
Statistical Inference for Efficient
Microarchitectural Analysis

A dissertation presented

by

Benjamin Chi-Chung Lee

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2008

c©2008 - Benjamin Chi-Chung Lee

All rights reserved.

Thesis advisor Author

David M. Brooks Benjamin Chi-Chung Lee

Statistical Inference for Efficient Microarchitectural Analysis

Abstract

The transition to multiprocessors expands the space of viable core designs and re-

quires sophisticated optimization over multiple design metrics. However, microarchi-

tectural design space exploration is often inefficient and ad hoc due to the significant

computational costs of hardware simulators. Long simulation times cause designers

to subjectively constrain the design space considered. However, by pruning the de-

sign space with intuition before a study, the designer risks obtaining conclusions that

simply reinforce prior intuition, thereby limiting the study’s value. Addressing these

fundamental challenges in microarchitectural analysis becomes increasingly urgent as

the semiconductor industry moves into new domains where tried and tested intuition

becomes less effective.

This dissertation presents the case for statistical inference in microarchitectural de-

sign, proposing a simulation paradigm that (1) defines a comprehensive design space,

(2) simulates sparse samples from that space, and (3) derives inferential regression

models to reveal salient trends. These regression models accurately capture perfor-

mance and power associations for comprehensive multi-billion point design spaces.

Moreover, they are capable of thousand’s of predictions per second.

Used as computationally efficient surrogates for detailed simulation, regression

models enable previously intractable analyses of performance and power. Leverag-

iii

Abstract iv

ing model efficiency, this dissertation demonstrates qualitatively new capabilities by

using pareto frontiers to identify power-efficient designs, contour maps to visualize

bottlenecks, and roughness metrics to quantify non-monotonicity in design topologies.

Furthermore, inferential models enable qualitatively new capabilities in optimiza-

tion for emerging design priorities. Not only do these models answer prior questions

far more quickly, they answer new questions previously intractable with detailed sim-

ulation. This dissertation implements robust optimization techniques to assess mul-

tiprocessor heterogeneity and microarchitectural adaptivity, quantifying trends and

limits in performance and power efficiency from these design paradigms. The capa-

bilities from inference scale to multi-billion point design spaces, giving designers the

holistic view necessary to successfully implement the transition to multiprocessors.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
List of Figures . viii
List of Tables . xiii
Citations to Previously Published Work xv
Acknowledgments . xvi
Dedication . xviii

1 Introduction 1
1.1 Technology Trends . 2
1.2 Simulation Challenges . 5
1.3 Simulation Paradigm . 6
1.4 Qualitatively New Capabilities . 9
1.5 Summary of Contributions . 11

2 Statistical Inference 13
2.1 Spatial Sampling . 16

2.1.1 Spatial and Temporal Synergies 16
2.1.2 Uniformly Random Sampling 17
2.1.3 Alternative Sampling Strategies 18

2.2 Model Derivation . 20
2.2.1 Hierarchical Clustering . 23
2.2.2 Association Analysis . 25
2.2.3 Correlation Analysis . 27
2.2.4 Model Specification . 29

2.3 Model Evaluation . 37
2.3.1 Evaluating Fit . 37
2.3.2 Evaluating Bias . 38
2.3.3 Evaluating Accuracy . 41
2.3.4 Alternative Modeling Strategies 42

v

Contents vi

2.4 Related Work . 45
2.4.1 Temporal Sampling . 45
2.4.2 Parameter Significance Testing 46
2.4.3 Empirical and Analytical Modeling 47

2.5 Summary . 49

3 Characterizing Performance and Power Topologies 52
3.1 Parameter Sensitivity . 55

3.1.1 Pitfalls of One-Dimensional Sensitivity 55
3.1.2 Case Study of Pipeline Depth 59

3.2 Pareto Frontiers . 64
3.2.1 Characterizing the Design Space 65
3.2.2 Identifying the Pareto Frontier 66
3.2.3 Validating the Pareto Frontier 68

3.3 Contours for Visualizing Topologies 70
3.3.1 Contour Maps . 70
3.3.2 Bottleneck Analysis . 72
3.3.3 Workload Characterization . 74

3.4 Metrics for Quantifying Roughness 75
3.4.1 Numerical Approximations . 77
3.4.2 Roughness and Regression . 78
3.4.3 Roughness and Contours . 81

3.5 Related Work . 84
3.5.1 Sensitivity . 85
3.5.2 Optimizing Pipeline Depth . 86
3.5.3 Roughness Metrics . 86

3.6 Summary . 87

4 Optimizing Performance and Power Topologies 89
4.1 Robust Optimization . 92

4.1.1 Implementation . 95
4.1.2 Evaluation . 97

4.2 Multiprocessor Heterogeneity . 101
4.2.1 Exhaustive Optimization . 103
4.2.2 Heuristic Clustering . 104
4.2.3 Heterogeneity Efficiency Trends 107
4.2.4 Heterogeneity Validation . 110

4.3 Microarchitectural Adaptivity . 113
4.3.1 Adaptivity Dimensions . 114
4.3.2 Heuristic Optimization . 116
4.3.3 Temporal Adaptivity . 120
4.3.4 Spatial Adaptivity . 128

Contents vii

4.4 Related Work . 135
4.4.1 Optimization . 135
4.4.2 Multiprocessor Heterogeneity 135
4.4.3 Microarchitectural Adaptivity 136

4.5 Summary . 139

5 Conclusions and Future Directions 141
5.1 Summary of Themes and Results . 142
5.2 Future Directions . 145

5.2.1 Modeling Methodology . 145
5.2.2 Multiprocessor Core Interaction 146
5.2.3 Hardware-Software Interface 150

Bibliography 154

A Simulator Framework 161

B Design Spaces 162

C Benchmarks 167

List of Figures

1.1 Microprocessor Core. A datapath fetches and executes instructions.
The datapath is supported by a memory hierarchy with multiple levels
of cache. 3

1.2 Transition to Chip Multiprocessors. Previously, designers consid-
ered uniprocessors. At present, designers consider multi-core architec-
tures. In the future, designers choose among several diverse trajecto-
ries: homogeneous multi-core with cores of varying size and complexity
or heterogeneous multi-core/system-on-chip architectures. 3

1.3 Simulation Paradigm. Temporal and spatial sampling reduces per
simulation costs and number of required simulations, respectively. Sta-
tistical inference reveals broader trends from spatial samples. 7

2.1 Hierarchical Clustering. The level at which clusters connect indi-
cates their degree of similarity. Spearman ρ2 is a rank-based measure
of correlation. Example for design space of Table 2.1 and nine SPEC
benchmarks of Table 2.2. 24

2.2 Association Analysis. Table summarizes ranges of parameter values
(second column), number of samples in each range (third column), and
average performance of these samples (fourth column) (L). Scatterplot
visualizes this data (R). Example for design space of Table 2.1 and
nine SPEC benchmarks of Table 2.2. 26

2.3 Correlation Analysis. Plots squared Spearman rank correlation be-
tween microarchitectural parameters and performance. Example for
design space of Table 2.1 and nine SPEC benchmarks of Table 2.2. . . 28

2.4 Restricted Cubic Spline. Range of x divided using five knots with
polynomial interiors, linear tails. 35

2.5 Residual Schematic. Differences between observed and predicted
values in training data. 39

viii

List of Figures ix

2.6 Residual Randomness. Scatterplots of residuals before and after
square-root transformation. Residuals of an unbiased model should
appear randomly and independently distributed around zero. Example
for design space of Table 2.1 and nine SPEC benchmarks of Table 2.2. 40

2.7 Residual Normality. Quantile-Quantile plots of residuals before and
after square-root transformation. Plots for an unbiased model should
appear linear. Example for design space of Table 2.1 and nine SPEC
benchmarks of Table 2.2. 40

2.8 Model Error Distributions. Boxplots capture error distributions
for performance (L) and power (R) predictions on validation set of 100
random designs. Example for design space of Table 2.1 and nine SPEC
benchmarks of Table 2.2. 42

2.9 Model Error Distributions. Boxplots capture error distributions
for performance (L) and power (R) predictions on validation set of 100
random designs. Example for design space of Table B.4 and bench-
marks of Table 2.2. 50

3.1 Sensitivity at Baseline. Parameter sensitivity for ammp (L) and
mcf (R) computed at a baseline design resembling the IBM POWER4
design (Table 3.1). 57

3.2 Sensitivity after Single Parameter Optimization. Parameter
sensitivity for ammp (L) and mcf (R) computed after optimizing the
most sensitive parameters, superscalar width for ammp and L1 data
cache for mcf. 58

3.3 Pipeline Depth Analysis. bips3/w for original (line plot) and en-
hanced (boxplots) analyses. Efficiency relative to bips3/w optimum in
original analysis at 18 FO4. 61

3.4 Pipeline and Cache Sizes. Distribution of d-L1 cache sizes for de-
signs in 95th percentile. 63

3.5 Design Characterization. Regression-predicted delay, power for
375,000 designs of Table 3.2 running representative SPEC benchmarks
ammp (L) and mcf (R). Arrows indicate trends as parameter values
change. Colors map to L2 cache sizes. 65

3.6 Pareto Frontier. Pareto optima for 375,000 designs of Table 3.2
running representative SPEC benchmarks ammp (L) and mcf (R). The
green boxes illustrate a region within 25 percent of the bips3/w optimal
delay and power from Table 3.4. 66

3.7 Complete Pareto Frontier Accuracy. Boxplots capture error dis-
tributions for performance (L) and power (R) predictions for complete
set of Pareto optima. Pareto frontiers constructed for design space of
Table 3.2 and nine SPEC benchmarks of Table 3.3. 69

List of Figures x

3.8 Restricted Pareto Frontier Accuracy. Boxplots capture error dis-
tributions for performance (L) and power (R) predictions on restricted
subset of Pareto optima exhibiting delay and power within 25 percent
of bips3/w optima in Table 3.4. Pareto frontiers constructed for design
space of Table 3.2 and nine SPEC benchmarks of Table 3.3. 69

3.9 Performance Contours. Contour maps of SPEC ammp bips for
depth, width (L) and register file, width (R). 71

3.10 Power-Performance Contours. Contour maps of SPEC ammp
bips/w for depth, width (L) and register file, width (R). 73

3.11 Performance Contours. Contour maps of SPEC ammp (L) and mcf
(R) for L2 cache, register file. 74

3.12 Roughness and Performance Error. Plots roughness against me-
dian (L) and maximum (R) regression errors for performance. Rough-
ness and error are relative to maximum across nine SPEC benchmarks
of Table 3.3. Trendlines indicate positive correlations. 80

3.13 Roughness and Power Error. Plots roughness against median (L)
and maximum (R) regression errors for power. Roughness and error
are relative to maximum across nine SPEC benchmarks of Table 3.3.
Trendlines indicate positive correlations. 80

