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Abstract
Increasing demand for power-efficient, high-performance com-

puting requires tuning applications and/or the underlying hardware
to improve the mapping between workload heterogeneity and com-
putational resources. To assess the potential benefits of hardware
tuning, we propose a framework that leverages synergistic interac-
tions between recent advances in (a) sampling, (b) predictive mod-
eling, and (c) optimization heuristics. This framework enables qual-
itatively new capabilities in analyzing the performance and power
characteristics of adaptive microarchitectures. For the first time,
we are able to simultaneously consider high temporal and compre-
hensive spatial adaptivity. In particular, we optimize efficiency for
many, short adaptive intervals and identify the best configuration of
15 parameters, which define a space of 240B points.

With frequent sub-application reconfiguration and a fully recon-
figurable hardware substrate, adaptive microarchitectures achieve
bips3/w efficiency gains of up to 5.3x (median 2.4x) relative to
their static counterparts already optimized for a given application.
This 5.3x efficiency gain is derived from a 1.6x performance gain
and 0.8x power reduction. Although several applications achieve a
significant fraction of their potential efficiency with as few as three
adaptive parameters, the three most significant parameters differ
across applications. These differences motivate a hardware sub-
strate capable of comprehensive adaptivity to meet these diverse
application requirements.

Categories and Subject Descriptors B.8.2 [Performance Anal-
ysis and Design Aids]; I.6.5 [Model Development]: Modeling
Methodologies

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Reconfigurablity, Adaptivity, Microarchitecture, Sim-
ulation, Statistics, Inference, Regression, Performance, Power, Ef-
ficiency

1. Introduction
Adaptive microarchitectures arise from a design paradigm that
promises greater performance and power efficiency by dynami-
cally allocating computational resources to meet the requirements
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of a workload more effectively. Adaptivity enables power effi-
cient, high-performance microarchitectures by provisioning (or
over-provisioning) computational resources to maximize overall
performance while increasing the locality of associated power costs
to periods of computation that actually utilize these resources. As
transistor density increases and microprocessor resources become
more abundant, designers will have greater flexibility to imple-
ment adaptive structures provided that these structures deliver the
promised efficiency. The feasibility of this paradigm will be de-
cided by assessing benefits and costs, but a comprehensive assess-
ment of potential benefits has long eluded designers and researchers
due to the challenging dimensionality of the analysis.

An alternative to static general-purpose design, the adaptive
computing paradigm increases the flexibility of the microarchi-
tecture in two dimensions. In one dimension, the degree of tem-
poral adaptivity is the frequency at which resources reconfigure
to optimize efficiency. Broadly, this dimension might range from
application-level adaptivity to interval-level (e.g., sub-application)
adaptivity. Greater temporal adaptivity improves microarchitectural
responsiveness to underlying workload heterogeneity but places
greater burdens on the adaptive control algorithm. In the other di-
mension, the degree of spatial adaptivity is the microarchitectural
scope of reconfigurations. The number and adaptive range of re-
configurable design parameters are units of measurement for this
dimension. More comprehensive spatial adaptivity leverages syn-
ergies and interactions between parameter to maximize efficiency
gains at the cost of greater complexity.

Nested within these two adaptivity dimensions is a highly
expensive optimization problem. Microarchitectural adaptivity
achieves the greatest potential efficiencies with high temporal and
spatial adaptivity. This scenario translates into frequent, short inter-
vals optimized over an adaptive space of many design parameters.
Analyzing this scenario is a computationally daunting procedure
and is exacerbated by the limitations of detailed simulation. De-
spite its computational costs, such an optimization is critical to
an accurate assessment of potential efficiencies and would provide
half the data needed for a rigorous cost-benefit analysis. Significant
efficiency gains, if found, would motivate more thorough cost and
complexity analyses of microarchitectural adaptivity.

The computational complexity of this problem has hindered ad-
vances in microarchitectural adaptivity as prior work often con-
strained adaptivity in the temporal (e.g., applications[24], working
sets[7], subroutines[16], and multimedia frames[17]) and/or spa-
tial (e.g., two or three parameters among depth [8, 31], width[17],
queues [1, 27], and caches [24, 4]) dimensions. Analyses with con-
straints to temporal adaptivity do not fully illustrate the potential
efficiency gains of dynamic structural reconfiguration. Without an
analysis of comprehensive spatial adaptivity, prior studies may not
account for interactions between parameters as structures adapt, re-
sulting in migrating bottlenecks and limited efficiency gains. Fur-



Figure 1. Integrated framework for analyses of microarchitectural adaptivity.

thermore, only a comprehensive study will reveal the most signifi-
cant parameters for adaptivity in the presence of such interactions.
Any further work in adaptive microarchitectures requires solutions
to these fundamental limitations.

Recent advances in applying statistical inference and optimiza-
tion heuristics have enabled qualitatively new capabilities in mi-
croarchitectural analysis. In particular, three fundamental advances
have dramatically lowered the cost of early-stage performance and
power estimation: (a) sophisticated sampling of instruction traces
and design spaces, (b) predictive modeling to reduce the reliance
on detailed simulation, and (c) heuristics for combinatorial opti-
mization. Each technique in isolation is insufficient for analyzing
microarchitectural adaptivity. Applied collectively, however, they
produce synergistic and complementary contributions to computa-
tional efficiency. This efficiency enables, for the first time, a com-
prehensive assessment of potential benefits from high temporal and
comprehensive spatial adaptivity. In particular, the following sum-
marizes the contributions of this work:

1. Analysis Framework: We leverage recent advances in anal-
ysis and optimization to construct a coherent framework for
adaptive microarchitectures based on random spatial sampling,
spline-based regression for prediction, and genetic algorithms
for optimization (Section 2). We apply this framework to assess
the bips3/w efficiency from high temporal and comprehensive
spatial adaptivity. In particular, we optimize 1,125 adaptive in-
tervals each with 80,000 instructions over an adaptive space of
240B configurations defined by combinations of 15 parameters.

2. Temporal Adaptivity: We apply the framework to assess the
effects of varying degrees of temporal adaptivity under compre-
hensive spatial adaptivity (Section 4). We demonstrate signifi-
cant efficiency gains of up to 5.3x (median 2.4x) from high tem-
poral adaptivity (interval-level optimization, 0.08M-instruction
intervals) relative to low-temporal adaptivity (application-level
optimization). This 5.3x benefit is derived from a 1.6x perfor-
mance gain and 0.8x power reduction. Furthermore, we observe
interaction between adaptive parameters where the magnitude

of each parameter’s change increases with the number of si-
multaneously changed parameters during an interval transition.
Such interactions will likely complicate the design of adaptive
control algorithms.

