CPR: Composable Performance Regression for Scalable Multiprocessor Models

Benjamin C. Lee

Computer Architecture Group Microsoft Research

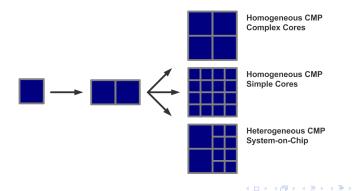
Jamison Collins, Hong Wang

Microarchitecture Research Lab Intel Corporation

(intel)

David Brooks

Engineering and Applied Sciences Harvard University


イロト イポト イヨト イヨト

International Symposium on Microarchitecture 11 November 2008

Benjamin C. Lee, et al 1 :: MICRO :: 11 Nov 08

Technology Trends

- Moore's Law and increasing transistor densities
- Performance and power efficiency
- Transition to multi-core and parallelism

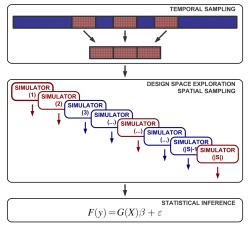
Technology Trends Simulation Challenges Simulation Paradigm

Simulation Challenges

Cycle-Accurate Simulation

- Accurately identifies trends in design space
- Tracks instructions' progress through microprocessor

Simulation Costs


- Costs per simulation :: minutes, hours per design
- Number of simulations :: scales exponentially (m^p)
 - *p*, *m* :: parameter count, resolution
- Costs per simulation :: scales superlinearity (n^γ)
 - *n* cores, $\gamma > 1$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Motivation	Technology Trends
Uniprocessor	
Multiprocessor	Simulation Paradigm

Statistical Inference

- Construct inferential models from samples [ASPLOS'06]
- Use models as efficient surrogates for simulator

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Motivation Uniprocessor Multiprocessor Technology Trends Simulation Challenges Simulation Paradigm

Multiprocessor Inference

• Expensive CMP Simulations

- Physical resource contention increases host cycles
- Logical resource contention increases simulated cycles
- Synchronization increases cost per simulated cycle

• Composable Performance Regression

- Leverage core models to minimize CMP simulations
- Core :: Uniprocessor performance
- Contention :: Shared resource contention
- Penalty :: Performance penalty from contention

く 同 と く ヨ と く ヨ と

Motivation Regression Theor Uniprocessor Model Evaluation Multiprocessor Evolutionary Desi

Outline

Motivation

Technology Trends Simulation Challenges Simulation Paradigm

Uniprocessor

Regression Theory Model Evaluation Evolutionary Design

Multiprocessor

CPR Model Evaluation Scalability

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Regression Theor Uniprocessor Model Evaluation Multiprocessor Evolutionary Desig

Outline

Motivation

Technology Trends Simulation Challenges Simulation Paradigm

Uniprocessor

Regression Theory Model Evaluation Evolutionary Design

Multiprocessor

CPR Model Evaluation Scalability

イロト イポト イヨト イヨト

э

Motivation Regression Theory Uniprocessor Model Evaluation Multiprocessor Evolutionary Design

Regression Theory

Statistical Inference

- Models relationships between data
- Requires initial data to train, formulate model
- Leverages correlation from initial data for prediction

Regression Models

- Low training costs (sample 300 from 4.3B designs)
- Accurate inference (1.5% median error)
- Efficient computation (100's of predictions per second)

・ 同 ト ・ ヨ ト ・ ヨ ト

Formulation

- n simulated design samples, p design parameters
- Response :: Y design metrics (*e.g.*, performance)
- Predictor :: X design parameters (e.g., ROB, cache)

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad \qquad \mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}$$

- Coefficients :: $\beta = [\beta_0, \dots, \beta_p]^T$
- Errors :: $\varepsilon = [\varepsilon_1, \dots, \varepsilon_n]^T$ where $\varepsilon_i \sim N(0, \sigma^2)$

$$\begin{aligned} \mathbf{Y} &= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ F(\mathbf{Y}) &= G(\mathbf{X})\boldsymbol{\beta}_G + \boldsymbol{\varepsilon} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Motivation Regression Theory Uniprocessor Model Evaluation Multiprocessor Evolutionary Design