3.14 Contour Roughness-Range Correlation. Correlation between topol-
ogy roughness and range of performance, power, and bips/w efficiency
values in contour maps. Range is computed by dividing the maximum
contour value by the minimum contour value. 82

3.15 Roughness and Observed Contour Variability. Standardized
bips/w contours for mcf. Ranking the

(
7
2

)
contours in order of de-

creasing roughness, we present contours ranked most rough (1st, 2nd
of 21), moderately rough (10th, 11th of 21) and least rough (20th, 21st
of 21) from left to right, top to bottom. 83

4.1 Gradient Ascent Implementation. Gradient ascent iteratively steps
in direction of gradient until convergence criteria are satisfied. Multiple
trials start at different random points. 94

4.2 Gradient Ascent Results. Histogram of values reported by 1,000
trials of gradient ascent with ten bips (L) and bips/w (R) bins for a
representative benchmark SPEC ammp. 98

4.3 Gradient Ascent Effectiveness. Number of gradient ascent trials
achieving bips (L) and bips/w (R) in the optimal bin. Equivalent to
the right-most bar of Figure 4.2 across nine SPEC benchmarks of Table
4.3. 98

List of Figures xi

4.4 Gradient Ascent Deficiency. Gradient ascent bips/w deficiency
computed relative to global optimum identified by exhaustively eval-
uating regression models for every point in the design space of Table
4.2. 99

4.5 Gradient Ascent Convergence. Distribution of trial convergence
times for 1,000 gradient ascent trials optimizing performance (L) and
bips/w efficiency (R). Time measured in number of iterations before
convergence criteria satisfied. 100

4.6 Optimization and Clustering. Delay and power for per benchmark
optima of Table 4.5 (radial points) and resulting compromises/centroids
of Table 4.6 (circles). 106

4.7 Heterogeneity Efficiency Trends and Limits. Predicted efficiency
gains as a function of heterogeneity. Cluster 0 is baseline of Table 4.7,
cluster 1 is homogeneous multicore from K-means, cluster 4 is hetero-
geneous multicore of Table 4.6, cluster 9 is heterogeneous multicore of
Table 4.5. 109

4.8 Heterogeneity Validation for Benchmark Average. bips3/w ef-
ficiency validation for average of nine SPEC benchmarks of Table 4.3.
X-axis interpreted as in Figure 4.7. 111

4.9 Heterogeneity Validation for Representative Benchmarks. bips3/w
efficiency validation for representative SPEC CPU benchmarks of Ta-
ble 4.3. X-axis interpreted as in Figure 4.7. 112

4.10 Framework for Adaptivity Analysis. Framework combines ele-
ments of temporal and spatial sampling to construct regression mod-
els. Regression models are used to implement genetic algorithms that
iteratively search the adaptive space for efficiency maximizing designs.
Efficient designs are identified for each adaptive interval. 117

4.11 Temporal Adaptivity Trends. Representative bips3/w efficiency
trends for blast (UL), ammp (UR), gcc (LL) and radiosity (LR). Mi-
croarchitecture reconfigures every 81.92M (low temporal adaptivity) to
0.08M instructions (high temporal adaptivity). 122

4.12 Temporal Adaptivity and Efficiency. Performance, power (L) and
efficiency impact (R) from high temporal adaptivity. Microarchitecture
reconfigures every 0.08M instructions (high temporal adaptivity). . . 124

4.13 Number of Parameters Utilizing Adaptivity. Number of pa-
rameters that adapt between consecutive intervals for raytrace(L) and
twolf(R). 126

4.14 Changes for Parameters Utilizing Adaptivity. Magnitude of
change for parameters that adapt between consecutive intervals for
raytrace. 128

List of Figures xii

4.15 Reduced Spatial Adaptivity and Efficiency. Efficiency compari-
son between reduced and comprehensive spatial adaptivity. Efficiency
for 1-3 parameters is reported for the 1-3 parameters that maximize
bips3/w. Each benchmark is evaluated for different sets of 1-3 param-
eters as described in Table 4.10. 131

4.16 Spatial Adaptivity and DVFS. Additional efficiency from DVFS
applied to various degrees of spatial adaptivity: none (Static), high-
spatial/low-temporal (Adapt-App), and high-spatial/high-temporal (Adapt-
Interval). Each bar is normalized to the corresponding level of spatial
adaptivity without DVFS. 133

4.17 Related Work in Adaptivity. Prior studies considered low temporal
or spatial adaptivity. In contrast, we consider much higher spatial
adaptivity without compromising temporal adaptivity. 137

5.1 Composable Multiprocessor Models. Contention models adjust
uniprocessor performance and power estimates with a penalty model.
Uniprocessor models would be trained by core simulations while con-
tention and penalty models would be trained by multi-core simulations. 148

List of Tables

2.1 Design Space I. Used for initial model derivation and proof of con-
cept. p = 12, |S| = 9.4E+8. 22

2.2 Benchmarks. 23
2.3 Recommended Knot Placement. K knots are placed at fixed quan-

tiles of the data [25]. 35

3.1 POWER4 Baseline. Superscalar, out-of-order microarchitectural
design resembling the IBM POWER4. 57

3.2 Design Space II. Used for design characterization and optimization
where regression models are evaluated exhaustively for every point in
the space. p = 7, |S| = 3.8E+5. 59

3.3 Benchmarks. 60
3.4 Efficient Pareto Optima. bips3/w maximizing designs for nine

SPEC benchmarks of Table 3.3. 67

4.1 Gradient Ascent Terms and Definitions. Gradient ascent is an
iterative optimization heuristic with several measures of cost and ef-
fectiveness. 93

4.2 Design Space II. Used for design characterization and optimization
where regression models are evaluated exhaustively for every point in
the space. p = 7, |S| = 3.8E+5. 95

4.3 Benchmarks. 96
4.4 Gradient Ascent Results. Gradient ascent deficiency and the num-

ber of trials required to minimize deficiency. 100
4.5 Per Benchmark Optima for Heterogeneity Clustering. bips3/w

maximizing designs for nine SPEC benchmarks of Table 4.3. Per
benchmark optima are identified by exhaustively evaluating perfor-
mance and power regression models for design space of Table 4.2. . . 103

xiii

List of Tables xiv

4.6 Heterogeneous Cluster Centroids. Design specifications of cen-
troids from K-means clustering for per benchmark optima of Table
4.5. Figure 4.6 shows cluster assignments for benchmarks. Per bench-
mark optima identified from design space of Table 4.2 for nine SPEC
benchmarks of Table 4.3. 106

4.7 POWER4 Baseline. Superscalar, out-of-order microarchitectural
design resembling the IBM POWER4. 109

4.8 Design Space III. Used for design optimization where regression
models are optimized with with iterative heuristics. p = 15, |S| =
2.8E+11. 116

4.9 Per Benchmark Optima for Adaptivity Baseline. bips3/w max-
imizing designs for benchmarks of Table C.1. Per benchmark optima
are identified by genetic algorithms implemented with performance and
power regression models for Table 4.8. 121

4.10 Reduced Spatial Adaptivity and Significant Parameters. Choice
of k = 1, . . . , 3 parameters that maximize adaptive efficiency gains. *
denotes parameters that became less significant with additional adap-
tivity (e.g., 2* for gcc l2Assoc indicates it was among the 2, but not
the 3, most significant parameters.) 130

B.1 POWER4 Baseline. Superscalar, out-of-order microarchitectural
design resembling the IBM POWER4. 163

B.2 Design Space I. Used for initial model derivation and proof of con-
cept. p = 12, |S| = 9.4E+8. 164

B.3 Design Space II. Used for design characterization and optimization
where regression models are evaluated exhaustively for every point in
the space. p = 7, |S| = 3.8E+5. 165

B.4 Design Space III. Used for design optimization where regression
models are optimized with with iterative heuristics. p = 15, |S| =
2.8E+11. 166

C.1 Benchmarks. 168

Citations to Previously Published Work

Portions of this dissertation have appeared in the following conference proceedings:

Benjamin C. Lee, David M. Brooks. “Efficiency trends and limits from
comprehensive microarchitectural adaptivity.” ASPLOS-XIII: Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. Seattle, WA, March 2008.

Benjamin C. Lee, David M. Brooks. “Roughness of microarchitectural
design topologies and its implications for optimization.” HPCA-14: Inter-
national Symposium on High-Performance Computer Architecture. Salt
Lake City, UT, February 2008.

Benjamin C. Lee, David M. Brooks. “Illustrative design space studies with
microarchitectural regression models.” HPCA-13: International Sympo-
sium on High-Performance Computer Architecture. Phoenix, AZ, Febru-
ary 2007.

Benjamin C. Lee, David M. Brooks. “Accurate and efficient regression
modeling for microarchitectural performance and power prediction.” ASPLOS-
XII: International Conference on Architectural Support for Programming
Languages and Operating Systems. San Jose, CA, October 2006.

xv

Acknowledgments

Many people have contributed to my professional and personal growth. I thank David

Brooks for his invaluable guidance and support as my doctoral advisor. I appreciate

his experience and ability to evaluate all contingencies. Most importantly, I learned

from David the importance of balancing methodology and application.

Also at Harvard University, I thank Mike Smith, Gu-Yeon Wei, and Patrick Wolfe

for serving on my qualifying committee. Their early feedback on my work established

a strong foundation for the rest of my doctoral research. I also thank Greg Morrisett

and Margo Seltzer for serving on my dissertation committee. Their unique perspec-

tives on my work, in particular, and computing research, in general, enriched both

my dissertation and my vision for future research.

For first introducing me to research, I thank Jim Demmel and Kathy Yelick at

the University of California, Berkeley. They helped me build a foundation in rigorous

performance analysis and solid research as an undergraduate in the Berkeley Bench-

mark and OPtimization (BeBOP) group. I also thank Rich Vuduc, then a graduate

student at Berkeley, for his patience and guidance early in my career. Jim, Kathy,

and Rich prepared me well for the rigors of graduate school and I am in their debt.

For enhancing my graduate studies with practical experience, I thank Bronis de

Supinski and Martin Schulz for hosting my internship at Lawrence Livermore Na-

tional Laboratory. Similarly, I thank Hong Wang and Jamison Collins for hosting my

internship at Intel Corporation. These experiences broadened my view of the com-

puting landscape. I learned more about the realities of computing in a few months

than I could have ever feasibly learned in my years of graduate study.

For enriching my graduate school experience, I thank my colleagues at Harvard.

xvi

Acknowledgments xvii

I especially thank Glenn Holloway for his invaluable technical support and, perhaps

more importantly, the occasional Maxwell Dworkin kitchen conversation. I also thank

Kevin Brownell, Meeta Gupta, Alex (Xiaoyao) Liang, Mike Lyons, Krishna Rangan,

and VJ Reddi for their camaraderie, joining me to convert what was originally a

machine room into a vibrant lab. I also thank members of the VLSI group, Ankur

Agrawal, Hayun Chung, Mark Hempstead, Wonyoung Kim, Andrew Liu, and Ruwan

Ratnayake for their fellowship and discussion of seemingly endless tape-outs.

