
Roughness of Microarchitectural Design Topologies and its
Implications for Optimization

Benjamin C. Lee and David Brooks
School of Engineering and Applied Sciences, Harvard University

{bclee, dbrooks}@eecs.harvard.edu

Abstract

Recent advances in statistical inference and machine
learning close the divide between simulation and classi-
cal optimization, thereby enabling more rigorous and ro-
bust microarchitectural studies. To most effectively utilize
these now computationally tractable techniques, we char-
acterize design topology roughness and leverage this char-
acterization to guide our usage of analysis and optimization
methods. In particular, we compute roughness metrics that
require high-order derivatives and multi-dimensional inte-
grals of design metrics, such as performance and power.
These roughness metrics exhibit noteworthy correlations (1)
against regression model error, (2) against non-linearities
and non-monotonicities of contour maps, and (3) against
the effectiveness of optimization heuristics such as gradient
ascent. Thus, this work quantifies the implications of de-
sign topology roughness for commonly used methods and
practices in microarchitectural analysis.

1 Introduction

Microarchitectural optimization is becoming increasingly
complex due to greater design diversity driven by two broad
trends. First, we observe previously infeasible parts of the
design space becoming viable for implementation as the in-
dustry moves into the multiprocessor domain. In particular,
designers may consider smaller, simpler cores to achieve
performance through thread-level parallelism across many
of these cores. Secondly, we observe increasing metric
diversity as different market segments each define their
own acceptable compromises between latency, throughput,
power, and temperature. Both trends lead to increasingly
non-intuitive design spaces and interesting optima. Charac-
terizing spaces and identifying optima will require advances
in microarchitectural simulation and modeling methodol-
ogy. Designers should leverage best known practices in
classical analysis and optimization to further their under-
standing and supplement their intuition.

Recent advances in applying statistical inference to mi-
croarchitectural analysis have enabled fundamentally new
capabilities and closed the divide between detailed simu-
lation and classical analysis. More comprehensive char-
acterization, visualization, and optimization of the design
topology is now tractable given computationally efficient
predictive models constructed from splines or neural net-
works [2, 9]. For example, pareto frontiers and contour
maps for large design spaces are now possible. Iterative op-
timization heuristics, such as gradient ascent, are also more
tractable as predictive models replace simulation within the
iterative loop. Fundamentally, predictive models allow de-
signers to leverage the wealth of literature and history in
classical analysis and optimization.

As the microarchitectural design community adopts pre-
dictive modeling and transfers methods from other more es-
tablished quantitative disciplines, the emphasis shifts from
whether these methods are computationally possible to (1)
which methods should be used and (2) how they can be used
most effectively. For example, we may now inexpensively
generate many contour maps but we lack a formal mech-
anism to identify particularly interesting contours. While
we might implement gradient ascent to search the design
space, we may have little guidance for tunable heuristic pa-
rameters (e.g., number of trials). Furthermore, we may have
even less intuition about the choice of heuristic (e.g., should
a stochastic variant have been used instead).

Intuitively, the roughness of a design topology will have
direct implications for the effectiveness of various analy-
sis and optimization techniques. Rough topologies increase
the likelihood of optimization heuristics identifying local
sub-optima. Trends toward greater design diversity im-
ply greater roughness; optimization methods that are robust
when applied to rough topologies will become increasingly
important. To achieve this robustness, we propose linking
topology roughness to usage patterns for any given method.
This link will guide users to particularly interesting regions
of the design space, to particular parameter values in a tun-
able heuristic, and to more robust methods that can handle
greater non-monotonicity.



To establish this link, we compute roughness metrics for
multi-dimensional design topologies and discuss the met-
rics’ role in more effectively using common analysis and
optimization methods. In particular, the following summa-
rizes the contributions of this work:

1. Roughness Metrics: We compute high-dimensional
topological roughness metrics, requiring numerical
approximations for high-order derivatives and multi-
dimensional integrals. These approximations are pro-
vided by computationally efficient predictive models.
We examine the link between roughness and model er-
ror, demonstrating non-trivial roughness correlations
of 0.38 and 0.45 against performance and power, re-
spectively (Section 3).

2. Roughness and Visualization: We construct con-
tour maps to visualize the design topology and survey
the practical applications of these maps in bottleneck
analysis and workload characterization. We examine
the link between roughness and contour maps, ensur-
ing contours with greater observed roughness produce
larger metric values (Section 4).

3. Roughness and Optimization: We implement and
evaluate gradient ascent, comparing its results against
the true global optimum identified from exhaustively
evaluating the predictive models. This comparison is
a new capability made possible by efficient models
for moderately sized design spaces. We examine the
link between roughness and gradient ascent effective-
ness, demonstrating non-trivial roughness correlations
of 0.35 and 0.20 against heuristic deficiency and path
length to optima, respectively (Section 5).

2 Methodology and Background

We apply a scalable and efficient simulation paradigm
that defines a comprehensive design space, simulates sparse
samples from the space, and constructs regression models
for performance and power prediction [9, 10]. This compu-
tationally tractable approach reveals trends and trade-offs at
high resolution for design evaluation and optimization.

2.1 Simulation Framework

We use Turandot, a generic and parameterized, out-of-
order, superscalar processor simulator [12]. Turandot is en-
hanced with PowerTimer to obtain power estimates based
on circuit-level power analyses and resource utilization
statistics [1]. The modeled baseline architecture is similar
to the POWER4/POWER5. The simulator has been vali-
dated against both a POWER4 RTL model and a hardware
implementation. This simulator implements pipeline depth
performance and power models based on prior work [19].