Prediction

Requirements

- β known from least squares model training
- X known for a given set of queries

Expected Response

- Response as weighted sum of predictor values
- Computed efficiently as matrix-vector product

$$E[\mathbf{Y}] = E[\mathbf{X}\beta + \varepsilon]$$

= $E[\mathbf{X}\beta] + E[\varepsilon]$
= $\mathbf{X}\beta$

・ 同 ト ・ ヨ ト ・ ヨ ト

MotivationRegression TheoUniprocessorModel EvaluationMultiprocessorEvolutionary Des

Experimental Methodology

Intel Product Simulators

- Models consecutive generations of x86 µ-arch
- Supports dual-, quad-core architectures.

Sampling Uniformly at Random (UAR)

- Parameter space includes predictors, ROB, caches
- 15 parameters, 4.3B designs
- Sample 300 designs for simulation

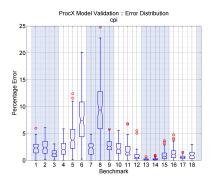
Statistical Framework

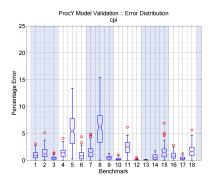
- R :: software environment for statistical computing
- Hmisc and Design packages [Harrell]

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Regression Theory
Uniprocessor	Model Evaluation
Multiprocessor	

Benchmarks


Digi	tal Home			
1	audio	audio conversion		
2	video	video compression		
3	photo	photoshop album		
Gan	nes			
4	unreal	Unreal Tournament		
5	halflife	Half-Life, modified Quake engine		
6	homeworld	Homeworld, three-dimensional movement		
Mul	timedia			
7	mentalray	rendering, ray tracing		
8	painter	raster graphics package		
9	tachyon	ray tracing		
Offi	се			
10	outlook	personal information manager		
11	access	relational database management system		
12	excel	spreadsheet application		
Pro	Productivity			
13	md2	OpenSSL cryptographic hash function		
14	encrypt	file encryption		
15	flash	multimedia player		
Server				
16	specweb	web server		
17	tpcc	on-line transaction processing		
18	specjapp	J2EE 1.3 application servers		


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Motivation Regression Theor Uniprocessor Model Evaluation Multiprocessor Evolutionary Desi

Uniprocessor Model Accuracy

- Obtain 50 additional random samples for validation
- Core :: 1.5% median error

< 🗇

ヨト・モート

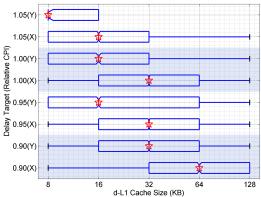
Motivation Regression Theory Uniprocessor Model Evaluation Multiprocessor Evolutionary Design

Evolutionary Design

Evolutionary Approach

- Optimize ProcX
- Design ProcY, enhancing ProcX with μ-arch features
- Re-construct models, accounting for μ -arch features
- Optimize ProcY

Case Study


- Consecutive generations of x86 μ-arch
- Improve FE (e.g., branch prediction)
- Improve MEM (e.g., prefetching)
- Improve OOO (e.g., memory disambiguation)

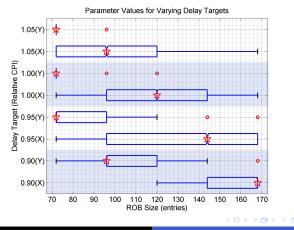
・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Regression Theory
Uniprocessor	
Multiprocessor	Evolutionary Design

Evolving Caches

Improve MEM: similar performance with smaller caches

Parameter Values for Varying Delay Targets


・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Evolving ROB

- Improve FE: more instructions inflight, suggests larger ROB
- Improve MEM: fewer cache misses, suggests smaller ROB

