
Illustrative Design Space Studies with Microarchitectural Regression Models

Benjamin C. Lee and David M. Brooks
Division of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts

{bclee, dbrooks}@eecs.harvard.edu

Abstract

We apply a scalable approach for practical, comprehen-
sive design space evaluation and optimization. This ap-
proach combines design space sampling and statistical in-
ference to identify trends from a sparse simulation of the
space. The computational efficiency of sampling and in-
ference enables new capabilities in design space explo-
ration. We illustrate these capabilities using performance
and power models for three studies of a 260,000 point de-
sign space: (1) pareto frontier analysis, (2) pipeline depth
analysis, and (3) multiprocessor heterogeneity analysis. For
each study, we provide an assessment of predictive error
and sensitivity of observed trends to such error.

We construct pareto frontiers and find predictions for
pareto optima are no less accurate than those for the
broader design space. We reproduce and enhance prior
pipeline depth studies, demonstrating constrained sensitiv-
ity studies may not generalize when many other design pa-
rameters are held at constant values. Lastly, we identify ef-
ficient heterogeneous core designs by clustering per bench-
mark optimal architectures. Collectively, these studies mo-
tivate the application of techniques in statistical inference
for more effective use of modern simulator infrastructure.

1 Introduction

Microarchitectural design space exploration is often ineffi-
cient and ad hoc due to the significant computational costs
of current simulator infrastructure. While simulators pro-
vide insight into application performance for a broad range
of microarchitectural designs, the inherent costs of mod-
eling microprocessor execution result in long simulation
times and, in trace-driven simulators, non-trivial storage
costs. Designers circumvent these challenges by constrain-
ing the design space considered (often using intuition or ex-
perience) and/or reducing the size of simulator inputs via
trace sampling. However, by pruning the design space with

intuition before a study, the designer risks obtaining conclu-
sions that simply reinforce prior intuition and may not gen-
eralize to the broader space. Trace sampling, while effec-
tive in reducing the simulator input size by orders of magni-
tude, only impacts per simulation costs and does not address
the number of simulations required in a comprehensive de-
sign space study. Trace sampling alone is insufficient as per
simulations costs decrease linearly, albeit by a large factor,
while the number of potential simulation points increase ex-
ponentially with the number of design parameters. This ex-
ponential increase is currently driven by the design of multi-
core, multi-threaded microprocessors targeting several dif-
ferent metrics including single-thread latency, throughput
for emerging parallel workloads, and energy. These trends
will also lead to more variety in the set of viable and inter-
esting designs (e.g., simpler, less aggressive cores), thereby
requiring a more thorough exploration of a comprehensive
design space.

Techniques in statistical inference are necessary for a
scalable simulation approach that addresses these funda-
mental challenges, modestly reducing detail for substan-
tial gains in speed and tractability. Even for applications
in which obtaining extensive measurement data is feasible,
efficient analysis of this data often lends itself to statisti-
cal modeling. Such an approach typically requires an initial
data set for model formulation or training. The model re-
sponds to predictive queries by leveraging correlations in
the original data for inference. Regression follows this pre-
dictive paradigm in a relatively cost effective manner, for-
mulating models from observed data by numerically solving
a system of linear equations. Predictions are obtained by
evaluating a linear system. Well optimized numerical linear
algebra libraries lead to computationally efficient models,
enabling thousands of predictions in a few seconds.

Design space sampling and statistical inference enables
the designer to (1) perform a tractable number of simula-
tions independent of design space size or resolution and
(2) use simulator data efficiently by inferring trends with-
out explicit and exhaustive simulation. To achieve the first

objective, we sample points uniformly at random from the
design space for simulation (Section 2). Prior work has
found 1,000 samples sufficient for a space with 1 billion de-
signs and we similarly obtain 1,000 samples from a space
of 375,000 designs [14]. To achieve the second objective
given these samples, we formulate non-linear regression
models for microarchitectural performance and power pre-
diction (Section 3), achieving median error rates of 7.2 and
5.4 percent relative to simulation. Given their accuracy, we
apply regression models to comprehensively explore a de-
sign space for three optimization problems:

1. Pareto Frontier Analysis: We comprehensively char-
acterize the design space, constructing a regression
predicted pareto frontier in the power-delay space. We
find predictions for pareto optima are as accurate as
those for the broader space (Section 4).

2. Pipeline Depth Analysis: We compare a constrained
pipeline depth study against an enhanced study that
varies all parameters simultaneously via regression
modeling. We find constrained sensitivity studies may
not generalize when many other design parameters are
held at constant values (Section 5).

3. Multiprocessor Heterogeneity Analysis: We identify
efficiency maximizing architectures for each bench-
mark via regression modeling and cluster these archi-
tectures to identify design compromises. We quantify
the power-performance benefits from varying degrees
of core heterogeneity, quantifying a theoretical upper
bound on bips3/w efficiency gains. We find modest
heterogeneity may provide substantial efficiency ben-
efits relative to homogeneity (Section 6).

For each case study, we provide an assessment of predic-
tive error and sensitivity of observed trends to such error.
Collectively these studies demonstrate the applicability of
regression models for performance and power prediction in
practical design space optimization.