3. Spatial Adaptivity: We apply the framework to assess the ef-
fects of varying degrees of spatial adaptivity under high tem-
poral adaptivity (Section 5). We examine reduced spatial adap-
tivity by comparing the efficiencies of adapting a reduced sub-
set of parameters against the efficiencies of adapting all fifteen.
Three parameters are often sufficient to achieve, on average,
77.3 percent of fifteen-parameter adaptive efficiency. However,
the three most significant parameters differ across applications
and a comprehensive adaptive hardware substrate encompass-
ing a majority of design parameters would be needed to fully
realize these efficiency benefits.

Thus, we establish a rigorous foundation for assessing the bene-
fits of comprehensive microarchitectural adaptivity. The significant
efficiency gains we identify motivate a complementary, equally rig-
orous analysis of the associated costs and complexities.

2. Statistical Inference and Optimization
A convergence of recent advances in statistical inference and op-
timization heuristics enable new capabilities in microarchitectural
analysis. These techniques control exponentially increasing design
space sizes, enable computationally efficient prediction for metrics
of interest, and identify global solutions to previously intractable
combinatorial optimization problems. None of the individual tech-
niques in isolation are sufficient, but a coherent framework that
combines the strengths of each technique exposes synergies that
enable qualitatively more comprehensive analyses of microarchi-
tectural adaptivity. This framework not only provides old answers
to prior questions more quickly, it also provides new answers to
much larger and previously intractable questions.

Figure 1 presents the flow of data through our analysis frame-
work. We take an original instruction trace and pass it through some



Figure 2. Distribution of prediction errors for 100 random validation designs.

technique for temporal sampling, which produces a reduced trace
of representative instructions. This trace is broken into m intervals
where m depends on the degree of temporal adaptivity specified
by the user. In parallel, we define the space of adaptive parame-
ters S and simulate n sparsely sampled designs from this space for
each of the m adaptive instruction intervals. These simulations are
used to construct per interval regression models for performance
and power. Finally, we identify the best configurations for each in-
terval by applying the genetic algorithm on the regression models.

2.1 Temporal and Spatial Sampling
Prior studies of microarchitectural adaptivity considered only a
few parameters due to the computational costs of detailed, cycle-
accurate simulation. Such costs are prohibitively high when opti-
mizing per application, per subroutine, or per interval metrics over
p parameters each with m possible values. For example, a study of
three parameters each with five possible values requires 125 simu-
lations per adaptive interval and a fourth parameter would increase
these costs to 625 simulations per interval.

These computational costs are mitigated by temporal sampling
where representative instruction traces were sampled from the time
domain prior to simulation [29, 33]. Although these techniques are
highly effective in reducing per simulation costs, they do not impact
the number of required simulations for design space optimization.
This limitation is problematic since the number of simulations in-
crease exponentially as the design space becomes more comprehen-
sive. Thus, prior studies examined a significantly reduced subset of
the design space to accommodate this limitation.

To address this fundamental challenge, we further perform spa-
tial sampling by sparsely simulating points selected uniformly at
random from a large comprehensive design space. Spatial sampling
effectively decouples design space size from the number of simula-
tions required to identify a trend within the space, thus controlling
exponential increases in space size [21]. This approach provides
observations from the full range of parameter values. An arbitrarily
large number of values may be included, thereby achieving high
spatial resolution.

2.2 Regression Modeling
Techniques in statistical inference reveal performance and power
trends from sparsely simulated samples, enabling adaptivity stud-
ies for much larger, comprehensive design spaces. In particular, we
apply the approach proposed by Lee and Brooks for spline-based
regression models [21]. These models predict a performance or
power response as a function of design parameter values. Within

this framework, interactions between predictors are captured by
products terms specified in the models’ functional form using
domain-specific knowledge. For example, pipeline depth inter-
acts with cache sizes since depth determines pipeline sensitivity
to cache misses. Non-linearity is captured by cubic spline (i.e.,
piecewise polynomial) transformations on the predictors. Model
construction is computationally efficient and may be reduced to a
series of cubic transformations followed by a linear solve (highly
optimized matrix operations). This efficiency allows the construc-
tion of models for every adaptive interval of instructions.

Model evaluation, expressed as matrix multiplication, is also
highly efficient. Hundreds or thousands of predictions per second
are possible. Figure 2 illustrates model accuracy when validated
against simulation for randomly selected validation points, demon-
strating median errors of 6.5 and 6.3 percent for performance and
power prediction, respectively.1 These models have been applied to
and validated for practical design studies, demonstrating accuracy
sufficient for early stage design optimization [22]. This prior work
also found outlier errors tend to occur near design space bound-
aries where models are extrapolating instead of interpolating. Since
joint performance and power optimization typically identifies op-
tima well within space boundaries, outliers are unlikely to signif-
icantly affect our analysis. The error distributions are presented
for models predicting overall application performance and power.
However, these errors are comparable to those of sub-application
models constructed for intervals of arbitrary length.

2.3 Genetic Algorithms
We estimate upper bounds on the efficiency gains of microarchi-
tectural adaptivity by quantifying gains under best-case, oracle-
driven scenarios. In practice, this requires identifying efficiency-
maximizing designs for each interval. Although regression models
are orders of magnitude faster than detailed microprocessor simu-
lation, using exhaustive search to optimize these models across a
design space of nearly 240 billion points remains intractable. We
must therefore combine regression models with scalable heuristics,
such as genetic algorithms, for global combinatorial optimization.

1 Boxplots display location (median) and dispersion (interquartile range),
identify possible outliers, and indicate the symmetry or skewness of the
distribution. Boxplots are constructed by (1) horizontal lines at median and
at upper, lower quartiles, (2) vertical lines drawn up/down from upper/lower
quartile to most extreme data point within 1.5 IQR of upper/lower quartile
where IQR is the interquartile range between first and third quartile, and (3)
circles to denote outliers.



