Hall reveals the goat in door
3, door 2 alone hides the car with probability 2/3. Given
these odds, the contestant should switch from door 1 to door
2, since she is twice as likely to win the car after switching.

In a similar fashion, I suspect the regression model’s
poor predictive ability may be attributed to ignoring differ-
ences in the trace collection process. In particular, using
a linear model based on SPECcpuv1 to predict SPEC-
cpu v2 performance ignores potentially material differ-
ences in trace construction. As in the Monty Hall Problem,

a better model conditions a prediction, not only on obser-
vations (simulated performance and architectural charac-
teristics), but also on the methodology used to generate the
observations (splicing distinct instruction segments ver-
sus identifying a single contiguous segment).

In an initial attempt to capture tracing methodology in
the model, a fifth predictor is added to the original Equation
(10),xi5. This binomial predictor takes on a zero if instruc-
tion splicing is used and a one if a single contiguous instruc-
tion segment is used. Unfortunately, this predictor is not sta-
tistically significant and forcing it into the model does not
improve predictive ability. Thus, a single binomial predic-
tor appears inadequate in accounting for tracing methodol-
ogy. Techniques to incorporate non-ignorable mechanisms
into a predictive model are likely more subtle and remain an
open question.

7. Conclusions and Continuing Work

The SPEC compute intensive benchmarks are relevant
and representative of real workloads with regard to archi-
tectural characteristics such as cache activity and branching
characteristics. A subset of these architectural characteris-
tics are significant predictors of performance in a linear re-
gression model. These regression models are sensitive to the
underlying trace collection facilities.

I hope to collect a Berkeley DB trace for the simulator for
another comparison to SPECcpu2k. Berkeley DB is another
comprehensive benchmark, which exercises the whole sys-
tem. Resolving current difficulties with Berkeley DB trace
collection with present facilities is future work.

Additional traces would also further the evaluation of re-
gression modeling in architectural performance studies. Al-
though the models clearly have some predictive power, the
robustness of these models is still unclear. Since the models
are sensitive to the trace collection process, it may be pos-
sible to incorporate data collection parameters (e.g.number
of simulation points, contiguous program segments) as pre-
dictors in the model for added resilience.

References

[1] L. Eeckhout, H. Vandierendonk, K. DeBosschere. Designing
computer architecture research workloads. InIEEE Com-
puter, 2003.

[2] L. Eeckhout, S. Nussbaum, J. Smith, K. DeBosschere. Sta-
tistical Simulation: Adding Efficiency to the Computer De-
signer’s Toolbox. InIEEE Micro, September/October 2003.

[3] L. Eeckhout, K. DeBosschere. Hybrid analytical-statistical
modeling for efficiently exploring architecture and workload
design spaces. InPACT2001: International Conference on
Parallel Architectures and Compilation Techniques, Novem-
ber 2001.

[4] L. Eeckhout, K. DeBosschere. Early design phase
power/performance modeling through statistical simulation.
In ISPASS2001: International Symposium on Performance
Analysis of Systems and Software, November 2001.

[5] S. Nussbaum, J. Smith. Statistical Simulation of Symmet-
ric Multiprocessor Systems.35th Annual Simulation Sympo-
sium, April 2002.

[6] S. Nussbaum, J. Smith. Modeling Superscalar Processors
via Statistical Simulation.PACT2001: International Confer-
ence on Parallel Architectures and Compilation Techniques,
Barcelona, Sept. 2001.

[7] J.L. Henning. SPEC CPU 2000: Measuring cpu performance
in the new millenium. InIEEE Computer, July 2000.

[8] A.J. KleinOsowski, D.J. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer archi-
tecture research. InComputer Architecture Letters, June
2002.

[9] Standard Performance Evaluation Corporation.
http://www.spec.org

[10] M. Moudgill, J.D. Wellman, J. Moreno. Validation of Tu-
randot, a fast processor model for microarchitecture explo-
ration. Proceedings of the IEEE International Performance,
Computing and Communication Conference, February 1999.

[11] M. Moudgill, J. Wellman, J. Moreno. Environment for Pow-
erPC Microarchitecture Exploration.IEEE Micro, May/Jun
1999.