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table 1. Design space parameters where i::j::k de-
notes a set of values from i to k in steps of j.

This prior work assumes logic is perfectly divisible and fre-
quency increases linearly with depth. Power scales super-
linearly as pipeline width increases using scaling factors de-
rived for an architecture with clustered functional units [18].
Cache power and latencies scale with array size according
to CACTI [16]. We do not leverage any particular feature
of the simulator in our models and our framework may be
generally applied to other simulators with similar effect.

We use R, an open-source software environment for sta-
tistical computing, to script and automate statistical analy-
ses [15]. Within this environment, we use the Hmisc and
Design packages implemented by Harrell [5]. We evaluate
performance in billions of instructions per second (bips) and
power in Watts (w).

2.2 Benchmark Suite

We consider SPECjbb, a Java server benchmark, and eight
compute intensive benchmarks from SPEC2k (ammp, ap-
plu, equake, gcc, gzip, mcf, mesa, twolf ). We report ex-
perimental results based on PowerPC traces of these bench-
marks. The traces used in this study were sampled from
the full reference input set to obtain 100 million instruc-
tions per benchmark program [6]. Systematic validation
was performed to compare the sampled traces against the
full traces to ensure accurate representation. Our bench-
mark suite is representative of larger suites frequently used
in the microarchitectural research community [14].

2.3 Spatial Sampling

Table 1 identifies seven groups of parameters varied simul-
taneously. Parameters within a group are varied together to
avoid fundamental design imbalances. The range of values
considered for each parameter group is specified by a set
of values, S1, . . . , S7. The Cartesian product of these sets,
S =

∏7
i=1 Si, defines the entire design space of 375,000

points. We report experimental results from models for-
mulated with 1, 000 samples obtained uniformly at random
from the design space S. Spatial sampling effectively de-
couples design space size from the number of simulations



Figure 1. Distribution of performance (a) and power (b) modeling errors for 100 random validation designs.

required to identify a trend within the space, thus control-
ling exponential increases in space size [9].

2.4 Regression Modeling

We apply techniques in statistical inference proposed by
Lee and Brooks, constructing spline-based regression mod-
els from sparsely simulated samples of the design space [9].
These models predict a performance or power response as
a function of design parameter values. Within this frame-
work, interactions between predictors are captured by prod-
ucts terms specified in the models’ functional form using
domain-specific knowledge. For example, pipeline depth
interacts with cache sizes since depth determines pipeline
sensitivity to cache misses. Non-linearity is captured by
piecewise cubic polynomial transformations on the predic-
tors. Figure 1 illustrates model accuracy when validated
against simulation for 100 randomly selected validation
points, demonstrating median errors of 7.2 and 5.4 percent
for performance and power prediction, respectively.1 Such
models have been previously applied to practical design
studies, demonstrating accuracy sufficient for early stage
design optimization [10].

2.5 Gradient Background

We consider gradient analyses to better understand the per-
formance and power topologies of a large, comprehensive
microarchitectural design space. The gradient of a func-
tion is a vector that points in the direction of greatest in-
crease in the function. The magnitude of this vector is the
greatest rate of change. Mathematically, the gradient of a p-
dimensional function f(x1, . . . , xp) is ∇f(x1, . . . , xp) =
(δf/δx1, . . . , δf/δxp).

1Boxplots display location (median) and dispersion (interquartile
range), identify possible outliers, and indicate the symmetry or skewness
of the distribution. Boxplots are constructed by with horizontal lines at
median and at upper, lower quartiles. Circles denote outliers.

In the microarchitectural context, f(x1, . . . , xp) is a
performance or power-performance efficiency function in
p dimensions corresponding to p design parameters. If
(x̃1, . . . , x̃p) specifies a design point with particular pa-
rameter values, then ∇f(x̃1, . . . , x̃p) specifies the microar-
chitectural changes to each parameter value that maxi-
mizes an increase in performance or efficiency at this de-
sign point. We approximate performance and efficiency
functions f(x1, . . . , xp) with regression models. The par-
tial derivatives are approximated using one-sided and cen-
tered differences for the boundary and interior of the design
space, respectively.

Although one-dimensional analysis is widely used, often
in sensitivity studies, such an analysis has severe limitations
since it does not account for interactions between parame-
ters. For completeness, we describe one-dimensional sensi-
tivity to establish the foundation for more high-dimensional
analysis. Demonstrating the traditional role of gradients in
microarchitectural design analysis, we consider an example
of one-dimensional gradients used to assess performance
and power effects from design parameter tuning. The com-
promise between metrics for a given parameter Xi may be
expressed as its sensitivity:

SXi(x) =

∣∣∣∣∣
(

δPerf/δXi

Perf

)
×

(
δPower/δXi

Power

)−1
∣∣∣∣∣ (1)

where Perf , Power, and their one-dimensional deriva-
tives are functions evaluated at a particular design point
x = (x̃1, . . . , x̃p). Sensitivity is the absolute magnitude
of the percentage change in performance for a percent-
age change in power. Sensitivities of an optimized design
should be balanced such that the marginal power costs of
performance from all tunable parameters are equal [11, 20].
Computing these derivatives with respect to each parameter,
we identify each parameter’s marginal performance benefit
at a particular design point. Large SX indicates parame-
ters from which significant performance gains are possible



Figure 2. Sensitivity computed at a POWER4-like design for ammp (a) and jbb (b).

with relatively modest power costs. Sensitivities must be re-
computed after every parameter optimization since relative
sensitivities change as parameters are tuned.