Genetic algorithms mimic the process of natural selection in
which a candidate solution to the optimization problem is treated
as an organism and a candidate’s optimality is treated as the organ-
ism’s fitness [12]. Breeding among highly fit organisms increases
the likelihood of passing desirable attributes to future generations.
Breeding among less fit organisms and the possibility of mutation
ensures population diversity. As the population evolves from one
generation to the next, the population of candidate solutions im-
proves and the likelihood of observing the global optimum within
the population increases. We describe the genetic algorithm in the
context of microprocessor optimization and discuss tunable ele-
ments of this algorithm including (1) population size and number
of generations, (2) parent selection, (3) genetic crossover, and (4)
mutation rates.

Population Size and Generation Count. In the microarchitec-
tural context, each organism is a candidate design represented by
a vector of p = 15 design parameter values. The algorithm is ini-
tialized to a random population of 100 candidates and the system
is evolved for 100 generations. If computationally feasible, larger
populations are favored since they provide a more diverse genetic
pool from which to generate offspring, thereby diversifying the
search and discouraging premature convergence to sub-optima. The
algorithm should terminate when population diversity is low and
the algorithm has converged. We have empirically found 100 gen-
erations to strike an effective balance between diversity and con-
vergence for our design space.

Parent Selection. Both parents are selected by fitness rank
where fitness is quantified by bips3/w efficiency and computed
using the derived regression models for performance and power.
Alternative selection schemes might include selecting one or both
parents uniformly at random. These alternatives allow for the pos-
sibility of passing weak design attributes from random parents to
subsequent generations, thereby slowing convergence and allowing
a more diverse search of the space. We evaluated these alternatives
and did not find any empirical advantage to random parent selection
for this design space.

Genetic Crossover. Once two parents are selected, a variety
of genetic operators may be applied to obtain an offspring. In the
microarchitectural context, a new candidate design is obtained by
constructing a vector of design parameter values from some combi-
nation of values from the parents’ vectors. The simplest crossover
method uses a random position in the p-element vector. Offspring
values to the left of this position come from one parent and values
to the right of this position come from the other parent. Alterna-
tively, we considered random crossover in which each offspring
value is taken from either parent uniformly at random. In practice,
we find this latter approach more effective in preserving population
diversity through greater genetic mixing.

Mutation. Mutations randomly alter an offspring’s genetic code
to increase population diversity and provide a mechanism for es-
caping local optima. We implement an aggressive mutation scheme
in which each value of the offspring’s design vector can indepen-
dently mutate up or down by one step (as defined by ranges of Table
2) with 5 percent probability. This particular mutation rate was em-
pirically found to be effective when sweeping a range of possible
values. If this rate is too low, many potentially good innovations
will be missed. If this rate is too high, the algorithm’s ability to
preserve desirable attributes will be degraded.

Parents are repeatedly selected to produce mutated offspring un-
til the previous generation is replaced. The algorithm proceeds until
the pre-determined generation limit is reached and the best design
in the last generation is returned. It is intractable to validate re-
sults from genetic algorithms against those from exhaustive search.
However, we find the same optima are produced with high fre-
quency when repeatedly invoking the genetic algorithm with ran-

dom starting populations, giving us confidence in the algorithm’s
ability to converge consistently toward superior designs.

2.4 Synergies for Adaptivity Analysis
The framework of Figure 1 leverages the synergistic interactions
between temporal/spatial sampling, regression modeling, and ge-
netic algorithms. Although each technique reduces computational
costs, their combination is required to enable new analysis in mi-
croarchitectural adaptivity. Temporal and spatial sampling are com-
plementary techniques and both are required to reduce per simu-
lation costs and the number of required simulations, respectively.
However, spatial sampling must leverage predictive models con-
structed from sparsely simulated points to reveal broader trends
in the space. Spline-based regression models are particularly well
suited for a framework targeting adaptivity analyses. Since regres-
sion model construction is typically expressed as a linear solve and
therefore computationally efficient, assessing high temporal adap-
tivity by constructing one model per interval becomes tractable.

Iterative optimization heuristics, such as genetic algorithms, re-
quire hundreds or thousands of predictions. Performance and power
must be estimated for every population member across every gen-
eration. While implementing genetic algorithms with detailed sim-
ulation is possible [10], regression models are particularly effective
inputs to the algorithm. These models are able to predict an entire
population’s performance and power characteristics via two matrix
multiplications. This efficiency makes tractable the optimization of
models for each of the many, short adaptive intervals. Thus, the
strengths of each component in our framework are complementary
and suited for modeling microarchitectural adaptivity.

We apply this framework to quantify the efficiency of high
temporal and comprehensive spatial adaptivity as follows:

• Temporal Adaptivity: We define the degree of temporal adap-
tivity as the frequency at which the microarchitecture re-
optimizes its computational resources. To consider the poten-
tial benefits of high temporal adaptivity, we partition workloads
into intervals, formulate separate regression models for each
interval, and optimize each model independently to identify ef-
ficiency maximizing designs. The result of this optimization is
equivalent to the efficiency of a microarchitecture that adapts
its configuration to maximize bips3/w for every interval. We
quantify the potential efficiency gains when adapting the mi-
croarchitecture at varying interval sizes, identify the source of
these gains in performance and power analyses, and assess the
diversity of adaptive configurations.

• Spatial Adaptivity: We define the degree of spatial adaptiv-
ity as the number of microarchitectural resources available for
adaptivity. To consider the potential benefits of high spatial
adaptivity, we define the comprehensive design space of Ta-
ble 2 and evaluate efficiency when each parameter in this space
is adapted to maximize bips3/w. We then consider adapting
fewer parameters and assess the resulting limitations to effi-
ciency. Lastly, we assess the impact of orthogonal adaptivity
from dynamic voltage and frequency scaling (DVFS).