[12] V. Iyengar, L.H. Trevillyan, P. Bose. Representative Traces
for Processor Models with Infinite Cache. InProc. HPCA-2,
Feb 1996.

[13] J. Yi, D. Lilja, D. Hawkins. Improving Computer Architec-
ture Simulation Methodology by Adding Statistical Rigor. In
IEEE Transactions on Computer, November 2005.

[14] J. Yi, D. Lilja, D. Hawkins. A statistically rigorous approach
for improving simulation methodology. InProceedings of
the International Symposium on High- Performance Com-
puter Architecture., February 2003.

[15] J. Yi. Improving processor performance and simulation
methodology. Ph.D. Thesis, University of Minnesota, De-
cember 2003.

[16] R.L. Plackett, J.P. Burman. The design of optimum multi-
factorial experiments. InBiometrika 33, 1945.

[17] G. Hamerly, E. Perelman, J. Lau, B. Calder. SimPoint 3.0:
faster and more flexible program analysis. Workshop on
Modeling, Benchmarking and Simulation, June 2005.

[18] P.D. Grunwald, J.Y. Halpern. Updating probabilities. Jour-
nal of Artificial Intelligence Research, vol. 19, 2003.

A. Instruction Cache Characteristics

Probe Freq L1 Misses L1 Miss Rate L2 Misses L2 Miss Rate L2 Effectiveness TLB1 Misses TLB2 Misses

Integer

bzip2 20.62% 142 0.001% 142 0.001% 0.00% 0 13
crafty 18.17% 726095 3.705% 1123 0.006% 99.85% 0 39
gap 20.86% 37996 0.182% 339 0.002% 99.11% 0 24
gcc 31.69% 122186 0.385% 11808 0.037% 90.34% 4093 674
gzip 26.54% 390 0.001% 341 0.001% 12.56% 0 25
mcf 27.08% 19376 0.071% 138 0.001% 99.29% 1 18
perlbmk 19.31% 213265 1.047% 1147 0.006% 99.46% 19247 128
twolf 17.60% 25937 0.141% 286 0.002% 98.90% 0 33
vpr 16.51% 2175 0.010% 136 0.001% 93.75% 0 11

min 16.51% 142 0.001% 136 0.001% 0.00% 0 11
mean 22.04% 127507 0.616% 1718 0.006% 77.03% 2593 107
median 20.62% 25937 0.141% 339 0.002% 98.90% 0 25
max 31.69% 726095 3.705% 11808 0.037% 99.85% 19247 674

Floating-Point

ammp 17.05% 877 0.005% 422 0.002% 51.88% 0 47
applu 14.98% 588 0.004% 518 0.003% 11.90% 1 40
apsi 16.89% 116708 0.684% 1326 0.008% 98.86% 0 44
art 15.52% 117 0.001% 117 0.001% 0.00% 0 8
equake 13.95% 28489 0.203% 167 0.001% 99.41% 1 17
facerec 15.86% 3403 0.037% 499 0.005% 85.34% 0 31
lucas 15.53% 116 0.001% 116 0.001% 0.00% 0 12
mesa 19.65% 306431 1.187% 496 0.002% 99.84% 1 48
mgrid 13.26% 796 0.006% 419 0.003% 47.36% 0 31
sixtrack 14.98% 16101 0.107% 765 0.005% 95.25% 1 84
swim 14.93% 76 0.001% 76 0.001% 0.00% 0 5
wupwise 19.96% 178 0.001% 178 0.001% 0.00% 0 9

min 13.26% 76 0.001% 76 0.001% 0.00% 0.00 5.00
mean 16.04% 39490 0.186% 425 0.003% 49.15% 0.33 31.33
median 15.52% 837 0.006% 421 0.002% 49.62% 0.00 31.00
max 19.96% 306431 1.187% 1326 0.008% 99.84% 1.00 84.00

Java Server Benchmark

jbb 23.26% 69744 0.2936% 14042 0.059% 79.87% 1028 773
w.r.t int 1.128 2.689 2.086 41.422 38.095 0.808 1.000 30.920
w.r.t fp 1.499 83.376 53.163 33.394 27.005 1.610 1.000 24.935

Table 6. Instruction Cache Measurements: Architectural measurements of integer and floating-point SPECcpu2k bench-
marks. Measurements of SPECjbb2005 are compared against the median of integer and floating-point measurements.