Most importantly, I thank my family for their love and support. My father always

has ready words of inspiration through which he expresses pride in my accomplish-

ments. My mother has an infinite capacity for learning about the details of my life as

only a mother can. My brother, of whom I am immensely proud, has been and will

be an invaluable sounding board as I enter the next stage of my career and life.

Dedicated to my parents, Martin and Peggy,

and my brother, Franklin.

xviii

Chapter 1

Introduction

Contents
1.1 Technology Trends . 2

1.2 Simulation Challenges . 5

1.3 Simulation Paradigm . 6

1.4 Qualitatively New Capabilities 9

1.5 Summary of Contributions 11

Technology trends drive increasing microarchitectural design and metric diversity,

which increases the difficulty and cost of effective design analysis. Mitigating these

costs is increasingly urgent as the computer industry moves into previously unexplored

domains where designer intuition is less effective. This dissertation proposes a new

paradigm for efficient design space exploration, reducing design evaluation costs by

several orders of magnitude while drastically increasing the information content from

microarchitectural simulation. Relying on statistical inference, the paradigm enables

qualitatively new capabilities in design analysis and optimization.

1

Chapter 1: Introduction 2

1.1 Technology Trends

Moore’s Law provides increasing transistor densities and, consequently, more abun-

dant resources to microarchitectural designers [55].1 With this abundance, however,

comes responsibility. Designers must deliver performance in a cost-effective manner,

whether by controlling power dissipation, area costs, or design complexity. Power, in

particular, is a first-order design constraint, necessary for controlling thermal effects

in high-performance systems or extending battery life in embedded architectures.

Figure 1.1 schematically illustrates the microprocessor core and the large number

of tunable design parameters that impact performance and power. Instructions are

fetched from the instruction cache, buffered, and decoded to determine the operations

they implement. Instruction operands are dynamically renamed to mitigate write

hazards. Dispatched instructions are queued and sent to various functional units.

The number of functional units (i.e., superscalar width) and the number of logic

stages in the datapath (i.e., pipeline depth) impact performance by determining the

number of instructions flowing through the datapath. Power increases with width and

depth as additional structures are added and the core’s operating frequency increases,

respectively. Sizes for various supporting queues, tables, and arrays also impact

performance and power. Lastly, the datapath is supported by a cache hierarchy

where size and associativity impact performance and power.

Navigating the inherent tensions between additional resources and their associ-

ated power costs, designers turn to chip multiprocessors. Comprised of multiple mi-

1Moore’s Law describes technology advances that double transistor density on integrated circuits
every twelve to eighteen months.

Chapter 1: Introduction 3

Figure 1.1: Microprocessor Core. A datapath fetches and executes instructions.
The datapath is supported by a memory hierarchy with multiple levels of cache.

Figure 1.2: Transition to Chip Multiprocessors. Previously, designers consid-
ered uniprocessors. At present, designers consider multi-core architectures. In the
future, designers choose among several diverse trajectories: homogeneous multi-core
with cores of varying size and complexity or heterogeneous multi-core/system-on-chip
architectures.

Chapter 1: Introduction 4

croprocessor cores on a single chip, multiprocessors deliver performance with greater

power efficiency than uniprocessors. As designers move into the multiprocessor do-

main, however, we observe a number of possible trajectories as shown in Figure 1.2.

Homogeneous multiprocessors with a relatively small number of large, complex cores

naturally extend past and present design paradigms. For example, the IBM POWER5

is a dual-core chip-multiprocessor with relatively wide datapaths and abundant per-

core resources [64]. Also likely, however, are multiprocessors with a large number

of small, simple cores that deliver high aggregate throughput at the expense of per-

core latency. For example, the Sun UltraSPARC T2 implements relatively small

in-order cores emphasizing throughput across a large number of threads [50]. Finally,

heterogeneous multiprocessors may enhance performance and power efficiency with

some combination of large cores for general-purpose computing and small cores for

special-purpose acceleration. For example, the IBM Cell Broadband Engine combines

a general-purpose PowerPC architecture accelerated by smaller synergistic process-

ing elements for single-instruction multiple data (SIMD) acceleration [33]. Thus, the

transition to multiprocessors drives increasing design diversity as the industry con-

siders microprocessor cores for a broad range of emerging microarchitectural design

priorities.

Simultaneously, microprocessor core optimization is increasingly complex. As

the industry identifies market segments and differentiates their hardware offerings

for these segments, designers must optimize for an array of metrics such as single-

threaded latency, aggregate throughput, power, temperature, and area. Although

all of these metrics are important, different market segments assign them differ-

Chapter 1: Introduction 5

ent relative priorities. For example, high-performance computing might emphasize

single-threaded latency whereas commercial transaction processing might emphasize

aggregate throughput. Thus, the transition to multiprocessors must also account for

increasing metric diversity as the industry considers the different design trajectories

for different market segments.

Increasing design and metric diversity requires more robust analysis and opti-

mization. Designs considered infeasible in the uniprocessor space become viable in

the multiprocessor domain. Scalable and comprehensive design space exploration is

required to assess the relative merits of many disparate designs occupying very differ-

ent parts of the space. This scalability must also extend to optimization across diverse

metrics. Exhaustive search to identify optima, while tractable for small design spaces,

inherently lacks scalability and more sophisticated optimization heuristics are needed.

Microarchitectural design space exploration has always been an expensive combina-

torial optimization problem. Collectively, however, technology trends increase the

difficulty of analysis and optimization, exposing fundamental weaknesses in modern

microarchitectural simulators.

1.2 Simulation Challenges

Simulation is the tool of choice in microarchitectural analysis as both academic and in-

dustrial researchers leverage its software extensibility to quickly propose and evaluate

new design features. Cycle-accurate microarchitectural simulators provide detailed

insight into application behavior for a broad range of microprocessor core config-

urations. These simulators track instructions as they progress through a simulated

Chapter 1: Introduction 6

microarchitectural pipeline to record resource utilization statistics. Given these statis-

tics, simulators estimate metrics such as performance and power.

However, detailed simulation is expensive and its cost consists of two components:

cost per simulation and the number of required simulations. Cost per simulation is

often tractable when analyzing a particular design; simulating a modest trace of 100

million instructions requires tens of minutes. However, cost does not scale with the

number of simulations required for design space exploration. The design space size

and, consequently, the number of potential simulations scale exponentially with the

number of design parameters. Thus, simulation costs quickly become intractable for

any comprehensive analysis of a broad and diverse design space.

Given the costs of simulation, microarchitectural design space exploration is often

inefficient and ad hoc. Designers circumvent these simulation challenges by constrain-

ing the design space using intuition or experience. However, by pruning the design

space with intuition prior to a study, designers risk obtaining conclusions that sim-

ply reinforce prior intuition and may not generalize to the broader space. Such an

approach to analysis will become increasingly ineffective as the industry moves into

new domains, characterized by significant design and metric diversity, where designer

intuition is less mature.

1.3 Simulation Paradigm

To address these fundamental simulation challenges, this dissertation proposes a sim-

ulation paradigm with three components: comprehensive design spaces, spatial sam-

pling, and statistical inference (Chapter 2).

Chapter 1: Introduction 7

Figure 1.3: Simulation Paradigm. Temporal and spatial sampling reduces per sim-
ulation costs and number of required simulations, respectively. Statistical inference
reveals broader trends from spatial samples.

1. Comprehensive Design Spaces: Designers specify a large, high-resolution

space that considers many design parameter simultaneously.

2. Spatial Sampling: Designers sparsely sample and simulate designs from the

space, thereby decoupling design space size from the number of simulations.

3. Statistical Inference: Designers efficiently leverage simulation data by con-

structing inferential models from sparse samples to predict metrics of interest.

Each component of this paradigm targets fundamental limitations in current simula-

tion methodology as illustrated in Figure 1.3.

Chapter 1: Introduction 8

A comprehensive design space addresses increasing design diversity. The shift to

multiprocessors makes a larger fraction of the design space viable for implementation.

To most effectively identify the optimal core size and complexity for future multipro-

cessors, designers must take a holistic view of diverse design options. Unlike studies

constrained using intuition, a comprehensive design analysis makes possible the dis-

covery of unexpected trends or optima. Furthermore, by considering many parameters

simultaneously, designers expose interactions between parameters and ensure bottle-

necks are truly removed, not simply shifted from one parameter to another parameter

outside a limited study’s scope.

Spatial sampling, the process of selectively simulating points from a comprehen-

sive space, reduces the number of simulations required for design space exploration.

Traditionally, designers mitigate simulation costs with temporal sampling, reducing

the number of instructions simulated to control the time required for any one design

simulation [16, 58, 59, 62, 70]. However, temporal sampling does not impact the

number of simulations required for design space exploration. Spatial sampling, in

contrast, enables designers to specify and to explore a comprehensive design space

knowing that detailed simulation for every design point is no longer required.

Given sparsely sampled and simulated designs, inferential models reveal broader

trends and salient details. In particular, data from sparsely collected simulations

train spline-based regression models to predict metrics of interest, such as perfor-

mance and power. Both model training and evaluation may be expressed as matrix

operations (i.e., linear solve and linear combination) and are, therefore, computa-

tionally efficient. Thus, inference provides efficient surrogates for detailed simulation;

Chapter 1: Introduction 9

the models capture the input-output relationships of simulators. Instead of relying

on further simulation for design studies, this dissertation proposes relying on efficient

models for accurate inference within these studies.

1.4 Qualitatively New Capabilities

Statistical inference is computationally efficient, allowing designers to evaluate infer-

ential models instead of running detailed simulations for comprehensive design space

exploration. This efficiency enables qualitatively new capabilities in design charac-

terization (Chapter 3) and optimization (Chapter 4). Not only can designers answer

prior questions more quickly, they can answer new questions previously intractable

with simulation.

Design characterization has long been constrained by the microarchitectural curse

of dimensionality. High dimensionality and expensive simulation resulted in sensitiv-

ity analyses constrained in scope and lacking generality. This dissertation demon-

strates the pitfalls of such an approach and demonstrates more rigorous alternatives

made possible by the proposed simulation paradigm. In particular, inferential models

provide performance and power estimates to fully characterize hundreds of thousands

of designs and to quickly identify pareto frontiers from this characterization.

Similarly, the proposed simulation paradigm trivializes construction costs for con-

tour maps, useful for revealing bottlenecks and comparing workload behavior across

the design space. Given a plethora of inexpensively constructed contour maps, this

dissertation computes roughness metrics that quantify observed non-linearities and

non-monotonicities. These metrics reduce the subjectivity and qualitative judgment

Chapter 1: Introduction 10

currently required from designers using contour maps. Ranking contours by rough-

ness, designers can focus attention on the roughest contours, which likely contain the

most interesting compromises or optima. Further illustrating the capabilities of in-

ferential models, these roughness metrics require numerical integrals and derivatives

computed on empirically constructed performance and power models.