These assessments of adaptivity assume (1) bips3/w maxi-
mizing configurations are provided by an oracle at the beginning
of each interval and (2) microarchitectural reconfiguration is per-
formed with zero delay or power cost. Although these assumptions
produce an optimistic estimate, they are appropriate for quantify-
ing potential efficiency bounds on adaptive microarchitectures. Es-
timates of such bounds are necessary first steps toward a rigorous
cost-benefit analysis of microarchitectural adaptivity.



amm app equ gcc gzi jbb mcf mes cho oce rad ray bla
S1 depth 9 9 12 15 33 9 18 36 30 27 30 24 15
S2 width 2 8 2 4 2 2 2 2 8 8 2 8 2
S3 bp 8 8 1 4 8 8 8 2 8 8 8 8 4
S4 lsq 31 36 31 31 11 26 11 11 41 41 26 56 21
S5 reg 80 130 70 130 130 130 130 130 130 130 130 130 130
S6 resv 11 13 15 6 6 6 6 11 11 12 15 6 6
S7 i1Size(KB) 16 16 16 64 32 16 16 16 16 16 16 32 32
S8 i1Assoc 1 1 1 1 1 1 1 1 1 1 1 8 1
S9 d1Size(KB) 8 16 8 64 32 8 64 64 64 64 64 8 8
S10 d1Assoc 2 1 4 1 1 8 1 1 1 1 1 1 1
S11 d1Lat 1 1 1 1 1 2 1 1 1 2 1 2 2
S12 l2Size(MB) 0.5 0.25 0.25 1 2 1 2 2 2 2 2 0.25 1
S13 l2Assoc 4 1 8 8 1 1 8 2 1 2 1 2 8
S14 l2Lat 8 8 14 14 8 8 8 8 8 8 8 8 8
S15 memLat 90 85 70 70 115 115 70 115 115 70 115 115 90

Table 1. Static baseline configurations that maximize each application’s efficiency.

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3
S3 Branch BTB associativity sets 1,2,4,8 4

Predictor BTB size, log2 entries 12::1::15
S4 Load/Store load/store queue entries 9::5::54 10
S5 Physical general purpose (GP) count 40::10::130 10

Registers floating-point (FP) count 40::8::112
special purpose (SP) count 42::6::96

S6 Reservation branch entries 6::1::15 10
Stations fixed-point/memory entries 10::2::28

floating-point entries 5::1::14
S7 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S8 i-L1 cache assoc. sets 1,2,4,8 4
S9 D-L1 Cache d-L1 cache size KB 8::2x::128 5
S10 d-L1 cache assoc. sets 1,2,4,8 4
S11 load/store latency cycles 1::1::5 5
S12 L2 Cache L2 cache size MB 0.25::2x::4 5
S13 L2 cache assoc. sets 1,2,4,8 4
S14 L2 cache latency cycles 8::2::16 5
S15 Memory memory latency cycles 70::5::115 10

Table 2. Design space parameters where i::j::k denotes a set of
values from i to k in steps of j.

3. Experimental Methodology
3.1 Simulation Framework
We use Turandot, a generic and parameterized, out-of-order, super-
scalar processor simulator [25]. Turandot is enhanced with Power-
Timer to obtain power estimates based on circuit-level power anal-
yses and resource utilization statistics [5]. The modeled baseline ar-
chitecture is similar to the POWER4/POWER5. The simulator has
been validated against both a POWER4 RTL model and a hardware
implementation. This simulator implements pipeline depth perfor-
mance and power models based on prior work [35]. Power scales
superlinearly as pipeline width increases using scaling factors de-
rived for an architecture with clustered functional units [34]. Cache
power and latencies scale with array size according to CACTI [30].
We do not currently model the power overhead of adaptivity, but
these overheads have been found to be small in prior work [2]. We
do not leverage any particular feature of the simulator in our mod-
els and believe our framework may be generally applied to other
simulation frameworks with similar effect.

Table 2 identifies fifteen groups of parameters varied simultane-
ously. Parameters within a group are varied together to avoid funda-
mental design imbalances. The range of values considered for each
parameter group is specified by a set of values, S1, . . . , S15. The
Cartesian product of these sets, S =

Q15
i=1 Si, defines the entire

design space of 240 billion points. We report experimental results

SPEC CPU 2000
ammp Simulates molecular dynamics
applu Solves parabolic/elliptic partial differential equations (PDE’s)
equake Simulates seismic wave propagation
gcc Compiles C programs
gzip Performs compression
mcf Performs combinatorial optimization
mesa Provides 3-D graphics library support

SPEC JBB 2000
jbb 3-tier Java business server

SPLASH
cholesky Factorizes sparse matrix using blocked Cholesky method
ocean Simulates ocean using Gauss-Seidel multigrid solver
radiosity Computes equilibrium distribution of light
raytrace Renders three-dimensional images

BIOPERF
blast Searches database for protein/nucleotide sequencing

Table 3. Benchmarks

from models formulated with 500 samples obtained uniformly at
random from the design space S.

We use R, an open-source software environment for statistical
computing, to script and automate statistical analyses [28]. Within
this environment, we use the Hmisc and Design packages imple-
mented by Harrell [14].

3.2 Benchmarks
We report experimental results based on PowerPC traces of the
benchmarks in Table 3 [15, 32, 3]. The traces used in this study
were sampled from the full reference input set to obtain 100 mil-
lion instructions per benchmark program [19]. Systematic valida-
tion was performed to compare the sampled traces against the full
traces to ensure accurate representation. Our benchmark suite is
representative of larger suites frequently used in the microarchitec-
tural research community [26].

3.3 Metrics
We evaluate performance in billions of instructions per second
(bips) and power in Watts (w). We measure efficiency using
bips3/w, a metric used by many industrial design teams for joint
performance and power optimization [6, 13]. This metric is voltage
invariant and derived from the cubic relationship between power
and voltage (V ), frequency (f ). Since w ∝ V 2f and V ∝ f ,
w ∝ f3 and f3/w ∝ k0 where k0 is some constant. If bips ∝ f ,
then bips3/w ∝ k1 where k1 is some constant and the metric is
invariant as voltage and frequency change. Although the magni-
tude of efficiency gains will change under alternative metrics (e.g.,
bips/w or bips2/w), the underlying performance gains and power



Figure 3. Temporal Adaptivity: Representative efficiency trends for blast (UL), ammp (UR), gcc (LL) and radiosity (LR). Microarchitecture
reconfigures every 81.92M to 0.08M instructions.

reductions observed in our studies indicate improved efficiency
regardless of metric.

3.4 Approximations
The proposed framework implements several approximations to
make the adaptivity analysis tractable. We use regression models as
computationally efficient surrogates for cycle-accurate simulation,
which introduces median errors of approximately 6 percent for
performance and power (Section 2.2). However, these errors are
small relative to, for example, observed performance gains of up
to 60 percent and power reductions of up to 20 percent. Thus,
reported trends are well outside the margin of error. Results from
genetic algorithms approximate the globally optimal design point.
We cannot tractably validate these results against exhaustive search
for a space of 240B points. However, we draw confidence in the
algorithm since (1) the algorithm returns the same optima when
repeatedly invoked with random starting populations and (2) these
optima are significant improvements over the baseline.