2 Experimental Methodology

2.1 Simulation Framework

We use Turandot, a generic and parameterized, out-of-
order, superscalar processor simulator [16]. Turandot is en-
hanced with PowerTimer to obtain power estimates based
on circuit-level power analyses and resource utilization
statistics [1]. The modeled baseline architecture is simi-
lar to the current POWER4/POWER5. The simulator has
been validated against both a POWER4 RTL model and a
hardware implementation. Power scales superlinearly as
pipeline width increases, using scaling factors derived for

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width decode b/w 2,4,8 3

L/S queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose count 40::10::130 10
Registers floating-point count 40::8::112

special purpose count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table 1. Design space; i::j::k denotes values
from i to k in steps of j.

an architecture with clustered functional units [25]. Cache
power and latencies scale with array size according to
CACTI [21]. We do not leverage any particular feature of
the simulator and our framework may be generally applied
to other simulation frameworks with similar accuracy. We
evaluate performance in billions of instructions per second
(bips) and power in watts (w).

We use R, an open-source software environment for sta-
tistical computing, to script and automate statistical analy-
ses [23]. Within this environment, we use the Hmisc and
Design packages implemented by Harrell [7].

2.2 Benchmark Suite

We consider SPECjbb, a Java server benchmark, and eight
compute intensive benchmarks from SPEC2000 (ammp, ap-
plu, equake, gcc, gzip, mcf, mesa, twolf). We report exper-
imental results based on PowerPC traces of these bench-
marks. The SPEC2k traces used in this study were sam-
pled from the full reference input set to obtain 100 million
instructions per benchmark program. Systematic valida-
tion was performed to compare the sampled traces against
the full traces to ensure accurate representation [11]. Our
benchmark suite is representative of larger suites frequently
used in the microarchitectural research community [18].
Although specific conclusions of our design space studies
may differ with different benchmarks, we do not leverage
any particular benchmark feature in model formulation and
our framework may be generally applied to other workloads
with similar accuracy.

2.3 Design Space Sampling

The approach for obtaining observations from a large mi-
croarchitectural design space is critical to efficient formula-
tion of regression models. Table 1 identifies seven groups
of parameters varied simultaneously. The range of values

considered are specified by sets, S1, . . . , S7. The Carte-
sian product of these sets, S =

∏7
i=1 Si, defines the design

space that contains |S| =
∏7

i=1 |Si| = 375, 000 points.
Models are formulated with n = 1, 000 samples from the
space and each sampled design is simulated for all work-
loads in the benchmark suite.

Techniques that sweep design parameter values to con-
sider all design points in S is impractical despite continu-
ing research to reduce per simulation costs. In contrast to
prior research that emphasizes trace sampling [20, 24], we
sample uniformly at random (UAR) from the design space
S to control the exponentially increasing number of de-
sign points as parameter count and resolution increases [14].
This approach provides observations from the full range of
parameter values and enables identification of trade-offs be-
tween parameter sets. An arbitrarily large number of values
may be included in a set Si, thereby achieving greater pa-
rameter space resolution, since the number of simulations is
decoupled from set cardinality via random sampling. While
design space studies that consider points around a baseline
configuration may be biased toward the baseline, sampling
UAR provides unbiased observations.

3 Regression Modeling

We build on our prior work that derived regression mod-
els for the microarchitectural design space and validated for
randomly selected designs [14, 15]. This statistically ro-
bust derivation applied statistical analyses including vari-
able clustering, association and correlation analysis, resid-
ual analysis, and significance testing. We further this prior
work by applying performance and power regression mod-
els to practical design space optimization.

3.1 Model Formulation

For a large universe of interest, suppose we have a sub-
set of n observations for which values of the response and
predictor variables are known. Let ~y = y1, . . . , yn denote
observed responses. For a particular point i in this universe,
let yi denote its response and ~xi = xi,1, . . . , xi,p denote its
p predictors. Let ~β = β0, . . . , βp denote regression coeffi-
cients used in describing the response as a linear function of
predictors plus a random error ei as shown in Equation (1).
Transformations f and ~g = g1, . . . , gp may be applied to the
response and predictors, respectively, to improve model fit.
We fit a regression model to observations by determining ~β
with the method of least squares.

f(yi) = β0 +
p∑

j=1

βjgj(xij) + ei (1)

In the context of microprocessor design, the response y rep-
resents a metric of interest (e.g., performance or power)

and the predictors x represent design parameter values (e.g.,
pipeline depth or L2 cache size).

3.2 Predictor Interaction

In some cases, the effect of two predictors xi,1 and xi,2

on the response cannot be separated; the effect of xi,1 on
yi depends on the value of xi,2 and vice versa. The in-
teraction between two predictors may be modeled by con-
structing a third predictor xi,3 = xi,1xi,2 to obtain yi =
β0+β1xi,1+β2xi,2+β3xi,1xi,2+ei. We draw on domain-
specific knowledge to specify such interactions. Pipeline
depth likely interacts with cache sizes. As the L2 cache size
decreases, memory stalls per instruction will increase and
instruction throughput gains from pipelining will be con-
strained. Pipeline width is expected to interact with register
file and queue sizes. We also specify interactions between
sizes of adjacent cache levels in the memory hierarchy (e.g.,
L1 and L2 cache size interaction).