This dissertation also illustrates new capabilities in robust optimization enabled

by statistical inference. Exhaustive search, which evaluates every design to identify

an optimum, is tractable in simulation only for highly constrained design spaces. In

contrast, designers relying on inferential models can easily estimate design metrics for

spaces with hundreds of thousands of points to identify optima. For more compre-

hensive spaces with million’s or billion’s of points, this dissertation illustrates robust

heuristic optimization, which includes techniques such as gradient ascent and genetic

algorithms. These heuristics iteratively traverse the design topology, estimating de-

sign metrics as they step toward an optimum. Replacing detailed simulation with

inferential models within the iterative loop enables a far greater number of heuris-

tic trials, iterations per trial, and metric estimates per iteration, thereby improving

heuristic effectiveness.

Furthermore, this dissertation combines inference with robust optimization to un-

derstand emerging design priorities. In particular, trends and limits in performance

and power efficiency are quantified for two fundamental design schemes: multiproces-

sor heterogeneity and microarchitectural adaptivity. Heterogeneous multiprocessors

deliver greater efficiency by using multiple and different core designs on a single chip.

The degree of heterogeneity and the design of each core determine efficiency gains.

Chapter 1: Introduction 11

Adaptive microarchitectures deliver greater performance and power efficiency by over-

provisioning on-chip resources and providing these resources only during application

intervals that require them. Thus, adaptivity enhances performance while localizing

associated power costs. Comprehensive analyses of heterogeneity and adaptivity, pro-

hibitively expensive using detailed simulation and made possible by inferential models,

provide fundamental insight into potential efficiencies from these design schemes.

1.5 Summary of Contributions

We contribute to methodology proposing a simulation paradigm that leverages sta-

tistical inference to address fundamental challenges in microarchitectural simulation.

Chapter 2 examines:

• Spatial Sampling: We propose sampling, sparsely and uniformly at random,

points from a design space to reveal trends and trade-offs in microarchitectural

design metrics, such as performance and power. [42]. (Section 2.1)

• Statistical Inference: We use spline-based regression models, trained from

comprehensive but sparsely simulated spaces, as accurate and efficient surro-

gates for detailed simulation [42]. (Sections 2.2–2.3)

We then apply the computational efficiency of statistical inference to enable qualita-

tively new capabilities in characterizing microarchitectural performance and power.

In particular, Chapter 3 examines:

• Comprehensive Characterization: We construct comprehensive pareto fron-

Chapter 1: Introduction 12

tiers and contour maps for large, previously intractable design spaces with hun-

dreds of thousands of points [43, 45]. (Sections 3.3–3.2).

• Roughness Metrics: We quantify the roughness of performance and power

topologies using numerical derivatives and integrals, using these roughness met-

rics to identify interesting topologies for designer attention [45]. (Section 3.4)

We combine statistical inference with robust optimization, demonstrating qualita-

tively new capabilities in performance and power optimization for emerging design

priorities. Chapter 4 examines:

• Robust Optimization: We show iterative optimization heuristics are more

effective with more iterations, which are most tractably provided by inferential

models within the iterative loop [45]. (Section 4.1)

• Multiprocessor Heterogeneity: We quantify the trends and limits of per-

formance and power efficiency from multiprocessor heterogeneity by combining

inferential models with heuristic clustering [43]. (Section 4.2)

• Microarchitectural Adaptivity: We quantify trends and limits of perfor-

mance and power efficiency from microarchitectural adaptivity by combining

inferential models with heuristic optimization [44]. (Section 4.3)

Collectively, this dissertation applies best-known practices in statistical inference and

optimization to fundamentally address microarchitectural simulation costs. These

methodologies enable the robust and comprehensive analysis required for a successful

transition to the era of chip multiprocessors.

Chapter 2

Statistical Inference

Contents
2.1 Spatial Sampling . 16

2.1.1 Spatial and Temporal Synergies 16

2.1.2 Uniformly Random Sampling 17

2.1.3 Alternative Sampling Strategies 18

2.2 Model Derivation . 20

2.2.1 Hierarchical Clustering . 23

2.2.2 Association Analysis . 25

2.2.3 Correlation Analysis . 27

2.2.4 Model Specification . 29

2.3 Model Evaluation . 37

2.3.1 Evaluating Fit . 37

2.3.2 Evaluating Bias . 38

2.3.3 Evaluating Accuracy . 41

2.3.4 Alternative Modeling Strategies 42

2.4 Related Work . 45

2.4.1 Temporal Sampling . 45

2.4.2 Parameter Significance Testing 46

2.4.3 Empirical and Analytical Modeling 47

2.5 Summary . 49

13

Chapter 2: Statistical Inference 14

This chapter presents a simulation paradigm for microarchitectural design evaluation

and optimization, countering simulation costs attributed to exponentially increasing

design space sizes. As shown in Figure 1.3, the proposed approach (1) provides a

more comprehensive understanding of the design space by (2) selectively simulating

a modest number of designs from that space and (3) effectively leveraging simulation

data using statistical inference.

Within this paradigm, robust and effective statistical inference reveals salient

trends from a broadly defined, sparsely sampled design space. These techniques mod-

estly reduce detail for substantial gains in speed and tractability. Even in scenarios

where collecting extensive measurement data is feasible, efficient analysis of this data

often lends itself to statistical modeling. These models typically require an initial

data set for model formulation or training. Once trained, the model responds to

predictive queries by leveraging correlations in the original data for inference. Thus,

inference increases simulation efficiency by increasing the information content from

any given number of simulations.

Regression models implement inference in a cost effective manner, formulating

models from observed data by numerically solving a system of linear equations and

predicting unobserved data by evaluating a linear system. Highly optimized numerical

linear algebra libraries lead to computationally efficient models, enabling thousand’s

of predictions per second. Predicting design metrics (e.g., performance and power) as

a function of tunable design parameters (e.g., pipeline depth and cache sizes), regres-

sion equations are efficient surrogates for cycle-accurate simulation. As surrogates,

models enable a broad range of analyses without further simulation.

Chapter 2: Statistical Inference 15

This chapter surveys statistical regression theory and details its application to the

microarchitectural design space. We construct predictive regression models using a

statistically rigorous framework:

• Spatial Sampling: We define a large, comprehensive design space and sparsely

sample, uniformly at random, designs for detailed simulation. Each simulated

sample maps a set of microarchitectural design parameters to a set of design

metrics. These samples train regression models, which express performance and

power as functions of design parameters. (Section 2.1)

• Model Derivation: We consider a general class of regression models that

estimates a response as a linear combination of predictors with random error.

We take a statistically rigorous approach to construct these regression models,

beginning with exploratory data analysis to determine the significance of each

design parameter. When defining the regression models’ functional form, we

account for interactions between predictors and non-linear predictor-response

relationships. (Section 2.2)

• Model Evaluation: After fitting the regression model, we evaluate its fit to

the training data, check its residuals for randomness and normality assumptions,

and test its accuracy for independently collected validation data. (Section 2.3)

Collectively, this statistically rigorous approach provides efficient and robust regres-

sion models, which address fundamental limitations in current simulators.

Chapter 2: Statistical Inference 16

2.1 Spatial Sampling

Spatial sampling decouples design space size from the number of simulations required

to expose trends by simulating only a modest number of points within the space.

We first describe the synergies between spatial sampling and existing techniques in

temporal sampling. Temporal and spatial sampling are orthogonal techniques that

reduce overall simulation costs of design space exploration by reducing costs per

simulation and number of required simulations, respectively. For spatial sampling,

we propose drawing points uniformly at random from the design space and outline

the advantages of this approach with respect to complexity and modeling. Lastly, we

survey alternative sampling strategies, highlighting relative strengths and weaknesses.

2.1.1 Spatial and Temporal Synergies

Efforts to control simulation costs have focused primarily on temporal sampling. These

techniques extract representative samples from instruction traces in the time domain,

reducing the costs per simulation by reducing the number of instructions simulated

[16, 58, 59, 62, 70]. Temporal sampling effectively decouples the number of simulated

instructions from the program length to reduce per simulation costs. However, it does

not impact the number of simulations required to identify trends within a comprehen-

sive design space. This limitation often constrains design space exploration since the

number of simulations increases exponentially with the number of design parameters.

We must supplement temporal sampling with spatial sampling, a technique that

samples points from the design space for simulation to control exponentially increasing

design space sizes. Spatial sampling also mitigates the inefficiencies of traditional

Chapter 2: Statistical Inference 17

simulation techniques that sweep design parameter values, exhaustively simulating all

points defined within a tightly constrained space. By decoupling space size from the

number of simulations, spatial sampling enables the study of larger, higher resolution

design spaces. Specifically, we consider many design parameters simultaneously and

let each parameter assume one of many different values.

2.1.2 Uniformly Random Sampling

We propose sampling designs uniformly at random (UAR) from the space S contain-

ing |S| points. This approach provides observations drawn from the full range of

parameter values. Each parameter may assume one of an arbitrarily large number of

possible values since parameter resolution is decoupled from the number of required

simulations. Furthermore, sampling UAR does not bias simulated data toward par-

ticular designs. Uniform sampling will produce, on average, equal representation for

each parameter value in the set of sampled designs.

Suppose we treat the designs for which responses are not simulated as missing

data from a full data set with all |S| simulations. Then sampling UAR ensures the

simulations are missing completely at random (MCAR). Under MCAR, data elements

are missing for reasons unrelated to any characteristic or response of the design. In

the microarchitectural context, the fact a design point is missing is unrelated to the

performance, power, or configuration of the design.

In contrast, informative missing describes the case where elements are more likely

missing if their responses are systematically higher or lower. For example, simulator

limitations may prevent data collection for very low performance architectures and

Chapter 2: Statistical Inference 18

“missingness” of a configuration is correlated with its performance. In this case,

“missingness” is non-ignorable and we need an additional model to predict whether

a design point can be simulated. By sampling UAR from the design space, we ensure

observations are MCAR and avoid such modeling complications.

We construct regression models using sparsely collected design space samples.

Each sampled design is simulated for every workload of interest. Simulator reported

performance and power numbers will provide data necessary for constructing regres-

sion models. Although we use samples obtained uniformly at random from the design

space, a number of alternative sampling strategies may also apply.

2.1.3 Alternative Sampling Strategies

Other sampling strategies have been proposed to increase the predictive accuracy of

machine learning models for the microarchitectural design space. These techniques

generally increase sample coverage of the design space or emphasize samples consid-

ered more important to model accuracy.

• Weighted sampling is a strategy for emphasizing samples in particular de-

sign regions given samples from the broader space. Emphasized samples are

weighted to increase their influence during model training. Weighted sampling

may improve model accuracy for design regions known to exhibit greater error.

• Regional sampling also emphasizes samples from particular design regions

given samples from the broader space. Instead of using a continuous range

of weights, this approach specifies a region of interest and excludes undesired

samples during model training (effectively binary weights). Regional sampling

Chapter 2: Statistical Inference 19

might be used to construct localized models from samples collected uniformly

at random from the entire space. This approach may be necessary if regions

of interest are unknown prior to sampling but become known after exploratory

data analysis [42].