4. Temporal Adaptivity
Regression models are derived for a maximum temporal adaptivity
of 80,000 (0.08M) instructions. We compare against lower degrees
of temporal adaptivity by recursively combining adjacent pairs of
basic 0.08M-instruction intervals to obtain longer intervals with
lengths ranging from 0.16M to 81.92M instructions. Practically,
combining intervals requires aggregating regression performance

and power predictions from the basic 0.08M-instruction intervals
to obtain a prediction for the larger interval.

We compare each benchmark’s efficiency gains from sub-
application adaptivity against those from application-level adap-
tivity in which an oracle provides the best configuration for overall
workload efficiency (Table 1). These optima are similar to opti-
mal core designs for heterogeneous multiprocessors targeting com-
parable workloads [22]. Each baseline architecture is identified
from optimizing the 81.92M-instruction interval. Optimizing this
interval from a trace of 100M instructions is roughly equivalent
to identifying the overall bips3/w optimal architecture for a given
benchmark since there is only one opportunity to adapt the mi-
croarchitectural configuration. Thus, each benchmark’s baseline
microarchitecture is already optimized for efficiency and we quan-
tify only the additional impact from increasing sub-application
temporal adaptivity.

4.1 Efficiency Trends
Figure 3 presents performance, power, and efficiency trends as the
adaptive period decreases from 81.92M to 0.08M instructions. The
period of 0.08M instructions represents the greatest temporal adap-
tivity as the microarchitecture adapts to maximize bips3/w effi-
ciency every 0.08M instructions. These figures illustrate monoton-
ically improving efficiency as temporal adaptivity increases with
up to 5.3x efficiency gains (gcc). The source of efficiency gains
vary across benchmarks and arise from performance improvements
and/or power reductions.



Figure 4. Number of parameters that change between consecutive intervals for raytrace(L) and gzip(R). High and low adaptivity CDF’s are
constructed for 1125 0.08M-instruction and 9 10.24M-instruction intervals, respectively.

For example, Figure 3UL illustrates efficiency gains for blast
dominated by performance improvements. These trends are also
representative of those for equake and mcf. Adapting the microar-
chitecture every 0.08M instructions improves efficiency by 4.1x,
derived from a 62.0 percent increase in performance and negli-
gible 3.1 percent increase in power relative to application-level
adaptivity. Power trends are flat, illustrating scenarios where power
costs are limited only to intervals utilizing more of the adaptive
resources. Short, high power intervals do not appreciably raise an
application’s average power costs.2 This temporal locality of power
costs might be achieved, for example, by fine-grained power gating
of unused resources.

In contrast, Figure 3UR illustrates efficiency gains for ammp
characterized by significant power reductions. These trends are
also representative of those for applu and cholesky. Ammp achieves
maximum efficiency gains of 2.3x from a modest 6.9 percent in-
crease in performance and 46.7 percent decrease in power relative
to the static baseline. Although modest performance improvements
between 2.56M- and 0.08M-instruction intervals provide monoton-
ically increasing efficiency, adaptivity achieves notable power re-
ductions between 29.4 and 46.7 percent that contribute significantly
to greater efficiency across all adaptive periods.

Figure 3LL illustrates the more common case in which increas-
ing temporal adaptivity both increases performance and decreases
power. Trends are illustrated for gcc, but are representative of those
for gzip, jbb, raytrace, and ocean. Microarchitectural reconfigura-
tions every 0.08M instructions improves gcc performance by 59.6
percent and reduces power by 23.25 percent for a 5.3x increase in
efficiency. Adaptive optimizations for many short intervals exploit
their differing computational requirements. For example, greater
power may be consumed for high performance intervals that re-
quire additional resources, but the associated high power costs are
incurred only for the duration of these particular intervals and do
not translate to significantly higher power dissipation for the over-
all workload. Similarly, low power designs with fewer pipeline re-
sources are often favored for non-computational intensive inter-
vals, thereby reducing power without significantly impacting per-
formance. Thus, higher temporal adaptivity provides locality of
power costs and opportunities for power reduction, simultaneously
enabling net performance increases and net power reductions.

Lastly, Figure 3LR illustrates a trend observed only for radios-
ity in which performance and power increase together for a net ef-

2 See also Figure 7.

ficiency gain. Microarchitectural reconfigurations every 0.08M in-
structions improves radiosity efficiency by 1.6x derived from a 30.5
and 36.3 percent increase in performance and power, respectively.
The bips3/w metric emphasizes performance over power such that
a one percent increase in performance is efficient if power increases
by less than approximately three percent. In the case of radiosity,
performance increases linearly track power increases from greater
temporal adaptivity, thereby improving efficiency despite increas-
ing power costs.

For completeness, we note that trends for mesa are not repre-
sented in these figures. This benchmark exhibited flat or relatively
insignificant performance and power changes from increasing tem-
poral adaptivity.

4.2 Utilized Adaptivity
The significant efficiency gains from greater temporal adaptivity
suggest diverse requirements for computational resources within
a given workload and significant opportunities for adaptivity. We
characterize the amount of utilized adaptivity by examining (1)
the number of design parameters that adapt between consecutive
intervals and (2) the magnitude of these adaptive changes quantified
by differences in design parameter values.

Figure 4 plots the cumulative distribution function (CDF) for
the number of parameters that change between consecutive inter-
vals. We compare high and low temporal adaptivity using short
0.08M-instruction and long 10.24M-instruction intervals, respec-
tively. The degree of temporal adaptivity impacts the number of pa-
rameter changes between consecutive intervals. Taking Figure 4L
for a representative workload raytrace, 50 and 75 percent of tran-
sitions between 0.08M-instruction intervals require design value
changes for at most 3 and 6 parameters, respectively. 95 percent of
these transitions require changes for fewer than 10 parameters. This
high temporal adaptivity smoothes microarchitectural reconfigura-
tions by enabling smaller, intermediate changes for more frequent,
shorter intervals.

In contrast, reduced temporal adaptivity (e.g., 10.24M-instruction
intervals) degrades this smoothing effect, requiring changes to in-
crease in scope to include more parameters. For example, Figure
4L illustrates a CDF shift where a greater number of interval transi-
tions require changes to more parameters. For 10.24M-instruction
intervals, every transition requires at least changes for 2 parame-
ters. 50 and 75 percent of transitions now require changes for at
most 6 and 8 parameters, respectively.