Figure 2 presents parameter sensitivities for ammp and
jbb evaluated at a design point resembling the POWER4.
Ammp performs well at the POWER4-like design and
there are few opportunities to further tune performance.
Observing superscalar width is most sensitive and L1
data/instruction cache sizes are least sensitive, any addi-
tional tuning should first enhance width and then re-assess
sensitivity. In contrast, sensitivities for jbb indicate oppor-
tunities to tune the cache hierarchy by increasing L1 cache
sizes. Intuitively, this analysis suggests the L1 caches pro-
vide much greater performance benefits for every percent-
age change in power cost. In contrast, large L2 caches de-
liver performance in a relatively power inefficient manner.

One-dimensional optimization simply shifts sensitivities
and efficient tuning should occur at higher dimensions by
considering all design parameters simultaneously. This
point is well understood by designers in principle and as
more complex, high-dimensional topologies are considered,
accompanying techniques are needed to quantify topology
roughness.

3 Roughness Metrics

The roughness of microarchitectural performance and
power topologies has direct implications for modeling and
optimization. Rough topologies require greater model flex-
ibility in the form of additional spline knots. Conversely,
rough regression models imply an underlying topology at
least as rough as the derived model. Rough contours also
imply more challenging inputs to optimization heuristics as
hills and valleys in the topology increase the likelihood of
heuristics converging to local sub-optima. While contour
maps are feasible for low-dimensional analysis, roughness
metrics extend to higher dimensions and provide a more

complete assessment of a topology. By quantifying topol-
ogy roughness that would otherwise be assessed subjec-
tively in contour maps, these metrics lay the foundation for
robust modeling and optimization for rough topologies.

We apply the roughness metrics used by Green and Sil-
verman for smoothed non-parametric regression [4]. R1 de-
fines a measure of roughness for a one-dimensional function
f(x). This measure of roughness is unaffected by the addi-
tion of a constant or linear function since R1 depends on the
second derivative. Furthermore, this definition has a basis
in mechanical engineering; if a thin piece of flexible wood
is bent to the shape of f(x), the leading term in the strain
energy is proportional to R1.

R1 =
∫

x

“
δ2f

δx2

”2
dx

R2 =
∫

x2

∫
x1

„
δ2f

δx2
1

«2

+2
“

δ2f
δx1x2

”2
+

„
δ2f

δx2
2

«2ff
dx1dx2

Rd =
∫

xd

. . .

∫
x1

P
m!

v1!...vd!

“
δmf

δx1
v1 ...δxd

vd

”2
dx1...dxd

R2 is a two-dimensional extension of the one-
dimensional definition. Intuitively, R2 captures roughness
since the second derivatives in R2 are large if the function f
exhibits high local curvature. As in R1, the bending energy
of a thin plate is, to first order, proportional to R2. Rd pro-
vides a more general d-dimensional metric based on m-th
derivatives, where 2m > d [4]. The sum within the inte-
gral is over all non-negative integers v1, . . . , vd such that
v1 + . . . + vd = m. For example, this particular work con-
siders a seven-dimensional design space and computes R7

based on 4-th derivatives. Throughout, we report relative
roughness rankings since the absolute roughness values are
not known to have an intuitive physical interpretation in the
microarchitectural context.



3.1 Numerical Approximations

Derivatives are approximated using numerical gradients
with centered differences at the interior and one-sided dif-
ferences at the design space boundary.

δf

δx

∣∣∣∣
x=x∗

≈ f(x∗ + h)− f(x∗ − h)
2h

(2)

δf

δx

∣∣∣∣
x=x∗

≈ f(x∗ + h)− f(x∗)
h

(3)

The integrals are approximated with Riemann sums as
shown for one dimension in Equation (4). Riemann sums
divide the domain of x into n intervals of equal width
∆x = (max[x]−min[x])/n. This approach identifies ap-
proximation points x∗1, x

∗
2, . . . , x

∗
n such that x∗i lies in the

i-th interval.∫
x

f(x)dx ≈ lim
n→∞

n∑
i=1

f(x∗i )∆x (4)

This approximation is valid if f is a continuous, positive
function defined over the domain of x. In the microarchi-
tectural context, the function f is a regression model for
performance, power, or efficiency. The function f is con-
tinuous because our models are constructed with piecewise
cubic polynomials using smooth, continuous knot connec-
tions. The function is also positive because values for our
design metrics are positive. Although f is a regression
model that can be evaluated at arbitrarily high resolution,
accuracy is constrained by the design space resolution used
to construct the model. The limit in Equation (4) suggests
higher resolution spaces with parameter values observed at
finer granularity may lead to more accurate approximations.

Ideally, the functional mapping f(x1, . . . , xp) would be
provided by the simulator. Due to computational costs of
extensive simulation, we approximate this function with
regression models formulated from sparsely simulated de-
sign space samples. This approximation may smooth non-
linear, non-monotonic trends in the design space. Assess-
ing the roughness of the underlying microarchitectural de-
sign topology through regression models will capture only
high-level roughness since more detailed roughness may be
obscured by smoothing in least squares fitting. Thus, we
should treat these roughness metrics as conservative esti-
mates of the true design space roughness.