• Intelligent and adaptive sampling estimate model error variances for each

sampled design. Samples with larger variances are likely poorly predicted and

including such samples for model training may improve accuracy. These error-

prone samples are iteratively added to the training set, with each iteration

choosing a sample with large error variance and most different from those al-

ready added [18].

• Latin hypercube sampling and space-filling seek to maximize design space

coverage. Hypercube sampling guarantees each parameter value is represented

in the sampled designs. Space-filling metrics are used to select the most uni-

formly distributed sample from the large number of hypercube samples that

exist for any given design space [35].

While these techniques seek to maximize design space coverage and improve the ac-

curacy of models constructed from the resulting samples, they are also more complex

and computationally expensive. Determining inclusion in regional sampling requires

distances computed between all collected samples, an expensive operation in high

dimensions that must be performed for each region of interest. UAR sampling is

parallel, but adaptive sampling introduces a feedback loop that limits this paral-

lelism. Hypercube sampling and space-filling techniques guarantee sample properties

Chapter 2: Statistical Inference 20

that are only approximated by uniform at random sampling, but such a guarantee

increases sampling complexity. Collectively, these sampling strategies provide op-

tions for improving the accuracy of models constructed with these samples. We find,

however, sampling UAR is sufficient for accurate models and comprehensive design

optimization.

2.2 Model Derivation

This section provides the theoretical background for relevant statistical regression the-

ory and demonstrates its application to microarchitectural performance and power

modeling. Model derivation in statistical inference requires empirical data and the

transfer of domain knowledge from user to model. Empirical data is necessary to

construct a surrogate for the underlying generator of this data. Model construction

begins with exploratory data analysis, which guides the user toward significant rela-

tionships between predictors (model inputs) and responses (model outputs). The user

combines significance analyses with domain-specific knowledge to specify the model’s

functional form. The derivation approach is summarized in four steps:

• Hierarchical Clustering: Clustering examines correlations between candi-

date predictors and exposes redundancy among them. Pruning redundant pre-

dictors controls model size, thereby reducing risk of over-fitting and improving

model efficiency during training and prediction.

• Association Analysis: Scatterplots qualitatively capture trends in predictor-

response relationships, revealing the degree of non-monotonicity or non-linearity.

Chapter 2: Statistical Inference 21

Scatterplots with little response variation as predictor values change may sug-

gest predictor insignificance and enable further pruning.

• Correlation Analysis: Correlation coefficients quantify the relative strength

of predictor-response relationships observed in the association analysis. These

coefficients impact our choice in non-linear transformations for each predictor.

• Model Specification: Domain-specific knowledge is used to specify predictor

interactions. The correlation analysis is used to specify the degree of flexibility

in non-linear transformations. Predictors more highly correlated with the re-

sponse will require more flexibility since any lack of fit for these predictors will

more significantly impact model accuracy. Given the model’s functional form,

the method of least squares determines regression coefficients.

This derivation assumes two sets of data are available: a sizable training set and a

smaller validation set. Data sets are sampled uniformly at random from the design

space and evaluated with detailed microarchitectural simulation for representative

workloads (Appendices A–C). To simplify the exposition, this chapter focuses on

twelve design parameters spanning a space of nearly one billion points (Table 2.1).

Regression models are constructed using up to 4,000 training points for each of nine

SPEC benchmarks (Table 2.2). Section 2.5 discusses derivation extensibility, demon-

strating comparable accuracy with fewer training samples, larger design spaces, and

non-SPEC workloads.

Chapter 2: Statistical Inference 22

Set Parameters Measure Range |Si|
S1 Depth Depth FO4 9::3::36 10
S2 Width Width issue b/w 2,4,8 3

L/S Reorder Queue entries 15::15::45
Store Queue entries 14::14::42
Functional Units count 1,2,4

S3 Physical General Purpose (GP) count 40::10::130 10
Registers Floating-Point (FP) count 40::8::112

Special Purpoes (SP) count 42::6::96
S4 Reservation Branch entries 6::1::15 10

Stations Fixed-Point/Memory entries 10::2::28
Floating-Point entries 5::1::14

S5 I-L1 Cache I-L1 Cache Size log2(entries) 7::1::11 5
S6 D-L1 Cache D-L1 Cache Size log2(entries) 6::1::10 5
S7 L2 Cache L2 Cache Size log2(entries) 11::1::15 5

L2 Cache Latency cycles 6::2::14
S8 Main Memory Main Memory Latency cycles 70::5::115 10
S9 Control Latency Branch Latency cycles 1,2 2
S10 Fixed-Point ALU Latency cycles 1::1::5 5

Latency FX-Multiply Latency cycles 4::1::8
FX-Divide Latency cycles 35::5::55

S11 Floating-Point FPU Latency cycles 5::1::9 5
Latency FP-Divide Latency cycles 25::5::45

S12 Memory Latency Load/Store Latency cycles 3::1::7 5

Table 2.1: Design Space I. Used for initial model derivation and proof of concept.
p = 12, |S| = 9.4E+8.

Chapter 2: Statistical Inference 23

SPEC CPU 2000
ammp Simulates molecular dynamics
applu Solves parabolic/elliptic partial differential equations (PDE’s)
equake Simulates seismic wave propagation
gcc Compiles C programs
gzip Performs compression
mcf Performs combinatorial optimization
mesa Provides 3-D graphics library support
twolf Simulates circuit place and route

SPEC JBB 2000
jbb 3-tier Java business server

Table 2.2: Benchmarks.

2.2.1 Hierarchical Clustering

Data clustering classifies N data elements into clusters based on a measure of simi-

larity represented by a symmetric N×N matrix S where S(i, j) quantifies the sim-

ilarity between data elements i and j. Hierarchical clustering is an iterative ap-

proach that identifies successive clusters based on previously identified clusters. The

heuristic is initialized by assigning each element to its own cluster, producing N

single-element clusters. Each iteration merges the most similar pair of clusters into

a single cluster until one N element cluster is obtained. The similarity between

two clusters A and B is the maximum similarity between elements of each cluster:

max{S(x, y) : x∈A, y∈B}. We use the squared correlation coefficient to quantify the

similarity of two clusters.

Hierarchical clustering reveals potential redundancy in the data set. If multiple

predictors are highly correlated and are classified into the same cluster, a single

representative predictor may capture the cluster’s impact on the response. Similarly,

Chapter 2: Statistical Inference 24

Figure 2.1: Hierarchical Clustering. The level at which clusters connect indi-
cates their degree of similarity. Spearman ρ2 is a rank-based measure of correlation.
Example for design space of Table 2.1 and nine SPEC benchmarks of Table 2.2.

if multiple responses are highly correlated, a single representative response may be

modeled since the other correlated responses will likely scale with the chosen response.

Pruning predictors is important to control model size by controlling the number of

predictors and model terms. Smaller models are preferable as they reduce the number

of sampled training points required for model training.

Figure 2.1 presents an example of hierarchical clustering. Correlation coefficients

are used as a similarity metric and larger ρ2 indicates greater correlation. The level at

which clusters meet indicates their degree of similarity. This design space considers

effects from circuit-level tuning for each functional unit by varying the unit’s latency

(measured in cycles). For example, a more efficient arithmetic-logic unit (ALU) design

may require one cycle less than that required by a baseline design. Independently, we

vary pipeline depth assuming logic for each functional unit may be perfectly divided

Chapter 2: Statistical Inference 25

across pipeline stages. For example, an ALU may implement 3 pipeline stages (e.g.,

latency of 3 cycles) with 18 FO4 delays per stage.1 If we consider a shallower pipeline

with 27 FO4 delays per stage, each stage becomes 50 percent longer and logic will

require 67 percent the original number of stages. The same ALU logic originally

implemented with 3 stages may now be implemented with 2 stages (2 = 3× 18/27).

Thus, pipeline depth is highly correlated with functional unit latency since deeper

pipelines imply a larger number of shorter cycles for each unit. Including both latency

and depth predictors allows us to differentiate the performance impact of changes to

individual functional unit latencies from changes to global latency as depth varies.

However, the clustering analysis suggests these effects are insignificant and we should

remove these extra latency parameters to improve model efficiency.

2.2.2 Association Analysis

Scatterplots qualitatively capture the association between variables. Such plots illus-

trate associations between predictors and the response, revealing non-monotonicity or

non-linearity. Scatterplots quickly reveal significant predictors by showing, for exam-

ple, a clear monotonic relationship with the response. Conversely, plots that exhibit

low response variation despite a changing predictor value might suggest predictor

insignificance.

Figure 2.2 presents an example association analysis. Figure 2.2L summarizes

the association between performance and four microarchitectural predictors: pipeline

1Fan-out-of-four (FO4) delay is defined as the delay of one inverter driving four copies of an
equally sized inverter. When logic per pipeline stage is measured in terms of FO4 delays, deeper
pipelines have smaller FO4 delays per stage.

Chapter 2: Statistical Inference 26

Figure 2.2: Association Analysis. Table summarizes ranges of parameter values
(second column), number of samples in each range (third column), and average per-
formance of these samples (fourth column) (L). Scatterplot visualizes this data (R).
Example for design space of Table 2.1 and nine SPEC benchmarks of Table 2.2.

Chapter 2: Statistical Inference 27

depth, superscalar width, register file size, and reservation station size. Predictor

ranges are divided into intervals and the average performance response is reported

for each interval. For example, pipeline depth takes a value between 9 and 18 FO4

delays per stage for 1213 of 4000 samples. The average performance for these designs

is 0.865 billion instructions per second.

Figure 2.2R visualizes this data with scatterplots, illustrating strong monotonic

relationships between performance and pipeline dimensions. The register file size ap-

pears to have a significant, but non-linear, relationship with performance; we observe

diminishing marginal returns in performance as we increase the file size. Performance

increases by 21.7 percent from interval [40,70) to interval [70,100), but only increases

by 4.4 percent from interval [70,100) to [100,120). Finally, the number of entries in

reservation stations has a relatively small performance impact.

2.2.3 Correlation Analysis

In addition to qualitative associations between performance and design parameters,

we also quantify association strength using correlation coefficients. Pearson’s corre-

lation coefficient between two random variables is computed by Equation (2.1) where

X,Y are random variables with expectations µx,µy and standard deviations σx,σy.

ρ =
E((X − µX)(Y − µY))

σXσY

(2.1)

Pearson’s correlation coefficient assumes X, Y follow Normal distributions and differ-

ences between X, Y can be meaningfully compared. Such assumptions are often too

restrictive. For example, the second assumption is difficult to justify when consider-

Chapter 2: Statistical Inference 28

Figure 2.3: Correlation Analysis. Plots squared Spearman rank correlation be-
tween microarchitectural parameters and performance. Example for design space of
Table 2.1 and nine SPEC benchmarks of Table 2.2.

ing differences between performance and pipeline depth measured in instructions per

second and FO4 delays per stage, respectively.