However, reduced temporal adaptivity also acts as a low pass
filter on microarchitectural reconfiguration, removing short term
variations and leaving only the long term trend. This filtering ef-
fect reduces the number of parameter changes that optimize spe-
cific short intervals with uncommon resource requirements. Figure
4L illustrates this filtering effect where reduced temporal adaptiv-
ity eliminates the uncommon 5 percent of transitions with changes
to more than 10 parameters. Thus, reduced temporal adaptivity re-
duces smoothing and increases filtering effects to shift the distribu-
tion toward middle range parameter counts. These trends for ray-
trace are comparable to those for 9 of 14 benchmarks.

In contrast, Figure 4R illustrates trends from gzip that are rep-
resentative of mesa, ocean, and radiosity. Gzip is characterized by
low reconfiguration diversity with 95 percent of its transitions be-
tween 0.08M-instruction intervals requiring changes to at most 8
parameters. The filtering effects from reduced adaptivity dominate
and nearly 60 percent of transitions between 10.24M-instruction
intervals reconfigure only 1 parameter.

While Figure 4 illustrates the number of parameters that adapt
between intervals, Figure 5 quantifies the magnitude of changes in
design parameter values. We quantify relative step size by reporting
the change in a parameter’s value relative to the number of steps in
the parameter’s range. For example, we consider register file sizes
from 40 to 130 entries in increments of 10 entries (9 possible steps).
If the microarchitecture changes from 70 to 90 entries between
two consecutive workload intervals, the register file has effectively
taken 2 steps over 9 possible values for a 0.22 relative step size. As
relative step sizes approach one, the interval transition approaches
reconfigurations that change a parameter from its minimum to its
maximum value.

Figure 5 indicates parameter values change more significantly
when a greater number of parameters change simultaneously. Tak-
ing raytrace as an example,3 the median relative step size increases
from 0.23 to 0.67 as the number of changing parameters increases
from 1 to 10. If 7 or more parameters are adapted in an interval tran-
sition, 50 percent of these transitions will require changes that span
more than half of the possible values in parameters’ ranges. Note
the relative location of the median within each box shifts upward
as the number of changed parameters increases, further indicating
shifts in concentration from small step sizes to larger step sizes
within asymmetric distributions. Collectively, these trends suggest
synergies between parameters as they simultaneously change to en-
sure no bottlenecks are created. Taken together, Figures 4–5 char-
acterize the utilized adaptivity for representative benchmarks by
quantifying the number of parameters that change between consec-
utive intervals and the magnitude of these changes.

4.3 Potential Impact
Figure 6 summarizes the potential performance, power and effi-
ciency impact of high temporal adaptivity (0.08M-instruction in-
tervals) under the comprehensive spatial adaptivity of Table 2. Fig-
ure 6L illustrates diverse performance and power effects across
the benchmark suite. Performance increases by up to 62.0 percent
(mcf ) and power decreases by as much as 51.7 percent (cholesky).
As observed for representative benchmarks in Figure 3, various
combinations of performance and power compromises are used to
achieve greater efficiency and no single trade-off dominates. Figure
6R illustrates efficiency gains for the benchmark suite with median
and maximum efficiency gains of 2.4x and 5.3x, respectively.

Figure 7 reveals the source of these efficiency gains by plotting
the performance and power distributions of 0.08M-instruction in-
tervals using boxplots. We compare these distributions against the
performance and power of benchmarks running on architectures

3 The trends for raytrace are representative of all benchmarks

Figure 5. Magnitude of change for parameters that change be-
tween consecutive intervals for raytrace.

from application-level adaptivity (Table 1) using a green-dashed
line. Figure 7L shows this line intersecting boxes at very low points
below the 25-th percentile in nearly all cases. The most notable
performance increases exceed 20 percent and correlate with these
low intersections. These low intersections indicate many 0.08M-
instruction intervals can achieve performance much higher than
that of application-level adaptivity provided that the microarchitec-
ture can adapt to its requirements for computational resources. For
example, the largest performance increases between 59.6 and 62.0
percent are observed for benchmarks where the intersection occurs
below the 25-th percentile (e.g., gcc, mcf, blast).

Similarly, Figure 7R shows the power dissipated by the application-
level baseline is higher than the power dissipated by individual
0.08M-instruction intervals executing on their optimally adapted
configuration. The most significant power reductions between 27.6
and 51.7 percent are observed for benchmarks where the intersec-
tion occurs above the 75-th percentile (eg, ammp, applu, cholesky,
raytrace). Conversely, power increases are observed for intersec-
tions at low points in the box. For example, radiosity intersects
below the median, indicating more than half the intervals adapt
to configurations that dissipate more power than dissipated by the
baseline, producing a 36.3 percent power increase.

5. Spatial Adaptivity
The previous analysis of temporal adaptivity assumed comprehen-
sive spatial adaptivity where every parameter of Table 2 could be
changed to fit each interval’s requirements. However, we can also
use our framework to assess the impact of reduced spatial adap-
tivity. A study of varying spatial adaptivity reveals the hardware
and control complexity necessary to achieve the efficiencies of Sec-
tion 4. By identifying the most significant adaptive parameters, we
better understand the capabilities required of an adaptive hardware
substrate while pruning insignificant parameters from the adaptive
space. Such pruning drastically reduces control complexity; an al-
gorithm that reconfigures two or three parameters should be much
simpler than an algorithm that reconfigures fifteen parameters. For
example, consider the complexity of modern control algorithms for
adapting a single parameter: voltage/frequency.

5.1 Reduced Spatial Adaptivity
We consider reducing the number of parameters available for re-
configuration while assuming high temporal adaptivity (i.e., re-
configurations occur every 0.08M instructions). In particular, we
identify the three most significant parameters for achieving effi-



Figure 6. Temporal Adaptivity: Performance, power (L) and efficiency impact (R). Microarchitecture reconfigures every 0.08M instructions.

Figure 7. Distribution of performance (L), power (R) under high temporal adaptivity (boxes) versus application-level adaptivity (line).

ciency by exhaustively evaluating the C15
k possible combinations

for k = 1, . . . , 3. In particular, there are C15
1 = 15, C15

2 = 105,
C15

3 = 455 ways to select one, two, and three parameter(s) for
adaptivity, respectively. For each k and each of the C15

k possible
combinations for a given k, we repeat the optimization of Section 4
to identify the efficiency-maximizing combination. Although prior
work in adaptive microarchitectures often consider two or three
parameters, parameters are often chosen prior to any analysis. In
contrast, we consider two or three parameters empirically found to
be most significant for each benchmark. Thus, this analysis com-
pares comprehensive spatial adaptivity against best case scenarios
in limited spatial adaptivity where the most significant parameters
are considered.