3.2 Roughness and Regression Error

Piecewise cubic splines provide the flexibility needed to
capture non-linear trends in the design space. Regression
models that most utilize this flexibility for a non-linear de-
sign topology are likely trying to capture more difficult
trends, resulting in greater modeling error. Table 2 ranks
benchmarks by seven-dimensional roughness and compares

Perf. Roughness & Error Power Roughness & Error
Benchmarks Rough Median Max Rough Median Max
ammp 1 1 1 5 2 7
applu 4 3 5 4 7 5
equake 3 6 6 3 6 4
gcc 6 4 7 6 9 6
gzip 5 7 2 1 3 2
jbb 9 8 8 9 5 3
mcf 2 9 9 2 1 1
mesa 7 2 3 8 8 9
twolf 8 5 4 7 4 8
roughness
correlation 1.00 0.38 0.22 1.00 0.45 0.62

Table 2. Correlations between roughness rank and
error rank for performance and power. Values in-
crease with rank (e.g. roughness rank 1 corresponds
to smoothest topology or lowest error).

these rankings against median and maximum error. Rough-
ness is ranked in ascending order. For example, ammp and
jbb’s performance topology is least and most rough, re-
spectively. Similarly, error measures are ranked in ascend-
ing order. These rankings are positively correlated with
coefficients of 0.38 and 0.45 for median performance and
power errors, respectively. Similar trends are observed for
maximum errors. The greater correlations for power sug-
gests topology roughness is a more significant contributor
to power modeling error.

Given this relationship between roughness and model ac-
curacy, the model specification may be optimized based on
its quantified roughness. A rough model likely reflects un-
derlying design space roughness. Design space roughness
may be more accurately captured by increasing the knot
count, thereby increasing the flexibility of the model spec-
ification. Conversely, we might reduce the knot count for
parameters that do not exhibit rough trends. This reduced
knot count reduces model size (by using fewer terms in the
spline transformation), thereby reducing training costs and
improving prediction speed. Candidate parameters for knot
count tuning may be identified from easily interpreted, low-
dimensional contour maps ranked by their roughness.

4 Roughness and Visualization

Contour maps enable efficient and comprehensive vi-
sualizations of microarchitectural performance and power
topologies, identifying microarchitectural bottlenecks and
enabling workload comparisons based on resource require-
ments at the microarchitectural level. After demonstrating
these applications of contour analysis, we quantify rough-
ness and ensure visually rough contours are also highly
ranked with respect to our roughness metrics.

This quantitative assessment of roughness eliminates
much of the subjectivity in contour analysis and provide
a rigorous mechanism for focusing designer attention on
the most significant parameters and interesting topologies.



Figure 3. Ammp performance contours for depth and width (a), register file and width (b).

Figure 4. Ammp power-performance contours for depth and width (a), register file and width (b).

Figure 5. Performance contours for L2 cache and register file for ammp (a) and mcf (b).



This focus is especially important since contours are of-
ten considered for low k-dimensional projections of a p-
dimensional space. When p is large and k is small (≤ 3),
the number of possible contour maps Cp

k = p!
(p−k)!k! be-

comes difficult to manage.

4.1 Contour Maps

Contour maps are constructed by exhaustively evaluat-
ing regression models for performance and power. Two-
dimensional projections of the design space lay the founda-
tion for analysis in higher dimensions. These maps illus-
trate the topology for a metric of interest, thereby revealing
non-linearities that may arise from non-monotonic trends in
the topology (hills, valleys) or diminishing marginal returns
with increasing resource sizes (plateaus).

The visualization also identifies a path to optimality
from any initial design point. Figure 3(a) presents ammp’s
performance contours for a two-dimensional projection
of pipeline depth and superscalar width from the seven-
dimensional design space of Table 1, revealing a clear path
to optimal performance in the direction of deeper, wider
pipelines.2 This particular space favors balanced pipeline
dimensions, indicating depth and width should increase
together to most effectively achieve higher performance.
While we plot contours that span all width values, in prac-
tice, we are likely to examine only feasible design points in
the contour maps (e.g., 2-, 4-, 8-wide designs).

In multiple dimensions, gradients produce vector fields
from scalar fields. We compute these vector fields using
numerical gradients and visualize them using arrows in the
contour maps. Note that gradients point orthogonally be-
tween contour levels since this is the steepest approach to
higher levels. Furthermore, contour levels closely spaced
together imply steeper slopes since smaller microarchitec-
tural changes are required to achieve the same performance
or efficiency increase. Thus, closely spaced contour lev-
els result in larger gradient magnitudes. These vector fields
complement the contour maps and enable designers to iden-
tify paths to design optima more quickly.

4.2 Bottleneck Analysis

The path to optimality reveals the changing source of bottle-
necks for the metric of interest. Since contour roughness of-
ten arises from interesting parameter interactions and shift-
ing bottlenecks, we can use roughness metrics to rank and
choose interesting two-dimensional contours from the Cp

2

possibilities for bottleneck analysis. Figure 3(b) presents
ammp’s performance contours for a two-dimensional pro-
jection of the register file and superscalar width. We ob-
serve two distinct regions divided horizontally by the 80-

2Depth is measured in fan-out-of-four delays per logic stage and
smaller FO4’s correspond to deeper pipelines with a larger number of short
logic stages.

Figure 6. Correlation between roughness rank and
contour range.

entry register file. The ammp benchmark experiences sig-
nificant register pressure when running on designs in the
lower region of this map. Performance in this lower region
is most effectively optimized by increasing both register file
sizes and superscalar width. In contrast, we observe dimin-
ishing marginal returns in performance from larger regis-
ter file sizes in the upper region of the map. This is illus-
trated by vertical contour levels in which changing register
file sizes cannot lead to higher performance. The register
file is no longer a bottleneck in this region and other design
parameters should be analyzed.