Motivation CPR Uniprocessor Model E Multiprocessor Scalabil

CPR Model Evaluation Scalability

Outline

Motivation

Technology Trends Simulation Challenges Simulation Paradigm

Uniprocessor

Regression Theory Model Evaluation Evolutionary Design

Multiprocessor

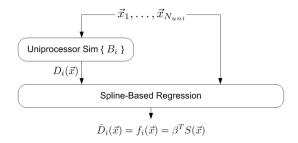

CPR Model Evaluation Scalability

・ロット (雪) (山) (山)

ъ

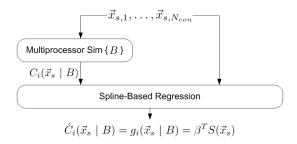
Composable Performance Regression

- CPR :: build separate core, contention, penalty models
- Requires simulations $N_{uni} > N_{con} \ge N_{pen}$
- Suppose core sims require T_1 , multi-core sims require T_1n^{γ}


ヘロン 人間 とくほ とくほ とう

3

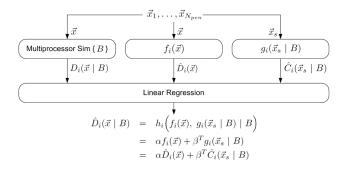
CPR: Core


- Train with uniprocessor sims from full parameter space
- Estimate per core delay from all design parameters

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

CPR: Contention

- Train with CMP, cache-only sims from reduced subspace
- Estimate cache hits/misses from shared cache parameters



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

CPR: Penalty

- Train with composed predictions, few CMP sims from full space
- Estimate CMP core delays from core, contention predictions

ヘロン 人間 とくほ とくほ とう

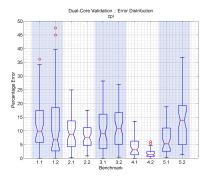
3

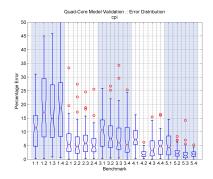
Motivation Uniprocessor Multiprocessor

CPR Model Evaluation Scalability

Benchmarks

Dual-Core Benchmarks				
Set	.1	.2		
1	painter	homeworld		
2	access	mentalray		
3	specjapp	specweb		
4	homeworld	tachyon		
5	dense	flash		


Quad-Core Benchmarks					
Set	.1	.2	.3	.4	
1	dense	excel	flash	md2	
2	video	specjapp	specweb	tachyon	
3	excel	homeworld	audio	unreal	
4	outlook	encrypt	halflife	homeworld	
5	painter	mentalray	outlook	encrypt	


Benjamin C. Lee, et al 22 :: MICRO :: 11 Nov 08

Motivation CPR Uniprocessor Model Evaluation Multiprocessor Scalability

Multiprocessor Model Accuracy

- Dual-core :: 6.6% median error
- Quad-core :: 4.8% median error

< 🗇 >

▶ < ∃ >

Scaling Trends

- Lower bound CPR costs 0.33x of naïve costs
- Approach lower bound as uniprocessor models built

э

Conclusion

Inference in Industry

- Effective inference for x86 μ -arch
- 1.5% median errors relative to simulation
- Evolutionary design for new features across generations

• Composable Performance Regression

- Leverage core models to minimize CMP simulations
- Construct separate core, contention, penalty models
- 4.8 to 6.6% median errors for dual-, quad-core
- 0.33x training costs of prior approaches

伺 とくき とくき とう

Future Directions

Efficient Multiprogramming Analysis

Evaluate combinations without modeling every combination

Multi-Threaded Workloads

- Extend for homogeneous, heterogeneous threads.
- Account for synchronization events

Many-Core Architectures

- Construct models without many-core simulators
- Consider other shared resources (e.g., network)

(雪) (ヨ) (ヨ)

CPR: Composable Performance Regression for Scalable Multiprocessor Models

Benjamin C. Lee

Computer Architecture Group Microsoft Research

Jamison Collins, Hong Wang

Microarchitecture Research Lab Intel Corporation

(intel)

David Brooks

Engineering and Applied Sciences Harvard University

イロト イポト イヨト イヨト

International Symposium on Microarchitecture 11 November 2008

Benjamin C. Lee, et al 27 :: MICRO :: 11 Nov 08