Table 4 identifies the one, two, and three parameter(s) that pro-
vide the greatest efficiency gains from microarchitectural adaptiv-
ity. Adaptive pipeline depths are most promising with all bench-
marks ranking the depth parameter among the top three. Also sig-
nificant, but more sparsely ranked, are cache hierarchy parame-
ters. Benchmarks benefit from adaptive caches, suggesting opti-
mal cache sizes and associativities vary significantly across inter-
vals. We consider adaptive memLat as a proxy for an adaptive off-
chip L3 cache where a more effective lowest level cache will re-
duce effective memory latency. Logic (e.g., width) and associated
queues/tables (e.g., lsq, bp) are less prominent relative to depth,
suggesting interval-to-interval variability is greater for memory ac-
cess patterns than instruction level parallelism.

From the perspective of implementation, Table 4 has significant
implications for design complexity. The highly ranked parameters
differ across the benchmark suite and most parameters are highly
ranked for at least one benchmark (except the register file and
instruction cache parameters). This motivates a hardware substrate
for comprehensive adaptivity, especially for the memory hierarchy.
Furthermore, these parameter rankings do not necessarily contain
hierarchical subsets; a parameter that might be significant when
two parameters are considered may be much less significant when
three are considered. We observe this scenario for gcc, cholesky,
radiosity, and raytrace.

Figure 8 quantifies the best achievable efficiency when at most
three parameters are chosen for adaptivity. The efficiency for each
benchmark is reported under its optimal parameter subset as shown
in Table 4. Most benchmarks require only a few adaptive parame-
ters to achieve a high fraction of potential efficiency gains. On av-
erage, benchmarks are able to achieve 60.3, 71.1, and 77.3 percent
of 15-parameter efficiency as the number of adaptive parameters
increases from one to three (medians of 61.4, 76.4, 82.3 percent).
However, as illustrated in Table 4, the optimal choice of two or
three parameters needed to deliver such efficiency may differ sub-
stantially from benchmark. This variation makes identifying any
minimal adaptive microarchitectural substrate very difficult.

Four benchmarks, ammp, gcc, jbb and mcf, are notable for
achieving relatively small fractions of potential. Adapting their
three optimally chosen parameters only produces efficiency be-



amm app equ gcc gzi jbb mcf mes cho oce rad ray bla
S1 depth 1 2 1 1 1 1 1 1 1 2 1 1 2
S2 width 2 3 2
S3 bp
S4 lsq 3
S5 reg
S6 resv 2*
S7 i1Size
S8 i1Assoc
S9 d1Size 2 2 2
S10 d1Assoc 3 3
S11 d1Lat 2 3
S12 l2Size 3 3 3
S13 l2Assoc 3 2 2* 3 2*
S14 l2Lat 3 2 2
S15 memLat 2 1 3 3 1 2* 1

Table 4. Choice of k = 1, . . . , 3 parameters that maximize adaptive efficiency gains. * denotes parameters that became less significant with
additional adaptivity (e.g., 2* for gcc l2Assoc indicates it was among the 2, but not the 3, most significant parameters.)

Figure 8. Reduced versus comprehensive spatial adaptivity.

tween 36.2 and 66.3 percent of potential. We observe steady, but
modest, efficiency benefits from increasing the number of adaptive
parameters from one to three. Given that results are reported for
the three parameters exhaustively found to be the most significant,
additional parameters are also likely to produce only modest and
incremental efficiency increases toward the 15-parameter potential.
Indeed, a subsequent search for a fourth significant parameter for
these benchmarks further increases efficiency by a modest 8 to 10
percent, putting efficiency between 39.4 and 71.7 percent of poten-
tial. Thus, we expect much more comprehensive spatial adaptivity
is required to close the gap for these benchmarks, drawing on in-
cremental efficiency improvements from additional parameters as
well as synergies between these parameters.

In summary, most benchmarks are able to leverage a modest
number of parameters to achieve a significant fraction of the po-
tential efficiency from 15-parameter adaptivity. However, the op-
timal choice of parameters differs significantly across benchmarks
and a comprehensive adaptive hardware substrate would be needed
to fully realize these benefits. Lastly, a few benchmarks may re-
quire significantly more than three parameters to achieve efficiency
closer to the projected bound.

5.2 Voltage/Frequency Scaling
Dynamic voltage and frequency scaling (DVFS) adapts pipeline
sensitivity to memory by, for example, slowing computation and
reducing power dissipation during long memory stalls. We as-
sess potential interactions between structural adaptivity and DVFS

Figure 9. Additional efficiency from DVFS applied to various
degrees of spatial adaptivity from none(static), high-spatial/low-
temporal (Adapt-App), and high-spatial/high-temporal (Adapt-
Interval). Each bar is normalized to the corresponding level of spa-
tial adaptivity without DVFS.

by adding voltage/frequency to the space of adaptive parameters.
Specifically, we optimize each interval’s microarchitectural struc-
tures and then further tune voltage/frequency, identifying the lowest
voltage/frequency that maximizes bips3/w. Since DVFS changes
the relative clock speeds between the processor core and memory,
we model its effects by scaling off-chip memory latency before
evaluating regression models for performance and power. Since
the performance models were derived for a baseline frequency, we
must further scale regression predicted bips to account for the fre-
quency change. Similarly, we scale regression predicted power to
account for voltage and frequency changes.