Power metrics are easily included into the analysis. The
power contours alone are less interesting as power often in-
creases monotonically with increases in microarchitectural
resources. Figure 4 considers the same projections of Fig-
ure 3 using a bips/w efficiency metric. Figure 4(a) ex-
amines trade-offs for pipeline dimensions, suggesting this
design space favors shallower, narrower pipelines once the
optimization metric accounts for the power costs of deeper,
wider pipelines. Pipeline depth is the primary efficiency
bottleneck for the more aggressive designs as illustrated by
the vertical contours in the 9 to 15 FO4 region. As we con-
sider increasingly shallow pipelines, superscalar width be-
gins to limit efficiency and we see a more pronounced trend
toward fewer instructions issued per cycle (i.e., issue band-
width from 8 to 2) in the 24 to 36 FO4 region.

Figure 4(b) illustrates performance and power trade-offs
for the register file and superscalar width. The bips/w effi-
ciency metric strongly favors narrower pipelines. This met-
ric also more clearly identifies the optimal register file size
between 60 and 90 entries based on the power costs of over-
provisioning this resource for the ammp benchmark. In con-
trast, the performance analysis of Figure 3(b) favors more
than 80 entries and does not capture power costs that make
130-entry register files unattractive.



Figure 7. Standardized (bpw − E[bpw])/SD[bpw] contours for mcf ; ranked by R2 (left to right, top to bottom).

4.3 Workload Characterization

Roughness and bottleneck analysis with contour maps also
enables workload comparisons based on their resource re-
quirements at the microarchitectural level. As before,
roughness rankings identify interesting contours for com-
parison. Figure 5 illustrates such a comparison between
ammp and mcf performance by examining demands on the
register file and L2 cache. As observed earlier, the regis-
ter file is a bottleneck for ammp. The vertical contour lev-
els indicate negligible performance advantages from larger
caches until register pressure has been relieved with at least
80 entries. Once the register file contains 80 entries, per-
formance is maximized by cache sizes larger than 1 MB. In
contrast, the horizontal contour levels for mcf reveal signifi-
cant performance advantages from larger caches, indicating
the workload is relatively memory bound. We also observe
more subtle indicators that 80-entry register files are opti-
mal for mcf. The vertical dips in the horizontal contour lev-
els all occur at 70 or 80 physical registers, indicating greater
performance at this file size for any L2 cache size.

While microarchitecture independent workload charac-
terizations examine and assess performance through funda-
mental program characteristics such as instruction mix and
register traffic, comparing comprehensive contour maps en-
able a more direct analysis based on computational resource
requirements at the microarchitectural level. For example,
microarchitecture independent metrics to assess instruction
level parallelism (ILP) might include the number of inde-

pendent instructions within an instruction window [14]. In
contrast, a contour map of pipeline dimensions would make
an assessment of ILP based on the optimality of various
pipeline depths and superscalar widths, thereby revealing
a workload’s characteristics and its direct implications for
microarchitectural design. Similarly, a microarchitecture
independent assessment of instruction mix might reveal an
application’s relative memory intensity, but contour maps
of the L2 cache would also reveal this trend while exposing
the implications of memory intensity to cache design.

4.4 Roughness and Contours

Prior work demonstrated analysis with microarchitectural
contours, but did not provide any objective mechanism for
focusing designer attention [13]. In contrast, we propose
roughness metrics for identifying interesting contours. We
assess the effectiveness of our roughness metrics by com-
puting R2 for contour maps and validating against graph-
ically observed roughness. This analysis reveals two con-
tributors to larger roughness values: range and variability.
Range is the difference between minimum and maximum
metric values in a given contour plot. Variability is cur-
vature in the topology, manifested in contour non-linearity
or non-monotonicity. Empirically, we observe a signifi-
cant range component in the roughness metrics. For ex-
ample, we find R2(Figure 4(a)) > R2(Figure 4(b)) and
R2(Figure 5(b)) > R2(Figure 5(a)) due to range differ-
ences. We construct all two-dimensional contours from



Trials Number of random starting points. Gradient ascent
returns best result across all trials.

Iterations Number of steps required before a trial converges
to a point with no significantly better neighbors.

Deficiency Difference between optima from gradient ascent and
exhaustive search.

Table 3. Gradient ascent definitions.

the seven-dimensional design space and rank them by R2

roughness. Figure 6 plots the correlation between rough-
ness and range rankings of these contours. The large corre-
lation coefficients (most exceeding 0.65) suggest a strong
relationship between the range and roughness of contour
maps for various benchmarks and design metrics.

We can isolate contributions from the variability com-
ponent by standardizing all contours to comparable ranges.
We subtract the mean and divide by the standard devia-
tion to produce similar ranges primarily between -3.0 and
3.0, the dominant range of a standard normal distribution.
Figure 7 presents the 12 roughest mcf contours from the
C7

2 = 21 possible maps ranked by decreasing roughness
from left to right, top to bottom. We observe qualitative
differences in non-linearity and non-monotonicity as we
progress from highly rough to least rough contours. The 12-
th contour appears rougher than its ranking implies, but is
an exception and not the general case. Excluding this con-
tour from the original 21, all rankings corroborate graph-
ically observed roughness. We observe increasing rough-
ness in contours 1 to 11 and very smooth trends in con-
tours 13 to 21 (not shown). Hills, valleys and plateaus are
frequently observed for rough contours while regular vec-
tor fields and vertical, horizontal contour levels dominate
smooth contours. This qualitative validation of roughness
metrics against observed topologies in the easily visual-
ized two-dimensional contours builds confidence in the pro-
posed metrics. Thus, roughness metrics enable quantitative
and objective comparisons of contour range and variability.