3.3 Non-Linearity

Linearity assumptions are often too restrictive as non-
linear transformations may reduce error and capture non-
linear effects. A square-root transformation on the response
(f(yi) =

√
y) is particularly effective for reducing error

variance in our performance models. Similarly, a log trans-
formation (f(yi) = log(y)) more effectively captures ex-
ponential trends in our power model. We also consider
restricted cubic splines on the predictors. Splines divide
the predictor domain into intervals with endpoints called
knots and different cubic polynomials are fit to observations
within each interval to obtain a piecewise cubic polynomial.
Cubic splines have several advantages over simpler polyno-
mial transformations and lower order splines [14].

The position and number of knots are tunable when spec-
ifying non-linearity with splines. Knots at fixed quantiles
of a predictor’s distribution ensure a sufficient number of
points in each interval and is effective in most datasets [22].
As the number of knots increases, flexibility improves at
the risk of over-fitting the data. The strength of a predic-
tor’s correlation with the response will determine the num-
ber of knots in the transformation. A lack of fit for predic-
tors highly correlated with the response will have a greater
negative impact on accuracy. For example, predictors with
stronger performance relationships will use 4 knots (e.g.,
pipeline depth and register file size) and those with weaker
relationships will use 3 knots (e.g., latencies, cache sizes,
reservation stations).

3.4 Prediction

Figure 1 presents boxplots of the error distributions from
performance and power predictions of 100 validation points

Figure 1. Distribution of prediction errors for 100 random validation designs.

sampled UAR from the design space. The error is ex-
pressed as |obs − pred|/pred. Boxplots are graphical dis-
plays of data that measure location (median) and dispersion
(interquartile range), identify possible outliers, and indicate
the symmetry or skewness of the distribution. Boxplots are
constructed by

1. horizontal lines at median and upper, lower quartiles

2. vertical lines drawn up/down from upper/lower quar-
tile to most extreme data point within 1.5 of the IQR
(interquartile range - the difference between first and
third quartile) of the upper/lower quartile with short
horizontal lines to mark the end of the vertical lines

3. circles denote outliers

Figure 1 indicates the performance model achieves me-
dian errors ranging from 3.7 percent (ammp) to 11.0 percent
(mesa) with an overall median error across all benchmarks
of 7.2 percent. Power models are slightly more accurate
with median errors ranging from 3.5 percent (mcf) to 7 per-
cent (gcc) and an overall median of 5.4 percent. Although
such model validation is statistically representative, appli-
cations of regression modeling will likely predict metrics
within a structured, coherent design space study.

3.5 Design Space Studies

Given the accuracy of regression models, we present appli-
cations of performance and power regression modeling to
three representative design space studies:

• Pareto Frontier Analysis: Comprehensively charac-
terize the design space, constructing a regression pre-
dicted pareto frontier in the power-delay space.

• Pipeline Depth Analysis: Combine regression and the
framework of prior pipeline depth studies to identify

bips3/w maximizing depths. Enhance prior studies by
varying all design parameters simultaneously instead
of fixing most non-depth parameters.

• Multiprocessor Heterogeneity Analysis: Identify
bips3/w maximizing architectures for each bench-
mark via regression. Cluster these architectures to
identify compromise designs and power-performance
benefits from varying degrees of core heterogeneity.

We explore a design space of 262,500 points ranging that
includes depths from 12 to 30 FO4. We formulate the mod-
els using samples from the design space of Table 1. The
design space for sampling and model formulation should be
larger than the space for exploration to mitigate errors from
extrapolation and we increase the sample space to include
9, 33, and 36 FO4 designs as well. For each case study,
we provide an assessment of predictive error and sensitivity
of observed trends to such error. Collectively, these stud-
ies demonstrate the applicability of regression models for
performance and power prediction within practical design
space optimization problems.

4 Pareto Frontier Analysis

Pareto optimality is an economic concept with broad appli-
cations to engineering. Given a set of design parameters
and a set of design metrics, a pareto optimization changes
the parameters to improve at least one metric without neg-
atively impacting any other metric. A design is pareto op-
timal when no further pareto optimizations can be imple-
mented. For the microarchitectural design space, pareto op-
tima are designs that minimize delay for a given level of
power consumption. A pareto frontier is defined by a set of
delay minimizing optima across a range of power budgets.

Regression models enable a complete characterization of
the microarchitectural design space. We leverage the com-

Figure 2. Regression predicted delay, power of all designs for representative benchmarks. Arrows
indicate trends as particular resource sizes increase. Colors map to L2 cache sizes.

putational efficiency of regression to perform an exhaus-
tive evaluation of the design space containing more than
260,000 points, requiring fewer than four hours per bench-
mark.1 Such a characterization reveals all trade-offs be-
tween a large number of design parameters simultaneously
compared to an approach that relies on per parameter sensi-
tivity analyses. Given this characterization, we construct
pareto frontiers. While we cannot explicitly validate the
regression identified pareto frontier against a hypothetical
frontier found by exhaustive simulation, the former is likely
close to the latter given the accuracy observed in validation.

4.1 Design Space Characterization

Figure 2 plots the predicted delay (inverse throughput) and
power of the design space by exhaustively evaluating the
regression models for representative benchmarks. The de-
sign space is characterized by several overlapping clusters
of similar designs. Each cluster contains designs with a par-
ticular pipeline depth-width combination. For example, the
shaded mcf cluster with delay ranging from 1.9 to 5.3 sec-
onds and power ranging from 100 to 160 watts delivers the
lowest delay at the greatest power with depth of 12FO4 and
decode bandwidth of 8 instructions per cycle.