Figure 9 quantifies additional efficiency gains from DVFS when
applied to various degrees of temporal adaptivity. Most benchmarks
do not realize significant bips3/w efficiency gains. This is due, in
part, to the choice of efficiency metric. Recall that bips3/w is a
voltage and frequency invariant metric. As shown in Equation (1),
DVFS will produce gains for bips3/w only if it significantly im-
proves pipeline throughput. Specifically, assume baseline through-
put ipc0, voltage V0, and frequency f0. Frequency and voltage
scaling may impact throughput ipc1 and scales voltage/frequency
by ∆. Since the ∆ scaling cancels in the bips3/w metric, only
throughput effects remain.
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Figure 9 shows, for benchmarks that benefit from DVFS, the
greatest gains arise when DVFS is applied to a static, general-
purpose, POWER4-like architecture with no resource adaptiv-
ity. For comparison, Figure 9 also includes the effects of DVFS
when applied to the comprehensive resource adaptivity of Table
2 at the application-level (81.92M instructions) and interval level
(0.08M instructions). Each of these three bars is normalized to
the static, application-adaptive, or interval-adaptive architecture,
respectively, with no DVFS. Benchmarks equake and mcf realize
gains of 3.7x and 6.8x, respectively, relative to a static architec-
ture with no DVFS. Microarchitectural resource adaptivity at the
application-level significantly degrades the additional benefits of
DVFS to 2.8x and 1.0x for these benchmarks. Equake efficiency
gains are further degraded to 2.1x when sub-application, interval-
level adaptivity is introduced. More generally, this data suggests
DVFS becomes progressively less effective as an additional tuning
parameter when combined with increasing spatial adaptivity. The
bulk of ipc throughput gains are likely extracted from microar-
chitectural resource tuning and any additional throughput gains
from voltage and frequency scaling on the tuned architecture are
likely modest and incremental. Since Equation (1) indicates such
throughput gains are required to make DVFS effective, DVFS is
likely to have a diminished role in a microarchitecture capable of
comprehensive spatial adaptivity.

6. Related Work
Broadly, prior work differ in their study of particular adaptive struc-
tures and/or control algorithms. These prior studies consider either
high temporal, low spatial adaptivity or low spatial, high temporal
adaptivity. Each study limited the adaptive scope to include limited
combinations of design values for at most two or three microarchi-
tectural parameters and implemented a heuristic control algorithm
to predict the best configuration from these limited choices. Most
papers cite or imply computational costs as the cause for these re-
strictions. In contrast, we consider both high temporal and spatial
adaptivity and leverage advances in statistical inference and opti-
mization to control computational costs.

Hardware Mechanisms. Various adaptivity studies have ex-
amined many different microarchitectural structures, which collec-
tively represent all major design parameters. However, each study
considered only a very small subset of these parameters whereas
we adapt simultaneously all major microarchitectural parameters.
Albonesi, et al., inspired this work by describing buffering mecha-
nisms that enable adaptivity in data caches and instruction queues
[1]. Following work by Mai, et al., and Balasubramonian, et al.,
separately expanded on these ideas for the memory hierarchy [24,
4]. Folegnani considered optimizing issue logic and queues while
Ponomarev studied adaptivity for the reorder buffer and various
queues [11, 27]. Adaptive pipeline depth and width have also been
considered for energy and reliability [8, 17, 18, 23, 31].

Control Algorithms. Control algorithms and heuristics have
been proposed to trigger adaptive reconfiguration at various gran-
ularities. Ponomarev, et al., uses prior occupancy to predict future
occupancy of various queues every 2,000 cycles [27]. Dhodapkar,
et al., assess the similarity of working sets to trigger reconfigura-
tion [7]. Hughes et al. consider adapting resources for multime-
dia workloads based on frame type while Huang, et al., consider
adapting resources for code sections defined by subroutine bound-
aries [17, 16]. Collectively, these prior works provide heuristics
for dynamically determining optimal configurations and have been
demonstrated for a limited number of adaptive parameters. These

heuristics apply concepts from phase analysis to identify an effec-
tive degree of temporal adaptivity. Our framework may be extended
to include phase information, but we currently use phase-oblivious
adaptive intervals. In further contrast to prior heuristics, we use an
oracle-based assessment of efficiency gains to provide an optimistic
point of reference under best case scenarios.

Predictive Modeling. Ipek, et al., and Joseph, et al., separately
predict the performance of design spaces with automated artificial
neural networks (ANN) trained by gradient descent and predicted
by nested weighted sums [9, 20]. Ipek, et al., use sampling with
feedback to identify samples most likely to improve accuracy while
Joseph, et al., use Latin hypercube sampling to maximize coverage.
Our approach requires greater statistical analysis when constructing
spline-based regression models but may be more computationally
efficient, numerically solving and evaluating linear systems for
training and prediction, respectively [21].

Optimization. Eyerman, et al., combine synthetic trace simu-
lation with heuristics to search for global optima within a design
space [10]. These authors find variants of gradient ascent and ge-
netic algorithms most effective. Unlike prior work, we describe the
tunable parameters in genetic algorithms and describe the process
to identify effective parameters. Furthermore, prior work combines
optimization heuristics with statistical simulation while we com-
bine genetic algorithms with regression models. This difference
has significant implications for computational cost. Eyerman, et
al., require between 900 and 1,000 simulations per optimization
problem. However, these simulations are specific to a given opti-
mization problem since they simulate design points along a partic-
ular path taken to the estimate of a particular metric’s optimum.
In contrast, our regression models require 500 simulations per de-
sign space since they may be formulated once and used in multiple
invocations of the genetic algorithm.

7. Conclusions and Future Directions
The transfer of best practices from statistics, machine learning, and
combinatorial optimization has revitalized microarchitectural anal-
ysis. A synergistic combination of sampling, modeling, and opti-
mization enables, for the first time, a comprehensive assessment
of efficiency benefits from microarchitectural adaptivity. This as-
sessment reveals significant benefits from high temporal adaptivity.
Furthermore, we find these gains are most accessible using a hard-
ware substrate with comprehensive spatial adaptivity due to differ-
ing adaptive requirements across applications.

Given this quantification of adaptivity benefits, a rigorous as-
sessment of costs and complexities is logical future work. Over-
head and complexity will necessarily increase in the design of adap-
tive hardware substrates. In addition to these hardware costs, con-
trol algorithm effectiveness and overheads must be considered. The
framework used to identify potential adaptivity benefits in this work
will not necessarily be the same framework used to implement on-
line control mechanisms. In practice, there may be several options
for implementing fine-grained adaptivity, including:

• A hardware accelerated controller might derive off-line and
evaluate on-line regression models. This is a relatively heavy-
weight solution likely suitable for simultaneously adapting
many parameters in a complex optimization framework.

• A heuristic based on hardware counters might tune resource al-
locations based on prior utilization (e.g., [27]). This is a rela-
tively light-weight solution likely suitable for adapting a limited
number of parameters.

• A software mechanism might identify optimal designs for each
subroutine via off-line profiling before applying them on-line
(e.g., [16]). This is a relatively light-weight solution for simul-



taneously adapting many parameters at the temporal granularity
of subroutines.

Further study of the compromises between temporal adaptivity
and control logic overhead is needed. Ultimately, the significant
efficiency gains identified in this work should motivate further
analysis of the implementation costs for these benefits.
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