5 Roughness and Optimization

The idea of traversing hills and valleys to find optima
in two dimensions extends naturally to higher dimensions.
Gradient ascent, also known as steepest ascent or hill climb-
ing, begins at an initial point and steps toward a local max-
imum by moving in the direction of the steepest change
specified by the gradient. In practice, the gradient is ap-
proximated by identifying a move direction toward a point’s
best neighbor in the p-dimensional space. Since the heuris-
tic may identify a local maximum, robust implementations
iterate and start at different initial points to ensure a reported
maximum is reached consistently, thus increasing the likeli-
hood of an accurate approximation to the global maximum.

Intuitively, greater topology roughness will reduce the
effectiveness of search heuristics. To assess this link, we
must first establish measures of effectiveness. The compu-

for (t = 1 to max_trials)
x_old = <random initial design>
e_old = EVAL(x_old)
term_flag = 0;

while(term_flag == 0) {
// evaluate optimal neighbor
N = neighborset(x_old);
x_new = argmax{N | EVAL(N)};
e_new = EVAL(x_new);

// compare new against previous
// and terminate if difference is less
// than threshold (e.g., 1.001)
if (e_new/e_old < 1.001) {

term_flag = 1;
}
x_old = x_new; e_old = e_new;

}
metric(t) = e_old; design(t) = x_old;

}

// identify optimal design across trials
m = argmax(t | metric(t));
return(metric(m), design(m));

Figure 8. Gradient ascent implementation.

tational efficiency of regression models provide an oppor-
tunity to assess gradient ascent in a manner previously not
possible by

1. comparing gradient ascent results against the true
global optimum from exhaustively evaluating models.

2. assessing the likelihood of identifying the true global
optimum across multiple trials of gradient ascent be-
ginning at random starting points.

3. assessing the distribution of convergence times (i.e.,
path length of a trial) across multiple trials of gradi-
ent ascent beginning at random starting points.

5.1 Implementation

Figure 8 outlines our standard implementation of gradient
ascent. Each trial begins at a randomly chosen design. Each
iteration in the while loop of this trial will exhaustively
compare the current design against all neighboring designs,
identifying and selecting the best neighbor for the next itera-
tion of the loop. A trial terminates if the new design’s metric
differs from old design’s metric by less than some threshold
(e.g. 0.1 percent). At termination, the maximum identified
by the trial is logged into a list of search results. Gradient
ascent returns the best of these results after max trials.

We implement gradient ascent to search the performance
(bips) and efficiency (bips/w) topologies. The appropri-
ate regression models are used to compute EVAL(N) for
each neighbor. We define the set of neighbors as all de-
signs that can be reached by changing any combination of
parameter values by at most one step where parameter step
sizes are specified in the range column of Table 1. Define
each neighbor in a p-dimensional design space using a p-
element vector where each element can take one of three



Figure 9. Histogram of ammp gradient ascent results for performance (a), efficiency (b). Percentage of trials with
performance (c), efficiency (d) in the optimal bin.

bips bips/w
Benchmark Def (%) Trials Def (%) Trials
ammp 0.00 100 0.00 400
applu 0.00 100 0.81 500
equake 0.00 100 12.94 500
gcc 0.00 100 2.72 200
gzip 0.00 100 5.92 300
jbb 0.00 100 1.89 900
mcf 0.00 100 0.00 400
mesa 0.00 100 0.97 100
twolf 0.00 100 0.91 300

Table 4. Summary of gradient ascent results.

values: step-up, step-down, unchanged. Points at the inte-
rior of the design space have 3p such vectors, resulting in
2, 187 neighbors for our seven-dimensional design space.
The computational efficiency of our performance and power
regression models enable us to evaluate such a large num-
ber of predictions per iteration until the trial converges. This
process is repeated for max trials=1,000.

5.2 Evaluation

Since each trial begins at a randomly chosen initial design,
the search result varies from trial to trial. Figure 9(a-b) cap-
tures the distribution of identified bips and bips/w values
from 1,000 representative ammp trials. There are obvious
modes for both metrics, but Figure 9(a) suggests the bips
topology is more effectively explored by gradient ascent.
Although sub-optimal local maxima are occasionally iden-
tified, 57.6 percent of trials converged to the same optimal
value of 1.34 bips. In contrast, the bips/w mode in Figure
9(b) is more pronounced with 79.1 percent of trials converg-
ing to 0.045 bips/w, but 14.0 percent of trials identify more
efficient designs ranging from 0.048 to 0.062 bips/w.