B. Branch Characteristics

Branch Freq Stalls(mil) Overall Mispr Cond Cond Mispr Link Link Mispr Ctr Ctr Mispr

Integer

bzip2 15.63% 13.195 10.17% 1.284E+07 10.45% 3.501E+05 0.05% 0.000E+00 n/a
crafty 10.08% 9.493 7.57% 8.912E+06 7.58% 5.114E+05 0.35% 7.032E+04 58.76%
gap 14.82% 12.224 2.56% 1.054E+07 2.91% 1.598E+06 0.06% 9.041E+04 6.36%
gcc 29.33% 28.989 1.16% 2.867E+07 1.01% 2.541E+05 1.79% 6.680E+04 61.60%
gzip 21.71% 21.178 5.86% 2.105E+07 5.89% 1.294E+05 0.23% 2.720E+02 7.72%
mcf 21.76% 19.902 7.06% 1.979E+07 7.08% 1.017E+05 0.04% 6.420E+03 50.05%
perlbmk 14.71% 13.685 9.09% 1.138E+07 3.32% 1.145E+06 0.43% 1.157E+06 74.43%
twolf 12.31% 11.170 16.55% 1.095E+07 16.50% 2.149E+05 18.90% 7.030E+02 12.52%
vpr 9.38% 10.994 15.02% 1.084E+07 15.22% 1.535E+05 0.80% 4.600E+01 2.17%

min 9.38% 9.493 1.16% 8.912E+06 1.01% 1.017E+05 0.04% 0.000E+00 2.17%
mean 16.64% 15.648 8.34% 1.500E+07 7.77% 4.953E+05 2.52% 1.546E+05 34.20%
median 14.82% 13.195 7.57% 1.138E+07 7.08% 2.541E+05 0.35% 6.420E+03 31.28%
max 29.33% 28.989 16.55% 2.867E+07 16.50% 1.598E+06 18.90% 1.157E+06 74.43%

Integer

ammp 9.95% 9.525 2.91% 9.399E+06 2.86% 1.066E+05 0.93% 1.929E+04 36.58%
applu 0.54% 0.545 4.60% 5.445E+05 4.58% 3.140E+02 27.39% 4.900E+01 48.98%
apsi 5.01% 4.823 6.87% 4.724E+06 7.00% 9.850E+04 1.05% 0.000E+00 n/a
art 4.13% 4.306 1.67% 4.306E+06 1.67% 1.300E+01 23.08% 0.000E+00 n/a
equake 2.35% 2.226 11.12% 2.138E+06 11.42% 7.927E+04 0.03% 8.854E+03 40.05%
facrec 7.33% 3.749 6.17% 3.650E+06 6.11% 9.057E+04 4.52% 7.917E+03 52.96%
lucas 2.95% 1.976 0.46% 8.766E+05 0.92% 1.099E+06 0.10% 0.000E+00 n/a
mesa 7.52% 8.549 7.21% 7.249E+06 8.48% 1.081E+06 0.07% 2.193E+05 0.55%
mgrid 0.89% 0.898 3.44% 8.969E+05 3.41% 9.320E+02 25.64% 1.540E+02 40.26%
sixtrack 5.67% 5.223 9.32% 5.135E+06 8.73% 4.998E+04 7.81% 3.793E+04 90.41%
swim 2.68% 2.683 0.46% 2.682E+06 0.46% 1.529E+03 0.20% 0.000E+00 n/a
wupwise 7.69% 6.661 7.82% 6.303E+06 8.25% 3.576E+05 0.21% 0.000E+00 n/a

min 0.54% 0.545 0.46% 5.445E+05 0.46% 1.300E+01 0.03% 0.000E+00 0.55%
mean 4.73% 4.264 5.17% 3.992E+06 5.32% 2.472E+05 7.58% 2.446E+04 44.26%
median 4.57% 4.028 5.38% 3.978E+06 5.34% 8.492E+04 0.99% 1.015E+02 40.26%
max 9.95% 9.525 11.12% 9.399E+06 11.42% 1.099E+06 27.39% 2.193E+05 90.41%

Java Server Benchmark

jbb 17.19% 16.039 8.02% 1.526E+07 7.32% 6.020E+05 12.32% 1.740E+05 54.65%
w.r.t int 1.160 1.216 1.060 1.341 1.034 2.369 35.091 27.103 1.747
w.r.t. fp 3.762 3.982 1.491 3.837 1.371 7.089 12.447 1714.315 1.358

Table 7. Branch Measurements: Architectural measurements of integer and floating-point SPECcpu2k benchmarks. Mea-
surements of SPECjbb2005 are compared against the median of integer and floating-point measurements.