The arrows of Figure 2 identify power-delay trends as
a particular resource size increases. Consider the shaded
12FO4, 8-wide design clusters for ammp and mcf. Mcf
experiences substantial performance benefits from larger
caches with delay shifting from 5.3 to 1.9 seconds as L2
cache size shifts from 0.25 to 4MB. In contrast, ammp sees
increasing power costs with limited performance benefits of

1Based on wall clock time of 15 seconds for 800 predictions on 1.8 GHz
Pentium M extrapolated to more powerful compute clusters and optimized
numerical linear algebra libraries.

1.0 to 0.8 seconds as L2 cache size increases by the same
amount. Ammp also appears to exhibit greater instruction
level parallelism, effectively utilizing additional physical
registers and reservation stations to reduce delay from ap-
proximately 1.8 to 0.8 seconds compared to mcf’s reduction
of 2.5 to 2.0 seconds.

4.2 Pareto Optima Identification

Given a design space characterization, Figure 3 plots re-
gression predicted pareto optima. These optima minimize
delay for a given power budget. Given regression models
and exhaustively predicted power and delay characteristics,
the frontier is constructed by discretizing the range of de-
lays and identifying the design that minimizes power for
each delay in a number of delay targets. These designs are
pareto optimal with respect to the regression models, but
may not be the same optima obtained via a hypothetical ex-
haustive simulation of the space.

Although pareto optima may be preferred for particular
delay or power targets, not all pareto optima are power-
performance efficient with respect to bips3/w, the inverse
energy delay-squared product.2 We compute the efficiency
metric for each design on the pareto frontier and identify
the most efficient designs in Table 2. The bips3/w optimal
design for ammp is located at 1.0 seconds and 35.9 watts in
the delay-power space, the knee of the pareto optimal curve.
Similarly, the mcf bips3/w optimal design is located at 3.5
seconds and 12.9 watts. Overall, these optima are drawn
from diverse regions of the design space motivating com-
prehensive space exploration.

2bips3/w is a voltage invariant power-performance metric derived
from the cubic relationship between power and voltage [2].

Figure 3. Modeled and simulated pareto optima for representative benchmarks.

Depth Width Reg Resv I-$ D-$ L2-$ Delay Error Power Error
(KB) (KB) (MB) Model Model

ammp 27 8 130 12 32 128 2 1.0 0.2% 35.9 -3.9%
applu 27 8 130 15 16 8 0.25 0.8 -0.8% 39.6 0.1%
equake 27 8 130 15 64 8 0.25 1.2 -0.8% 41.5 -3.0%
gcc 15 2 70 9 16 8 1 1.2 5.2% 44.1 -6.0%
gzip 15 2 70 6 16 8 0.25 0.8 8.8% 24.2 0.0%
jbb 15 8 80 12 16 128 1 0.6 -4.7% 80.9 1.6%
mcf 30 2 70 6 256 8 4 3.5 2.4% 12.9 -3.0%
mesa 15 8 80 13 256 32 0.25 0.4 5.2% 86.9 -7.1%
twolf 27 8 130 15 128 128 2 1.1 -1.2% 34.5 -3.6%

Table 2. bips3/w maximizing per benchmark architectures.

Figure 4. Distribution of prediction errors for pareto frontier.

4.3 Pareto Optima Validation

Figure 3 superimposes simulated and predicted pareto fron-
tiers, suggesting good relative accuracy. Regression effec-
tively captures the delay-power trends of the pareto frontier.
As performance prediction is less accurate than power pre-
diction, however, differences between are characterized by
horizontal shifts in delay. Performance model accuracy is
the limiting factor for more accurate pareto frontier predic-
tion across all benchmarks in our suite.

Figure 4 presents the error distributions for the perfor-
mance and power prediction of points on the pareto fron-
tier. The median performance error ranges from 4.3 percent
(ammp) to 15.6 percent (mcf) with an overall median of 8.7
percent. Similarly, the median power error ranges from 1.4
percent (mcf) to 9.5 percent (applu) with an overall median
of 5.5 percent. These error rates are consistent with the per-
formance and power median error rates of 7.2 and 5.4 per-
cent observed in the validation of random designs (Figure
1), suggesting predictions for pareto optima are no less ac-
curate than those for the overall design space. As shown in
Table 2, errors associated with bips3/w optimal predictions
are also consistent with those for the broader space. De-
lay errors range from 0.2 to 8.8 percent while power errors
range from 0.1 to 7.1 percent.

5 Pipeline Depth Analysis

Prior pipeline studies considered various depths while
holding most other design parameters at constant values, in
part, to control the simulation costs of varying multiple pa-
rameters simultaneously [8, 9, 26]. Thus constraining the
space may lead to narrowly defined studies with conclu-
sions that may not generalize. Regression models enable a
more complete characterization of pipeline depth trends by
allowing other design parameters to vary simultaneously. A
more comprehensive depth analysis ensures observed trends
are not an artifact of the constant baseline values to which
other parameters are held.

Pipeline depth is specified by the number of fan-out-of-
four (FO4) inverter delays per pipeline stage.3 When logic
and latch overhead per pipeline stage is measured in terms
of FO4 delay, deeper pipelines have smaller FO4 delays.
We consider pipeline depths ranging from 12 to 30FO4 to
compare and contrast the following approaches:

• Original Analysis: Consider the POWER4-like
baseline architecture of Table 3, predicting power-
performance efficiency as depth varies and all other
design parameters are held constant at baseline values.