The performance and power trade-offs likely increase the
non-linearity of the bips/w topology, producing modes be-
low the max. Figure 9(c-d) summarizes the bips and bips/w
differences across the suite of benchmarks by identifying
the fraction of trials that report the best results (i.e., the
right-most bar of Figure 9(a-b) for each benchmark). 37.5
percent of bips trials report the best result while, for most
benchmarks, less than 1.0 percent of bips/w trials do so. To
correctly identify the global maximum, at least one gradient
ascent trial must find a path to this optimum. A sub-optimal
mode reduces the likelihood of such a trial and implies a

Benchmarks Rough Deficiency Trials Iterations
ammp 4 1 5 6
applu 2 3 7 2
equake 3 9 8 1
gcc 5 7 2 8
gzip 8 8 3 9
jbb 7 6 9 3
mcf 1 2 6 7
mesa 9 4 1 4
twolf 6 5 4 5
roughness
correlation 1.00 0.35 -0.52 0.20

Table 5. Correlations between roughness rank and
rank by gradient ascent (1) deficiency, (2) trial, (3)
iterations. Values increase with rank (e.g. roughness
rank 1 corresponds to smoothest topology.)

larger number of trials is needed to find a global maximum
with confidence.

Gradient ascent is a search heuristic that may identify lo-
cal maxima. Multiple trials increase the likelihood of find-
ing the global maximum, but this result is not guaranteed
for non-monotonic topologies. Table 4 summarizes gradi-
ent ascent effectiveness, assessing stable deficiencies and
trial counts needed for stabilization. Deficiency quantifies
the difference between the results of gradient ascent and
those of exhaustive search using regression models. Defi-
ciency may decrease with trial count, but is often observed
to stabilize at 400 to 500 trials when optimizing bips/w.
In contrast, gradient ascent achieves zero deficiency when
traversing the bips topologies.

The number of iterations per trial illustrates gradient as-
cent’s ability to converge to a maximum quickly when start-
ing at various random points in the topology. Figure 10
uses boxplots to examine the distribution of times to con-
vergence for 1,000 trials when optimizing bips and bips/w.
Figure 10(a) indicates the median number of iterations per
trial is 10 and most trials converge and exit the while loop
in fewer than 20 iterations. In contrast, the bips/w topol-
ogy of Figure 10(b) may be more difficult to traverse with
a median convergence time of 9 iterations for five bench-
marks (applu, equake, jbb, mesa, twolf ), but a median con-
vergence time of 30 for the remaining benchmarks (ammp,
gcc, gzip, mcf ). Convergence times exceeding 20 iterations
is common for these latter benchmarks.



Figure 10. Distribution of gradient ascent convergence times for 1,000 trials performance (a) and efficiency (b).

5.3 Roughness and Heuristic Efficacy

Roughness may impact the effectiveness of optimization
heuristics that traverse the topology. Table 5 quantifies
roughness contributions to deficiencies in gradient ascent
results. The benchmarks are ranked by their bips/w defi-
ciencies relative to optima from exhaustive search. The pos-
itive correlation of 0.35 suggests deficiency increases with
roughness. If a model captures a rougher topology, gradient
ascent is more likely to identify local maxima without real-
izing the global maximum. For example, Table 5 indicates
ammp and mcf are relatively smooth with bips/w rough-
ness rankings of 4 and 1. Both benchmarks identify the
global maximum with no deficiency as shown in Table 4. In
contrast, gzip has roughness and deficiency rankings of 8,
suggesting rough bips/w topologies may result in a greater
number of reported sub-optima from gradient ascent. This
general trend is confirmed across all benchmarks with only
one significant deviation in equake which has a relatively
smooth bips/w topology but exhibits significant gradient
ascent deficiencies of 12.9 percent.

The number of predictions performed in gradient ascent
is affected by the number of required trials to get the best
overall result (i.e., lowest deficiency) and the number of it-
erations needed for each trial to converge to its particular
result. Table 5 indicates roughness is negatively correlated
with the number of trials needed to identify stable deficien-
cies. Taken with its positive correlation with deficiency,
rough topologies may result in deficient results that cannot
be mitigated by more trials. Lastly, we observe a positive
correlation between roughness and iterations per trial. This
correlation indicates each traversal of a rougher space may
require more steps before reaching a trial’s maximum.

We might use the relationship between roughness and
gradient ascent deficiency to improve the search heuristic.
Additional trials in gradient ascent may reduce deficiencies
by increasing the likelihood of an initial design chosen near

the global maximum. Alternatively, we could consider sim-
ulated annealing or other stochastic variants to gradient as-
cent. Instead of evaluating all neighboring designs, sim-
ulated annealing will randomly select a neighbor, accept-
ing a sub-optimal neighbor with some non-zero probability
even with no benefit to the target metric. This probabilis-
tic approach enables the search to escape sub-optimal local
maxima, an important capability for rough topologies.

6 Related Work

Zyuban, et al., propose measures of hardware and volt-
age intensity to quantify compromises between energy and
delay resulting from circuit-level tuning and voltage scal-
ing, respectively [20]. Intensity is computed as D

δD
δE
E

where D is delay and E is energy. Intensity is used
to derive conditions for optimal microarchitectural power-
performance from mathematical relations. Markovic, et al.,
derive sensitivity δE/δX

δD/δX for tunable circuit parameters X

such as gate sizing, supply voltage, and threshold voltage
[11]. Optimal values for circuit parameters are those that
equalize sensitivity. In contrast, we use statistical inference
and heuristics at the macro block level.

Yi, et al., identify significant parameters using Plackett-
Burman design matrices [17]. Oskin, et al., use statis-
tical and symbolic simulation to construct contour maps
[13]. We identify significant parameters using contour maps
and construct these maps with predictive regression models.
This allows us to quickly consider many contours in an ex-
ploratory manner.

Eyerman, et al., apply synthetic trace simulation with
various heuristics to search for global optima within a de-
sign space [3]. These authors compute gradient ascent de-
ficiency relative to results from other heuristics while we
assess effectiveness relative to exhaustive search with re-
gression models. Eyerman, et al., evaluate other techniques



including genetic algorithms and tabu search. We analyze
gradient ascent since it is widely known and is likely the
first method tried by a typical user.