C. Data Cache Characteristics

Probe Freq L1 Misses(E+06) L1 Miss Rate L2 Misses(E+06) L2 Miss Rate L2 Effectiveness TLB1 Misses(E+03) TLB2 Misses(E+03)

Integer

bzip2 33.19% 0.725 2.18% 0.213 0.64% 70.56% 85.292 5.336
crafty 37.95% 2.690 6.57% 0.019 0.05% 99.28% 73.094 0.380
gap 41.88% 3.939 9.39% 0.519 1.24% 86.82% 3.868 4.639
gcc 51.93% 7.617 14.64% 0.690 1.33% 90.94% 245.397 8.756
gzip 25.58% 1.990 7.77% 0.441 1.72% 77.87% 0.129 1.880
mcf 39.48% 20.175 51.03% 9.567 24.20% 52.58% 2654.277 393.713
perlbmk 46.82% 2.655 5.37% 0.040 0.08% 98.50% 75.595 1.718
twolf 33.96% 6.365 17.90% 0.069 0.19% 98.92% 455.044 0.335
vpr 28.80% 3.344 8.90% 0.102 0.27% 96.96% 422.301 0.312

min 25.58% 0.725 2.18% 0.019 0.05% 52.58% 0.129 0.312
mean 37.73% 5.500 14.36% 1.296 3.30% 85.82% 446.111 46.341
median 37.95% 3.344 8.90% 0.213 0.64% 90.94% 85.292 1.880
max 51.93% 20.175 51.03% 9.567 24.20% 99.28% 2654.277 393.713

Floating-Point

ammp 36.50% 6.301 17.14% 1.435 3.90% 77.22% 263.787 212.993
applu 45.85% 6.702 14.56% 4.641 10.08% 30.75% 53.137 54.997
apsi 43.42% 4.416 10.07% 0.961 2.19% 78.24% 831.712 123.641
art 60.38% 34.586 54.88% 14.997 23.80% 56.64% 794.558 0.738
equake 56.76% 11.004 19.30% 8.077 14.16% 26.60% 588.951 64.344
facerec 35.55% 4.095 19.91% 1.277 6.21% 68.81% 357.810 14.389
lucas 26.10% 3.930 14.43% 3.015 11.07% 23.29% 1062.433 2799.049
mesa 31.13% 2.503 6.12% 0.354 0.86% 85.86% 64.424 4.701
mgrid 38.82% 3.659 9.33% 1.548 3.95% 57.70% 2.080 36.262
sixtrack 28.64% 0.802 2.80% 0.043 0.15% 94.60% 19.902 0.987
swim 40.54% 6.465 15.91% 4.975 12.24% 23.05% 147.654 636.572
wupwise 49.01% 5.793 11.81% 3.639 7.42% 37.19% 4.877 34.145

min 26.10% 0.802 2.80% 0.043 0.15% 23.05% 2.080 0.738
mean 41.06% 7.521 16.77% 3.747 8.00% 54.99% 349.277 331.902
median 39.68% 5.104 14.50% 2.281 6.81% 57.17% 205.721 45.630
max 60.38% 34.586 54.88% 14.997 23.80% 94.60% 1062.433 2799.049

Java Server Benchmark

jbb 34.89% 3.817 10.71% 0.181 0.51% 95.26% 60.242 1.558
w.r.t. to int 0.919 1.142 1.20 0.847 0.79 1.03 0.706 0.829
w.r.t. to fp 0.879 0.748 0.74 0.079 0.07 1.80 0.293 0.034

Table 8. Data Cache Measurements: Architectural measurements of integer and floating-point SPECcpu2k benchmarks.
Measurements of SPECjbb2005 are compared against the median of integer and floating-point measurements.