3FO4 delay is defined as the delay of one inverter driving four copies
of an equally sized inverter.

Processor Core
Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy
L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions
Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 3. Baseline Architecture

• Enhanced Analysis: Consider the design space of Ta-
ble 1, predicting efficiency as parameters vary simul-
taneously.

5.1 Pipeline Depth Trends

The line plot of Figure 5(a) presents predicted efficiency
relative to the bips3/w maximizing baseline design in the
constrained original analysis. 18 FO4 delays per stage is
optimal for an average of the benchmark suite. Although
choosing the deepest or shallowest pipeline will achieve
only 85.9 or 87.6 percent of the optimal efficiency, respec-
tively, the models suggest a plateau around the optimum
and not a sharp peak. The superimposed boxplots of Fig-
ure 5(a) show the efficiency distribution of the 37,500 de-
signs for each pipeline depth in the enhanced analysis. By
graphically presenting efficiency quartiles, the boxplot for
18 FO4 designs indicate 75, 50, and 25 percent of these de-
signs achieve efficiency of at least 79, 102, and 131 percent
of the original bips3/w optimum.

The maxima of these boxplots constitute a potential
bound on bips3/w efficiency achievable in this design
space with up to 2.1x improvements at the optimal 18 FO4
pipeline depth. These bounding architectures are char-
acterized by wide pipelines as well as larger queue and
register file sizings. The efficiency of wide pipelines are
likely a result of the energy-efficient functional unit clus-
tering modeled by the simulator, which enables near lin-
ear power increases as width increases [19, 25]. However,
our power models also account for superlinear width power
scaling for structures such as the multi-ported register file,
memory units, rename table, and forwarding logic [25].
Larger queue and reservation resources result from deeper
pipelines and more instructions in flight.

The points at which the line plot intersect the boxplots in-
dicate unexploited efficiency. Intersection at a lower point
in the boxplot indicates a larger number of configurations
are predicted more efficient than baseline at a particular

Figure 5. (a) Efficiency for original (line plot) and enhanced (boxplots) analyses relative to original
bips3/w optimum. (b) Distribution of d-L1 cache sizes for designs in 95th percentile.

depth. More than 58 percent of 12 FO4 and 39 percent of
30 FO4 designs are predicted more efficient than baseline,
corresponding to more than 21,000 and 14,000 designs, re-
spectively. Such a large number of more efficient designs is
not surprising, however, since the baseline resembles de-
signs for server workloads with less emphasis on energy
efficiency. Less efficient designs may be pruned from fur-
ther study enabling more judicious use of detailed simula-
tors should additional simulation be necessary.

Efficiency penalties for sub-optimal depths are also more
significant for the bounding architectures. The bips3/w
maximizing depth is 15-18 FO4 and the sub-optimal 30 FO4
design achieves 88 percent of the optimal efficiency, incur-
ring a 12 percent efficiency penalty. The numbers above
each boxplot in Figure 5(a) quantify each bound architec-
ture’s efficiency relative to that of the bips3/w maximizing
bound architecture. While the bound architectures are also
most efficient at 15 to 18 FO4, the sub-optimal 30 FO4 de-
sign achieves only 81 percent of the optimal efficiency and
incurs a 19 percent penalty. This trend is observed for all
depths shallower than the optimal 18 FO4. Since bound ar-
chitectures are characterized by wider pipelines, choice of
depth becomes more significant. For the average across our
benchmark suite, wide pipelines with shallow depths will
result in greater design imbalances and power-performance
inefficiencies.

Figure 5(b) presents the distribution of data cache sizes
in the most efficient designs at each depth. In particular,
we take the 37,500 designs at each depth and consider de-
signs in the 95-th percentile (i.e., 1,875 designs in the top
5 percent of each depth’s boxplot). Small 8KB data caches
are observed for 20.3 percent of top designs at 30FO4 while
such caches are optimal for only 1.4 percent of top designs
at 12FO4. The percentage of top designs with larger 64KB

Figure 6. Predicted, simulated efficiency for
original, enhanced analyses relative to origi-
nal bips3/w optimum.

caches increases from 22.8 to 34.4 percent with deeper
pipelines. Thus, smaller caches are increasingly viable at
shallow pipelines while top designs often have larger caches
at deep pipelines. This frequentist approach confirms our
intuition that deeper pipelines favor larger caches to miti-
gate the increased costs of cache misses. This analysis also
illustrates variability in the most efficient designs and the
effect of parameter interactions on optimization.

5.2 Pipeline Depth Validation

Figure 6 validates the bips3/w predictions and suggests re-
gression captures high-level trends in both analyses. The
models correctly identify the most efficient depths to within
3 FO4 and capture the difference in efficiency penal-

Figure 7. Predicted and simulated (a) performance, (b) power for original and enhanced analyses.

ties from sub-optimal depths between the two analyses.
Whereas models predict 12 and 19 percent penalties, sim-
ulation identifies 52 and 67 percent penalties relative to 15
FO4 for the original and enhanced analyses, respectively.
Thus, the significance of an optimal depth and penalties for
sub-optimal designs are more pronounced in simulation.