Ipek, et al., and Joseph, et al., separately predict the
performance of design spaces with automated neural net-
works trained by gradient descent and predicted by nested
weighted sums [2, 7]. The approach we adopt from Lee
and Brooks requires greater statistical analysis when con-
structing spline-based regression models, but is based on
numerical linear algebra and may be more computationally
efficient [9]. In contrast, Karkhanis, et al., propose analyti-
cal models for superscalar design optimization [8].

7 Conclusions

We apply recent advances in statistical inference and
machine learning to close the divide between microarchi-
tectural simulation and classical optimization. We com-
pute roughness metrics to assess the impact of design space
non-linearity and non-monotonicity on analysis and opti-
mization. In particular, we consider the effects of rough-
ness on spline-based regression model error, the consis-
tency of roughness when compared against graphically ob-
served trends in contour maps, and the implications of
rough topologies for optimization heuristics that traverse
the design space. Overall, roughness metrics advance our
understanding of the design space, guiding the design of ro-
bust predictive models and optimization heuristics.

Acknowledgements

This work is supported by National Science Foundation
grant CCF-0048313 (CAREER), Intel, and IBM. Any opin-
ions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation,
Intel, or IBM.

References

[1] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. G.
Emma, and M. G. Rosenfield. New methodology for early-
stage, microarchitecture-level power-performance analysis
of microprocessors. IBM Journal of Research and Devel-
opment, 47(5/6), Oct/Nov 2003.

[2] E.Ipek, S.A.McKee, B. de Supinski, M. Schulz, and R. Caru-
ana. Efficiently exploring architectural design spaces via
predictive modeling. In ASPLOS-XII: Architectural support
for programming languages and operating systems, October
2006.

[3] S. Eyerman, L. Eeckhout, and K. D. Bosschere. Efficient de-
sign space exploration of high performance embedded out-
of-order processors. In Design, Automation, and Test in Eu-
rope, March 2006.

[4] P. Green and B. Silverman. Nonparametric regression and
generalized linear models: A roughness penalty approach.
Monographs on Statistics and Applied Probability, 1994.

[5] F. Harrell. Regression modeling strategies. Springer, 2001.
[6] V. Iyengar, L. Trevillyan, and P. Bose. Representative traces

for processor models with infinite cache. In Proceedings of
the 2nd Symposium on High Performance Computer Archi-
tecture, February 1996.

[7] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A pre-
dictive performance model for superscalar processors. In
Micro-39: International Symposium on Microarchitecture,
December 2006.

[8] T. Karkhanis and J. Smith. Automated design of applica-
tion specific superscalar processors: an analytical approach.
In International Symposium on Computer Architecture, June
2007.

[9] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power pre-
diction. In ASPLOS-XII: International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, October 2006.

[10] B. Lee and D. Brooks. Illustrative design space studies with
microarchitectural regression models. In HPCA’07: Inter-
national Symposium on High-Performance Computer Archi-
tecture, February 2007.

[11] D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and
R. Broderson. Methods for true energy-performance opti-
mization. IEEE Journal of Solid-State Circuits, 39(8), Au-
gust 2004.

[12] M. Moudgill, J. Wellman, and J. Moreno. Environment
for powerpc microarchitecture exploration. IEEE Micro,
19(3):9–14, May/June 1999.

[13] M. Oskin, F. Chong, and M. Farren. Hls: Combining sta-
tistical and symbolic simulation to guide microprocessor de-
signs. In ISCA-27: International Symposium on Computer
Architecture, June 2000.

[14] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John. Measur-
ing program similarity: experiments with spec cpu bench-
mark suites. In ISPASS05: International Symposium on Per-
formance Analysis of Systems and Software, March 2005.

[15] R Development Team. R Language Definition.
[16] P. Shivakumar and N. Jouppi. An integrated cache timing,

power, and area model. In Technical Report 2001/2, Compaq
Computer Corporation, August 2001.

[17] J. Yi, D. Lilja, and D. Hawkins. A statistically rigorous ap-
proach for improving simulation methodology. In HPCA: In-
ternational Symposium on High-Performance Computer Ar-
chitecture, Feb 2003.

[18] V. Zyuban. Inherently lower-power high-performance su-
perscalar architectures. In Ph.D. Thesis, University of Notre
Dame, March 2000.

[19] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose,
P. Strenski, and P. Emma. Integrated analysis of power and
performance for pipelined microprocessors. IEEE Transac-
tions on Computers, Aug 2004.

[20] V. Zyuban and P. Strenski. Balancing hardware intensity in
microprocessor pipelines. IBM Journal of Research and De-
velopment, 47(5/6), Oct/Nov 2003.


	1 Introduction
	2 Methodology and Background
	2.1 Simulation Framework
	2.2 Benchmark Suite
	2.3 Spatial Sampling
	2.4 Regression Modeling
	2.5 Gradient Background

	3 Roughness Metrics
	3.1 Numerical Approximations
	3.2 Roughness and Regression Error

	4 Roughness and Visualization
	4.1 Contour Maps
	4.2 Bottleneck Analysis
	4.3 Workload Characterization
	4.4 Roughness and Contours

	5 Roughness and Optimization
	5.1 Implementation
	5.2 Evaluation
	5.3 Roughness and Heuristic Efficacy

	6 Related Work
	7 Conclusions