In cases where the distributions of X, Y are unknown, non-parametric statistics

may be more robust. In particular, we use the Spearman rank correlation coefficient

ρsp that can quantify association independently of variable distribution. The compu-

tationally efficient approximation requires only di, the difference in ordinal rank of

xi in X and yi in Y . Supposing X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), we

first compute xi’s rank in X, yi’s rank in Y. We then compute the Spearman rank

correlation using the N differences in rank as shown by Equation (2.2).

ρsp =

∑N
i=1 XiYi√∑N

i=1 X2
i

∑N
j=1 Y 2

j

≈ 1− 6
N∑

i=1

d2
i

N(N2 − 1)
(2.2)

Spearman’s rank correlation coefficient assumes ranks capture equi-distant positions

Chapter 2: Statistical Inference 29

on the measured variable. In particular, the distance between values ranked Ri, Ri+1

is equal to the distance between values ranked Rj, Rj+1 for any 1 ≤ i, j < N . This

assumption holds for our training data, which is sampled uniformly at random from

the full range of possible values for each design parameter.

Figure 2.3 presents an example correlation analysis, plotting the squared cor-

relation between microarchitectural predictors and performance. This information

influences the degree of non-linear flexibility used to specify the regression model.

Greater flexibility likely improves fit and fit is more important for significant design

parameters with high ρ2
sp. Lack of fit for predictors with high ρ2

sp will have a greater

negative impact on accuracy. For microarchitectural predictors, a lack of fit will be

more consequential (in descending order of importance) for width, register file size,

depth, functional unit latencies, L2 cache size, and reservation stations.

2.2.4 Model Specification

We apply a general class of models in which a response is modeled as a linear combi-

nation of predictor variables plus random noise. Within this modeling framework, we

consider more advanced techniques to account for potentially non-linear relationships.

Formulation: For a large universe of interest, suppose we have a subset of n

observations for which values of the response and predictor variables are known. Let

Y denote a vector of observed responses and X denote a matrix of predictors for

those responses. Each sample i from this universe has a response yi and p predictors

xi,1, . . . , xi,p. As shown in Equation (2.3), let β denote regression coefficients that

describe the response as a linear function of predictors plus random error ε. Mathe-

Chapter 2: Statistical Inference 30

matically, βj may be interpreted as the expected change in y per unit change in the

predictor variable xj. The error ε is assumed to be independent random Normally

distributed variables with zero mean and constant variance: εi ∼ N(0, σ2).

Y =


y1

...

yn

 X =


x11 . . . x1p

...
. . .

...

xn1 . . . xnp

 β =


β0

...

βn

 ε =


ε1

...

εn



In the microarchitectural context, the response Y is a metric of interest. This dis-

sertation focuses on two metrics: performance measured in billion’s of instructions

per second (bips) and power dissipation measured in Watts (watts). Predictors X

are design parameters, such as pipeline depth or L2 cache size, as described in Ta-

ble 2.1. Regression models predict design metrics as a linear combination of design

parameters after accounting for any non-linear transformations.

Y = Xβ + ε (2.3)

F (Y) = G(X)βG + ε (2.4)

Transformations F and G may be applied to response and predictors, respectively.

If G increases the number of terms in the model, the number of regression coef-

ficients in βG increases accordingly. We find a square-root transformation on the

response F (Y) = [
√

y1, . . . ,
√

yn]T is effective for reducing error variances if Y is the

performance metric. Similarly a log transformation F (Y) = [log(y1), . . . , log(yn)]T

effectively captures exponential trends if Y is the power metric. These square-root

Chapter 2: Statistical Inference 31

and log transformations are common strategies for improving model fit by mitigating

a non-constant error variance, which violates our assumption εi ∼ N(0, σ2). We also

consider cubic splines G that transform predictors into piecewise cubic polynomials

as described later in this section. The spline transformations improve model fit by

accounting for non-linear response-predictor relationships.

S(β) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(2.5)

Least squares identifies the best-fitting model for a set of training data. This

method finds coefficients β to minimize S(β), the sum of squared errors between the

predicted responses (given by model) from the actual observed responses (given by

simulator). S(β) may be minimized by solving a system of p + 1 partial derivatives

of S with respect to βj, δS(β)/δβj = 0 for j ∈ [0, p]. The solutions to this system are

estimates for β and may often be expressed in closed form. Statistical properties of

the solution form the basis for significance testing using common techniques, such as

T-tests or F-tests.

Interaction: Consider a response y and two predictors x1, x2. In some cases,

the effects of x1 and x2 cannot be separated; the effect of x1 on y depends on the

value of x2 and vice versa. The interaction between two predictors may be modeled

by constructing a third predictor x1x2 to obtain the model of Equation (2.6). Such

product terms capture interactions between x1, x2 since the impact of one parameter,

expressed as a partial derivative, is a function of the other.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε (2.6)

δy

δx1

= β1 + β3x2 (2.7)

Chapter 2: Statistical Inference 32

Interactions complicate direct interpretations of regression coefficients. The partial

derivative δy/δxi equals the regression coefficient βi only in a model without inter-

actions. Splines will further complicate the interpretation of coefficients. For these

more sophisticated models, the partial derivative δy/δxi is the most accurate way to

assess the impact of xi on y.

We draw on domain-specific knowledge to specify interactions. Pipeline depth

interacts with cache sizes; a smaller L2 cache leads to additional memory hazards in

the pipeline. These stalls, in turn, affect instruction throughput gains from pipelining

as shown in Equation (2.8). Thus, their joint impact on performance must be mod-

eled. Expressing this interaction in the notation of Equations (2.6)–(2.7), let y be

performance, x1 be pipeline depth, and x2 be L2 cache size. Equation (2.8) indicates

speedup from pipelining increases with depth and cache size (due to fewer memory

stalls). Thus, δy/δx1 should increase with x2, which implies β3 > 0.

Speedup =
Depth

1 + Stalls/Inst
(2.8)

In a similar fashion, we expect pipeline width to interact with the register file. The

register file must supply operand data to all functional units for any given superscalar

width. We also expect interactions between adjacent levels in the cache hierarchy.

An inclusive cache hierarchy and locality effects suggest L1 and L2 cache size interac-

tions. Although we capture most relevant interactions, we do not attempt to capture

all significant interactions via an exhaustive search of predictor combinations. The

model’s accuracy suggests this high-level representation is sufficient (Section 2.3).

Non-Linearity: Several techniques for capturing non-linearity may be applied to

improve accuracy. The simplest technique is a polynomial transformation on predic-

Chapter 2: Statistical Inference 33

tors suspected of having a non-linear correlation with the response. However, polyno-

mials have undesirable peaks and valleys. Furthermore, a good fit in one region of the

predictor’s values may unduly impact the fit in another region of values. For these

reasons, we consider splines a more effective technique for modeling non-linearity.

G(x) = [1 x (x− k1)+ (x− k2)+ (x− k3)+] (2.9)

y = G(x)βG (2.10)

= β0 + β1x + β2(x− k1)+ + β3(x− k2)+ + β4(x− k3)+

Spline functions are piecewise polynomials used in curve fitting. The function is

divided into intervals each defining continuous polynomials joined at endpoints called

knots. The number of knots varies depending on the amount of available data for

fitting the function, but more knots generally leads to better fits. A linear spline

(i.e., piecewise linear function) on x with three knots at k1, k2, and k3 is given by

Equation (2.10) where (u)+ = u if u > 0 and (u)+ = 0 otherwise.

G(x) =
[
1 x x2 x3 (x− k1)

3
+ (x− k2)

3
+ (x− k3)

3
+

]
(2.11)

y = G(x)βG (2.12)

= β0 + β1x + β2x
2 + β3x

3 + β4(x− k1)
3
+ + β5(x− k2)

3
+ + β6(x− k3)

3
+

Linear splines may be inadequate for complex, highly curved relationships. Splines

of higher order polynomials may offer better fits and cubic splines have been found

particularly effective [25]. Unlike linear splines, cubic splines may be made smooth

at the knots by forcing the first and second derivatives of the function to agree at the

knots. For example, a cubic spline on x with three knots is given by Equation (2.12).

Chapter 2: Statistical Inference 34

G(x) = [1 x1 x2 . . . xm−1] (2.13)

x1 = x

xj+1 = (x− kj)
3
+ − (x− km−1)

3
+(km − kj)/(km − km−1)

+(x− km)3
+(km−1 − kj)/(km − km−1) (2.14)

y = G(x)β (2.15)

= β0 + β1x1 + β2x2 + . . . + βm−1xm−1

Cubic splines may have poor behavior in the tails before the first knot and after

the last knot [66]. Restricted cubic splines that constrain the function to be linear

in the tails are often better behaved and have the added advantage of fewer terms

relative to cubic splines. A restricted cubic spline on x with m knots k1, . . . , km is

given by Equation (2.15) where j = 1, . . . ,m− 2 [13].

Figure 2.4 illustrates schematically a restricted cubic spline with five knots and

linear tails. The choice and position of knots are tunable parameters when specifying

non-linearity with splines. Placing knots at fixed quantiles of a predictor’s distribution

is a good approach in most data sets, ensuring a sufficient number of points in each

interval [25]. Recommended equally spaced quantiles are shown in Table 2.3. In

practice, five knots or fewer are generally sufficient for restricted cubic splines [65].

Fewer knots may be required for small data sets. As the number of knots increases,

flexibility improves at the risk of over-fitting the data. In many cases, four knots offer

an adequate fit of the model and is a good compromise between flexibility and loss

of precision from over-fitting.

Chapter 2: Statistical Inference 35

Figure 2.4: Restricted Cubic Spline. Range of x divided using five knots with
polynomial interiors, linear tails.

K Quantiles

3 0.1000 0.5000 0.9000
4 0.0500 0.3500 0.6500 0.9500
5 0.0500 0.2750 0.5000 0.7250 0.9500
6 0.0500 0.2300 0.4100 0.5900 0.7700 0.9500
7 0.0250 0.1833 0.3417 0.5000 0.6583 0.8167 0.9750

Table 2.3: Recommended Knot Placement. K knots are placed at fixed quantiles
of the data [25].

Chapter 2: Statistical Inference 36

In the microarchitectural context, we specify restricted cubic splines with varying

flexibility achieved by varying knot counts. The correlations between predictors and

the response from Section 2.2.3 guide our choice in the number of knots. Predictors

with stronger correlations, and therefore more important to model accuracy, are as-

signed a greater number of knots. For example, predictors with stronger relationships

(e.g. pipeline depth, register file size) will use four knots while those with weaker rela-

tionships (e.g. cache sizes, reservation station sizes) will use three knots. A predictor

must exhibit more than three unique values to use cubic splines. Despite its strong

correlation with performance, superscalar width does not take a sufficient number of

unique values to apply splines and we consider its linear effects only.