Although the models are accurate for capturing high-
level trends, bips3/w error rates are larger than those for
performance and power. However, the bips3/w validation
obscures underlying performance and power accuracy. By
decomposing the validation of bips3/w in Figure 7, we find
the underlying models exhibit good relative accuracy, ef-
fectively capturing performance and power trends. Since
predictions from less accurate performance models must be
cubed to compute bips3/w, performance model errors are
also cubed and negatively impact bips3/w accuracy. Coun-
tering these effects is continuing work.

6 Multiprocessor Heterogeneity Analysis

As shown in Table 2, regression models may be used to
identify the bips3/w optimal architectures for each bench-
mark. In a uniprocessor or homogeneous multiprocessor
design, the core is designed as an approximate compro-
mise between these per benchmark optima to accommodate
a range of workloads. Heterogeneous multiprocessor core
design mitigates the efficiency penalties of this compromise
[13]. However, prior work considered limited design spaces
due to simulation costs. We combine regression modeling
and clustering analyses to enable a more general exploration
of core designs in heterogeneous architectures. This study
identifies design compromises for the bips3/w design met-
ric and quantifies a theoretical upper bound on the potential
efficiency gains from high-performance heterogeneity, ne-
glecting any associated multiprocessor overhead.

In particular, we combine our regression models with K-

means clustering. A K-clustering of a set S is a partition
of the set into K subsets which optimizes some clustering
criterion, usually a similarity metric. Well defined clusters
are such that all objects in a cluster are very similar and
any two objects from distinct clusters are very dissimilar.
General K-clustering is NP-hard and K-means clustering
is a heuristic approximation.

6.1 Clustering Methodology

We first completely characterize the design space via re-
gression to identify benchmark architectures, the bips3/w
maximizing architectures for each benchmark in our suite
(Table 2). These designs constitute the set to be partitioned
into K subsets when clustering. The optimal design pa-
rameters exhibit significant spread across benchmarks with
depth ranging from 15 to 30FO4, width ranging from 2 to
8 instructions decoded per cycle, and L2 caches ranging
from 0.25 to 4MB. Each benchmark’s execution character-
istics are reflected in its optimal architecture. For exam-
ple, compute-intensive gzip has the smallest L2 cache while
memory-intensive mcf has the largest.

We perform K-means clustering for these nine bench-
mark architectures to identify compromise architectures.
The heuristic for K clusters consists of the following:

1. Define K centroids, one for each cluster, and place
randomly at initial locations in space containing ob-
jects to be clustered.

2. Assign each object to cluster with closest centroid.

3. When all objects have been assigned, recompute place-
ment of K centroids such that its distance to objects in
its cluster is minimized.

4. Since centroids may have moved in step 3, object as-
signment to clusters may change. Thus, steps 2 and 3
are repeated until centroid placement is stable.

Cluster Depth Width Reg Resv I-$ D-$ L2-$ Avg Delay Avg Power Benchmarks
(KB) (KB) (MB) Model Model

1 15 8 80 12 64 64 0.5 2.26 82.17 jbb, mesa
2 27 8 130 14 32 32 0.5 1.05 32.53 ammp, applu, equake, twolf
3 15 2 70 8 16 8 0.5 0.93 37.55 gcc, gzip
4 30 2 70 6 256 8 4 0.29 12.91 mcf

Table 4. K=4 Compromise Architectures

In the microarchitectural context with p design param-
eters, we wish to cluster architectures occupying a p di-
mensional space. The Euclidean distance between two nor-
malized and weighted vectors of parameter values quanti-
fies similarity in steps 2 and 3. Each cluster corresponds to
a grouping of similar architectures and each centroid rep-
resents its cluster’s compromise architecture. We take the
number of clusters as the number of distinct compromise
designs and, thus, a measure of heterogeneity.

Table 4 identifies compromise architectures and their av-
erage power-delay characteristics when executing their as-
sociated benchmarks in a K = 4 clustering. The four com-
promise architectures capture all combinations of pipeline
depths and widths. Cluster 1 contains the aggressive deep,
wide pipeline for jbb and mesa. Cluster 4, containing the
memory-intensive mcf, is characterized by a large L2 cache
and shallow, narrow pipeline. Clusters 2 and 3 trade-off
pipeline depth and width depending on application-specific
opportunities for instruction level parallelism.

Figure 8 plots the delay and power characteristics of the
nine benchmark architectures executing their corresponding
benchmarks (radial points). Aggressive architectures with
deep, wide pipelines are located in the upper left quadrant
and the less aggressive cores with shallow, narrow pipelines
are located in the lower right quadrant. Deep,narrow and
shallow,wide architectures both occupy the moderate center.
The four compromise architectures executing their bench-
mark clusters are also plotted (circles) to demonstrate the
delay-power compromises with associated per benchmark
optima. Although we cluster in a p-dimensional microar-
chitectural space, the strong relationship between an archi-
tecture and its delay-power characteristics means we also
observe clustering in the 2-dimensional delay-power space.
Spatial locality between a centroid and its cluster’s objects
suggest modest delay and power penalties from architec-
tural compromises. Thus, the delay-power characteristics
of the benchmark suite executing on a heterogeneous mul-
tiprocessor with these four cores are similar to those when
executing on the nine benchmark architectures. As a corol-
lary, the benchmarks could achieve close to ideal bips3/w
efficiency on this heterogeneous design.

6.2 Heterogeneity Trends and Validation

Figure 9(a) plots predicted bips3/w efficiency gains for the
nine benchmarks and the benchmark average as the num-

Figure 8. Delay and power for per benchmark
optima of Table 2 (radial points) and resulting
compromises of Table 4 (circles).

ber of clusters increases in the K-means algorithm. Recall
cluster count quantifies the degree of heterogeneity. Effi-
ciency is presented relative to the POWER4-like baseline
(cluster count 0). The homogeneous architecture identified
by K-means clustering (cluster count 1) is predicted to im-
prove average efficiency by 1.46x with the largest gains for
mesa (4.6x) at the expense of mcf (0.46x). For three cores,
all benchmarks see benefits from heterogeneity resulting in
an average gain of 1.9x. We observe diminishing marginal
returns in heterogeneity beyond 4 cores. The four cores in
Table 4 are predicted to benefit efficiency by 2.2x, 8 per-
cent less than the theoretical upper bound of 2.4x that is
achievable only from the much greater heterogeneity of 7 to
9 cores. The benefits for nine different cores is the theoret-
ical upper bound on heterogeneity benefits as each bench-
mark executes on its bips3/w maximizing core.

Figure 9(b) presents efficiency gains observed when sim-
ulating compromise architectures from the clustering analy-
sis. The models capture application-specific effects such as
the significant benefits for mesa as cluster count increases
and the efficiency sacrifices of mcf for 2 or 3 clusters to
benefit the overall benchmark average. Although the mod-
els over-estimate efficiency benefits, they capture the rela-
tive benefits across benchmarks. The simulated four core
average benefit is 1.5x versus the modeled benefit of 2.2x
and the upper bound of heterogeneity benefits is simulated

Figure 9. (a) Predicted and (b) simulated efficiency gains. Cluster 0 is baseline, cluster 1 is homoge-
neous multicore from K-means, cluster 9 is heterogeneous multicore of benchmark architectures.

at 1.7x versus the modeled bound of 2.4x. Note, however,
that relative gains are consistent with four cores achieving
92 and 88 percent of the theoretical maximum in regression
and simulation, respectively.

7 Related Work

Zyuban, et al., examined power and performance ef-
fects of varying pipeline depths [26]. Hartstein, et al., and
Hrishikesh, et al., also studied pipeline depth optimality
[8, 9]. These studies held the majority of design parameters
at constant values while our pipeline study simultaneously
varies a large number of additional parameters.

Kumar, et al., identify heterogeneous cores from a mod-
est design space. Design alternatives were evaluated with
exhaustive simulation [13]. For homogeneous multiproces-
sors, Davis, et al., suggest less aggressive in-order cores
are performance optimal [3], and Huh, et al., suggest larger
out-of-order cores maximize throughput [10]. Both de-
sign spaces are relatively modest as experience and intuition
were used to prune the space. In contrast, we consider the
entire design space, enabling the discovery of potentially
unexpected optima.

Eeckhout, et al., study statistical simulation for simpli-
fying workloads in architectural simulation [4]. Nussbaum,
et al., examine similar statistical superscalar and symmetric
multiprocessor simulation [17]. Both profile benchmarks to
construct smaller, synthetic benchmarks with similar char-
acteristics. Introducing sampling and statistics into simu-
lation frameworks reduces accuracy in return for gains in
speed and tractability. While Eeckhout and Nussbaum sug-
gest this trade-off for simulator workload inputs to reduce
per simulation costs, we propose this trade-off for resulting
outputs to reduce the number of required simulations.

Ipek, et al., predict the performance of design spaces
with automated artificial neural networks (ANN) trained by
gradient descent and predicted by nested weighted sums
[5]. Our approach requires greater statistical analysis, but
is more computationally efficient, numerically solving and
evaluating linear systems for training and prediction.

Eyerman, et al., combine synthetic trace simulation with
heuristics to search for global optima within a design space
[6]. The most effective heuristics, variants of steepest de-
scent and genetic search, require between 900 and 1,000
simulations per optimization problem. However, these sim-
ulations are specific to a given optimization problem since
they simulate design points along a particular path taken to
the estimate of a particular metric’s optimum. In contrast,
our regression models require 1,000 simulations per design
space since they may be formulated once and used in multi-
ple studies. Furthermore, our models could also be applied
within heuristics to significantly reduce search time.

Joseph, et al., derive performance models using step-
wise regression, an automatic iterative approach for adding
and dropping predictors from a model depending on mea-
sures of significance [12]. However, stepwise regression
produces significant biases [7] and this prior work does not
predict performance, using the models only for significance
testing. In contrast, we derive and apply predictive perfor-
mance and power models for design space exploration.

8 Conclusions and Future Directions

We present a series of diverse design space studies to
motivate the use of techniques in statistical inference in
microarchitectural research. In particular, we apply mi-
croarchitectural performance and power regression models
to pareto frontier, pipeline depth, and multiprocessor het-

erogeneity analyses. We find pareto optima predictions are
no less accurate than those for the broader design space,
pipeline depth studies may not generalize when the major-
ity of design parameters are held at constant values, and
multiprocessor heterogeneity has significant potential for
improving power-performance efficiency. In each study,
we demonstrate regression modeling’s ability to compre-
hensively capture trends in a large design space while con-
trolling simulation costs. The computational efficiency of
obtaining predictions enable much more aggressive studies
previously not possible via simulation.