In practice, we apply restricted cubic spline transformations before specifying in-

teractions. As shown in Equation (2.14), splines significantly expand the number of

terms for each predictor x. This expansion is problematic when we express interac-

tions using products of predictors and attempt to multiply sums of cubic binomials.

Such interactions will rapidly increase model size and training costs. To control these

effects when using restricted cubic splines G1 and G2, we consider interactions of the

form x1G2(x2) and x2G1(x1), thereby ignoring doubly non-linear terms and reducing

the size of these product terms [25].

E[Ŷ] = E[X̂β + ε] = E[X̂β] + E[ε] = X̂β (2.16)

Prediction: A model is trained with least squares to determine regression co-

efficients β. A set of design queries or predictions are defined by X̂ and evaluated

with Equation (2.16). The expected response E[Ŷ] = X̂β is efficiently obtained by

a matrix-vector multiply. This result follows from observing the additive property

Chapter 2: Statistical Inference 37

of expectations, the expectation of a constant X̂β is X̂β, and the random errors are

assumed to follow a normal distribution ε ∼ N(0, σ2).

2.3 Model Evaluation

We define and assess model fit using three approaches. We first quantify the degree to

which our model captures the variability in the underlying training data. Ideally, the

model captures the same variations reported by simulators. We then check the model

for systematic bias to ensure robustness. Ideally, model error is random and indepen-

dent of predicted metric values. For example, a biased and less robust model might

consistently over-predict performance for low-performance designs. Lastly, we assess

model accuracy by comparing model predictions against detailed simulation using an

independent validation data. Collectively, these analyses give users confidence in the

robustness and accuracy of the model.

2.3.1 Evaluating Fit

The model’s fit to training data is quantified with the multiple correlation statistic

R2 in Equation (2.19). This statistic quantifies regression error (SSE) as a fraction

of total error (SST). From the equation, R2 will be zero when model error is just

as large as the error from simply using the mean to predict responses. Larger values

of R2 suggest better fits for the observed data. However, a value too close to one

may indicate over-fitting, a situation in which the model’s worth is exaggerated and

future observations may not agree with the modeled predictions. Over-fitting typically

occurs when too many predictors in X are used to estimate relatively small data sets.

Chapter 2: Statistical Inference 38

SSE =
n∑

i=1

(yi − ŷi)
2 (2.17)

SST =
n∑

i=1

(
yi −

1

n

n∑
i=1

yi

)2

(2.18)

R2 = 1− SSE

SST
(2.19)

The median R2 values across the benchmark suite are 0.94 and 0.99 for performance

and power, respectively, for the design space of Table 2.1 and nine SPEC benchmarks

of Table 2.2. A number of studies in which models are validated on independent data

sets have shown a fitted regression model is likely reliable (no over-fitting) when the

number of samples is twenty times the number of model terms [25]. In this example,

we use 4,000 training samples to construct models with approximately 80 terms,

thereby limiting risk of over-fitting. Furthermore, despite the close fit to training

data, Section 2.3.3 suggests our models are accurate not only for training data but

also for separately collected validation data.

2.3.2 Evaluating Bias

Model residuals are examined to ensure predictions are unbiased. These residuals,

defined in Equation (2.20) and illustrated in Figure 2.5, are per sample differences be-

tween predicted and observed responses in the training set. In particular, we validate

the following assumptions to ensure model robustness:

1. residuals are not correlated with predicted response

2. residuals have a normal distribution with zero mean and constant variance

Chapter 2: Statistical Inference 39

Figure 2.5: Residual Schematic. Differences between observed and predicted values
in training data.

εi = yi − β0 −
p∑

j=0

βjxij (2.20)

The first assumption is typically validated with scatterplots of residuals against pre-

dicted responses since such plots may reveal systematic deviations from randomness.

For example, Figure 2.6 plots the median, lower, and upper quartiles of performance

residuals before and after transforming the bips response. Before the transforma-

tion, Figure 2.6L indicates significant correlations between residuals and fitted values;

residuals are biased positive for the smallest and largest fitted values. We apply a

square-root transformation on performance, a typical variance stabilizing technique to

mitigate the magnitude of these correlations. Figure 2.6R shows stabilized residuals.

The second assumption is usually validated by quantile-quantile plots in which

the quantiles of one distribution are plotted against another. Practically, this means

ranking the n residuals ε(1), . . . , ε(n), obtaining n ranked samples from the Normal

Chapter 2: Statistical Inference 40

Figure 2.6: Residual Randomness. Scatterplots of residuals before and after
square-root transformation. Residuals of an unbiased model should appear randomly
and independently distributed around zero. Example for design space of Table 2.1
and nine SPEC benchmarks of Table 2.2.

Figure 2.7: Residual Normality. Quantile-Quantile plots of residuals before and
after square-root transformation. Plots for an unbiased model should appear linear.
Example for design space of Table 2.1 and nine SPEC benchmarks of Table 2.2.

Chapter 2: Statistical Inference 41

distribution s(1), . . . , s(n), and producing a scatterplot of (ε(i), s(i)) that should appear

linear if the residuals follow a Normal distribution. Variance stabilization also causes

the residuals to follow a Normal distribution more closely as shown in Figure 2.7.

The observed linear trend indicates the residuals follow the Normal distribution when

Normal and residual quantiles are plotted on the x-axis and y-axis, respectively.

2.3.3 Evaluating Accuracy

Lastly, we obtain 100 additional randomly selected points from the design space and

compare simulator-reported metrics against regression-predicted metrics. The error

distribution for these validation points is visualized using boxplots. Boxplots are

graphical displays of data that measure location (median) and dispersion (interquar-

tile range), identify possible outliers, and indicate the symmetry or skewness of the

distribution. Boxplots are constructed by

1. horizontal lines at median and upper, lower quartiles

2. vertical lines drawn up/down from upper/lower quartile to most extreme data

point within 1.5×IQR (interquartile range - the difference between first and

third quartile) of the upper/lower quartile with short horizontal lines to mark

the end of vertical lines

3. circles for each outlier

Figure 2.8L indicates the performance model achieves median errors ranging from

3.7 percent (ammp) to 11.0 percent (mesa) with an overall median error across all

benchmarks of 7.2 percent. Figure 2.8R indicates power models are slightly more

Chapter 2: Statistical Inference 42

Figure 2.8: Model Error Distributions. Boxplots capture error distributions for
performance (L) and power (R) predictions on validation set of 100 random designs.
Example for design space of Table 2.1 and nine SPEC benchmarks of Table 2.2.

accurate with median errors ranging from 3.5 percent (mcf) to 7.0 percent (gcc) and

an overall median of 5.4 percent. These error rates are sufficient for early stage design

analysis and optimization.

2.3.4 Alternative Modeling Strategies

Other modeling strategies might be applied to the microarchitectural design space.

These methodologies differ in complexity and effectiveness.

• Decision trees partition the space of designs into subspaces based on the

significance of predictors. For example, if predictor x1 is the most significant

predictor of a response y, the space of designs will be partitioned into subspaces

based on the values of x1 so that different subspaces contain designs with differ-

ent values of x1. Each subspace is recursively partitioned based on the values

of its most significant predictor to create a tree-representation of a partitioned

design space. Leaves in the tree are subspaces that contain similar designs x

Chapter 2: Statistical Inference 43

and similar responses y. Predictions are obtained by traversing the tree, follow-

ing branches based on the partitioning of the design parameters until a leaf is

reached and the average response for the leaf’s designs is used to estimate the

response [51, 52].

• Regression trees are similar to decision trees except leaves estimate the re-

sponse with regression models fit to designs within the leaf. Intuitively, regres-

sion trees may be shallower than decision trees since regression models can take

incompletely partitioned nodes and infer any trends that would arise from a

further, more complete partitioning. Thus, regression models can handle design

heterogeneity at a leaf whereas decision trees are most effective when reporting

the average from a space of homogeneous designs at a leaf [53].

• Instance-based learning predicts a response as a weighted average of neigh-

boring responses. Weights are a function of distance and kernel width. When

using larger kernel widths, more distant neighbors contribute to the weighted

average. Various kernels might be used to compute the weights as a function of

distance, but a Gaussian weighting function is a typical example [51, 54].

• Neural Networks are a class of machine learning models that map predictors

to a response using a network of neurons, simple processing elements, connected

by weighted edges. As in regression, data is required to train the edge weights to

construct the model. Predictions are obtained by feeding data into the network

and computing weighted sums as data propagates through the network [51].

Chapter 2: Statistical Inference 44

Predictions from inference trees and neural networks are likely more expensive

than those from spline-based regression since they require graph traversals to arrive

at leaves or output neurons for every prediction. In contrast, spline-based regression

first performs non-linear transformations for the splines and then performs a matrix-

vector multiply where the number of matrix rows equals the number of desired pre-

dictions. Prediction times are more scalable when model evaluation is expressed as

linear algebra instead of graph traversals.

Spline-based regression is more sophisticated and effective than kernel regression

since it fits non-linear trends instead of computing a simple average. However, the

kernel regression idea of constructing models with neighboring responses extends nat-

urally to spline-based regression by using the weighted or regional sampling strategies

described in Section 2.1.3. However, distance calculations to identify neighbors in

high-dimensional spaces is expensive. Such costs may be justified if more localized

models predict responses more accurately.

Neural networks differ from spline-based regression in three broad categories: au-

tomation, transparency, and efficiency. As a machine learning technique, neural net-

works are constructed automatically from training data by using gradient ascent to

identify network edge weights that minimize training residuals. In contrast, spline-

based regression requires user feedback during correlation and significance testing as

well as domain-knowledge to specify predictor interactions. However, spline-based

regression produces a more transparent model since users define interactions and the

degree of non-linearity in the model’s functional form. Neural networks are often

treated as a black-box to generate predictions. Lastly, regression models are more

Chapter 2: Statistical Inference 45

computationally efficient since they are trained by solving linear systems and eval-

uated with matrix-vector multiplies. In contrast, neural networks are trained with

heuristic optimization, such as gradient ascent, and evaluated by traversing the net-

work, which translates into less efficient nested, weighted sums.

2.4 Related Work

Simulation is the technique of choice for evaluating microarchitectural designs and

enhancing simulator efficiency has been an active research area. Related work takes

one of four broad categories: temporal sampling, parameter significance testing, and

design evaluation using empirically or analytically derived models.

2.4.1 Temporal Sampling

Sherwood, et al., propose SimPoint to identify representative instructions [62]. Sim-

Point identifies phases from a workload, clusters these phases, and takes phases in

cluster centroids as representative of the original workload during microarchitectural

simulation. By reducing sizes of instruction traces, SimPoint reduces costs per sim-

ulation. Wunderlich, et al., propose SMARTS to identify the number of instructions

needed for a representative subset of the original workload [70]. The number of sam-

ples is chosen to achieve user-specified confidence intervals when estimating design

metrics, such as performance. Both SimPoint and SMARTS extract instruction seg-

ments from the original trace to capture broader application behavior.