We intend to expand our models to support other parame-
ters such as cache-associativity and in-order execution. For
larger design spaces, we may apply the models in heuris-
tic search instead of exhaustive prediction. Because regres-
sion models produce analytical equations, symbolic opti-
mization may also be feasible.

References

[1] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. G.
Emma, and M. G. Rosenfield. New methodology for early-
stage, microarchitecture-level power-performance analysis
of microprocessors. IBM Journal of Research and Devel-
opment, 47(5/6), Oct/Nov 2003.

[2] D. Brooks and et. al. Power-aware microarchitecture: De-
sign and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26–44, Nov/Dec 2000.

[3] J. Davis, J. Laudon, and K. Olukotun. Maximizing cmp
throughput with mediocre cores. In PACT05: International
Conference on Parallel Architectures and Compilation Tech-
niques, September 2005.

[4] L. Eeckhout, S. Nussbaum, J. Smith, and K. DeBosschere.
Statistical simulation: Adding efficiency to the computer de-
signer’s toolbox. IEEE Micro, Sept/Oct 2003.

[5] E.Ipek, S.A.McKee, B. de Supinski, M. Schulz, and R. Caru-
ana. Efficiently exploring architectural design spaces via
predictive modeling. In ASPLOS-XII: Architectural support
for programming languages and operating systems, October
2006.

[6] S. Eyerman, L. Eeckhout, and K. D. Bosschere. Efficient de-
sign space exploration of high performance embedded out-
of-order processors. In Design, Automation, and Test in Eu-
rope, March 2006.

[7] F. Harrell. Regression modeling strategies. Springer, New
York, NY, 2001.

[8] A. Hartstein and T. Puzak. The optimum pipeline depth for
a microprocessor. In International Symposium on Computer
Architecture, May 2002.

[9] M. Hrishikesh, K. Farkas, N. Jouppi, D. Burger, S. Keckler,
and P. Sivakumar. The optimal logic depth per pipeline stage
is 6 to 8 fo4 inverter delays. In International Symposium on
Computer Architecture, May 2002.

[10] J. Huh, D. Burger, and S. Keckler. Exploring the design
space of future cmps. In PACT01: International Confer-
ence on Parallel Architectures and Compilation Techniques,
September 2001.

[11] V. Iyengar, L. Trevillyan, and P. Bose. Representative traces
for processor models with infinite cache. In Proceedings of
the 2nd Symposium on High Performance Computer Archi-
tecture, February 1996.

[12] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construc-
tion and use of linear regression models for processor per-
formance analysis. In Proceedings of the 12th Symposium
on High Performance Computer Architecture, Austin, Texas,
February 2006.

[13] R. Kumar, D. Tullsen, and N. Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In
PACT’06: International Conference on Parallel Architec-
tures and Compilation Techniques, April 2006.

[14] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power pre-
diction. In ASPLOS-XII: International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, October 2006.

[15] B. Lee and D. Brooks. Statistically rigorous regression
modeling for the microprocessor design space. In ISCA-
33: Workshop on Modeling, Benchmarking, and Simulation,
June 2006.

[16] M. Moudgill, J. Wellman, and J. Moreno. Environment
for powerpc microarchitecture exploration. IEEE Micro,
19(3):9–14, May/June 1999.

[17] S. Nussbaum and J. Smith. Modeling superscalar proces-
sors via statistical simulation. In PACT2001: International
Conference on Parallel Architectures and Compilation Tech-
niques, Barcelona, Sept 2001.

[18] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John. Measur-
ing program similarity: experiments with spec cpu bench-
mark suites. In ISPASS05: International Symposium on Per-
formance Analysis of Systems and Software, March 2005.

[19] K. Ramani, N. Muralimanohar, and R. Balasubramonian.
Microarchitectural techniques to reduce interconnect power
in clustered architectures. In ISCA-31: Proceedings of the
Workshop on Complexity Effective Design, June 2004.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
X), October 2002.

[21] P. Shivakumar and N. Jouppi. An integrated cache timing,
power, and area model. In Technical Report 2001/2, Compaq
Computer Corporation, August 2001.

[22] C. Stone. Comment: Generalized additive models. Statisti-
cal Science, 1:312–314, 1986.

[23] R. D. Team. R Language Definition.
[24] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.

Hoe. SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In International Sympo-
sium on Computer Architecture, June 2003.

[25] V. Zyuban. Inherently lower-power high-performance su-
perscalar architectures. In Ph.D. Thesis, University of Notre
Dame, March 2000.

[26] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose,
P. Strenski, and P. Emma. Integrated analysis of power and
performance for pipelined microprocessors. IEEE Transac-
tions on Computers, Aug 2004.

	1 Introduction
	2 Experimental Methodology
	2.1 Simulation Framework
	2.2 Benchmark Suite
	2.3 Design Space Sampling

	3 Regression Modeling
	3.1 Model Formulation
	3.2 Predictor Interaction
	3.3 Non-Linearity
	3.4 Prediction
	3.5 Design Space Studies

	4 Pareto Frontier Analysis
	4.1 Design Space Characterization
	4.2 Pareto Optima Identification
	4.3 Pareto Optima Validation

	5 Pipeline Depth Analysis
	5.1 Pipeline Depth Trends
	5.2 Pipeline Depth Validation

	6 Multiprocessor Heterogeneity Analysis
	6.1 Clustering Methodology
	6.2 Heterogeneity Trends and Validation

	7 Related Work
	8 Conclusions and Future Directions