Eeckhout, et al., study statistical profiling for workloads used in microarchitec-

tural simulation [16]. Nussbaum, et al. examine similar statistical approaches for

Chapter 2: Statistical Inference 46

simulating superscalar and symmetric multiprocessors [58]. Oskin, et al., also use

statistical profiles to reduce the size of instruction streams input to simulators [59].

These researchers observe detailed simulations for specific benchmarks are not feasible

early in the design process. Instead, profiling produces relevant program characteris-

tics, such as instruction mix and data dependencies between instructions. A smaller

synthetic benchmark then replicates these characteristics.

Introducing sampling and statistics into simulation reduces accuracy in return

for gains in speed and tractability. While researchers in instruction sampling and

synthetic benchmarks suggest this trade-off for simulator inputs (i.e., workloads), we

propose this trade-off for simulator outputs (i.e., performance and power results). As

observed in Section 2.1.1, temporal and spatial sampling should be applied jointly to

reduce costs per simulation and number of simulations, respectively.

2.4.2 Parameter Significance Testing

Yi, et al., identify critical, statistically significant microarchitectural design param-

eters using Plackett-Burman matrices to design optimal multi-factorial experiments

[71]. They suggest fixing all non-critical parameters to reasonable constants and

performing extensive simulations that sweep a range of values for the critical param-

eters. By designing experiments more intelligently, designers use simulations more

effectively and reveal more about the design space. Similarly, we identify statistically

significant design parameters with clustering, association, and correlation analyses,

using these parameters to construct regression models. Instead of further simulation,

we rely on regression models to explore the design space.

Chapter 2: Statistical Inference 47

Joseph, et al., derive performance regression models using stepwise regression,

an automatic and iterative approach to adding and dropping terms from a model

depending on measures of significance [34]. They use these models for significance

testing only and do not actually predict performance. Although commonly used,

stepwise regression has several problems cited by Harrell [25]: (1) R2 values are

biased high, (2) standard errors of regression coefficients are biased low leading to

falsely narrow confidence intervals, (3) p-values are too small, and (4) regression

coefficients are biased high.

2.4.3 Empirical and Analytical Modeling

Ipek, et al., and Joseph, et al., separately predict microarchitectural performance

with artificial neural networks (ANN’s) trained by gradient descent and evaluated by

nested weighted sums [18, 35]. Ipek, et al., use sigmoid activation functions whereas

Joseph, et al., uses radial basis functions with similar accuracy. Dubach, et al., reduce

ANN training costs for new, untrained applications by expressing their performance

as a linear combination of performance predictions for existing, previously modeled

applications [10]. Training the weights in this linear model is less expensive than

training completely new application-specific models.

Comparing neural networks and spline-based regression models, we find similar

accuracy but also find trade-offs in efficiency and automation [46]. Regression model

construction requires more rigorous statistical analysis while neural network construc-

tion is automated; the network is often treated as a black box. Regression models

are likely more computationally efficient than neural networks. Regression models

Chapter 2: Statistical Inference 48

are constructed by solving linear systems and evaluated by multiplying matrices and

vectors. In contrast, neural networks are constructed with gradient ascent and eval-

uated with nested weighted sums as data propagates through multi-layer networks.

Differences in computational efficiency are essentially differences in numerical linear

algebra for regression and heuristics for neural networks.

In contrast to empirical models, analytical models capture first-order design trends

by encapsulating designers’ prior intuition and understanding of the design space.

Hartstein, et al., present a first-order model for analyzing pipeline depth that il-

lustrates opposing design trends: greater instruction-level parallelism decreases the

optimal depth while fewer pipeline stalls increases the optimal depth [26]. Noonburg,

et al., measure application parallelism with trace-driven simulation [57]. These mea-

sures of parallelism are combined with analytical expressions of microarchitectural

capabilities to estimate performance. Karkhanis, et al., construct analytical models

to estimate performance by penalizing idealized steady-state performance with miss

events from the branch predictor or cache hierarchy measured with fast, functional

simulation [36].

We construct empirical models for integrated functional and performance simula-

tors. In contrast, analytical models separate functionality and performance, typically

measuring program characteristics using fast trace-driven functional simulations. An-

alytical models use these characteristics to quickly estimate performance. Separating

functional simulation and performance models improves the speed of performance es-

timation. However, despite simplifying assumptions, analytical models are often diffi-

cult to construct given the complexity of modern superscalar, out-of-order pipelines.

Chapter 2: Statistical Inference 49

In contrast, models constructed empirically, with statistical inference or machine

learning, can capture the complexity encapsulated by detailed, cycle-accurate simula-

tors of modern designs. Furthermore, empirical models are more likely to scale with

complexity as designers consider design domains with less mature intuition.

2.5 Summary

This chapter details our approach to statistical inference, a core component of a simu-

lation paradigm that reduces the number of simulations for design space exploration.

Empirically constructed regression models are comprehensive, sparsely trained, accu-

rate, and efficient.

Statistical inference is comprehensive and effectively captures performance and

power trends across large design spaces. Although this chapter describes models

constructed with 4,000 samples from a billion-point space, the methodology extends

to spaces with up to 240 billion designs and 500 simulated samples (Table B.4).

Such a design space includes all the standard parameters of out-of-order, superscalar

architectures. This scalability provides a holistic view of the design space. However,

these models are not intended to replace simulators. As regression models reveal

interesting regions in the design space, further simulation may be required within

these regions to expose further detail or to construct a refined regional model.

Comprehensive regression models are inexpensive to construct. This chapter dis-

cusses 4,000 samples from a space of nearly one billion designs, but we find 500

simulations sufficient (effectively one simulation for every two million designs). Costs

drop to one simulation for every 500 million designs for our space of 15 parameters

Chapter 2: Statistical Inference 50

Figure 2.9: Model Error Distributions. Boxplots capture error distributions for
performance (L) and power (R) predictions on validation set of 100 random designs.
Example for design space of Table B.4 and benchmarks of Table 2.2.

and 240 billion points. Since regression models are constructed once and used repeat-

edly, the costs of simulating these sparse samples are quickly amortized over a broad

range of design analyses and optimizations. Furthermore, these samples are collected

uniformly at random, minimizing user effort in configuring simulations.

Despite the sparsely simulated training samples, models are accurate. We illus-

trate median errors between 5 and 7 percent for our space of one billion points and

observe comparable errors for our space of 240 billion points (Figure 2.9). Such

accuracy is sufficient to guide designers to interesting regions of the design space.

Furthermore, these errors are typically much smaller than estimated performance

improvements and/or power savings in early stage design optimization.

Lastly, regression models are efficient. Users evaluate regression equations for

performance and power estimates. After non-linear transformations, these estimates

are expressed as matrix-vector multiplication, which is capable of leveraging highly

optimized numerical linear algebra routines. This efficiency translates into thousand’s

Chapter 2: Statistical Inference 51

of performance or power estimates per second. In contrast, cycle-accurate simulation

time for a single design is measured in tens of minutes. The rest of this disserta-

tion leverages this computational efficiency to enable qualitatively new capabilities in

design analysis and optimization.

Chapter 3

Characterizing Performance and

Power Topologies

Contents
3.1 Parameter Sensitivity . 55

3.1.1 Pitfalls of One-Dimensional Sensitivity 55

3.1.2 Case Study of Pipeline Depth 59

3.2 Pareto Frontiers . 64

3.2.1 Characterizing the Design Space 65

3.2.2 Identifying the Pareto Frontier 66

3.2.3 Validating the Pareto Frontier 68

3.3 Contours for Visualizing Topologies 70

3.3.1 Contour Maps . 70

3.3.2 Bottleneck Analysis . 72

3.3.3 Workload Characterization 74

3.4 Metrics for Quantifying Roughness 75

3.4.1 Numerical Approximations 77

3.4.2 Roughness and Regression 78

3.4.3 Roughness and Contours 81

3.5 Related Work . 84

52

Chapter 3: Characterizing Performance and Power Topologies 53

3.5.1 Sensitivity . 85

3.5.2 Optimizing Pipeline Depth 86

3.5.3 Roughness Metrics . 86

3.6 Summary . 87

Microarchitectural design characterization is often insufficient and ad hoc due to the

significant computational cost of modern simulator infrastructure. Simultaneously,

robust characterization is increasingly important as performance is rarely considered

in isolation and the inclusion of power metrics introduces non-monotonicities and

interesting design compromises. Robust characterization must take a holistic view of

the space, guiding the designer to performance and power efficient regions. Revealing

efficiency trends and exposing bottlenecks, high-level characterization is a necessary

prerequisite to effective optimization. After finding regions of interest, designers might

further refine the analysis to extract additional detail or accuracy.

Leveraging the efficiency of inferential models, we may consider comprehensive

design spaces several orders of magnitude larger than those tractable in detailed sim-

ulation. Instead of simulating a few hundred designs, we may now evaluate inferential

models for hundreds of thousands of designs. This more complete understanding is

critical as Moore’s Law provides increasingly abundant microarchitectural resources

and designers must use these resources to deliver performance in a power efficient

manner. Furthermore, this strategy addresses fundamental limitations in current

approaches to sensitivity analysis. Instead of constraining studies and shifting bot-

tlenecks from one parameter to another parameter outside the scope of study, we

consider the entire design space and effectively remove bottlenecks.

We evaluate performance in billion’s of instructions per second (bips) and power

Chapter 3: Characterizing Performance and Power Topologies 54

in Watts (w). Efficiency is typically measured in bips/w. We also consider bips3/w,

a more rigorous alternative, equivalent to the inverse energy delay-squared product

[6, 23]. This voltage invariant metric is derived from the cubic relationship between

power and voltage-frequency (V , f). Since w ∝ V 2f and V ∝ f , w ∝ f 3 and

f 3/w ∝ k0 where k0 is some constant. If f ∝ bips, then bips3/w ∝ k1 where k1

is some constant and the metric is invariant as voltage and frequency change. A

bips3/w maximizing design is optimal regardless of any voltage and frequency scaling.

Informally, this metric emphasizes performance over power such that efficiency gains

from a percentage increase in performance will be greater than those from a percentage

decrease in power.

This chapter considers a series of increasingly sophisticated characterization tech-

niques. Each technique evaluates regression models to estimate performance and

power. These estimates are combined to consider efficiency in the following design

space analyses:

• Pareto Frontiers: We comprehensively characterize a design space, construct-

ing a regression-predicted pareto frontier in the power-delay space. This frontier

consists of designs that minimize delay for a given power budget or minimize

power for a given delay target. (Section 3.2)

• Contours for Visualizing Topologies: We construct contour maps to visu-

alize the design topology, surveying the practical applications of these maps in

bottleneck analysis and workload characterization. (Section 3.3)

• Metrics for Quantifying Roughness: We define and compute metrics to

quantify the roughness of performance and power topologies. We examine

Chapter 3: Characterizing Performance and Power Topologies 55

the link between roughness and contour maps, validating roughness metrics

graphically by ensuring contours observed with greater non-linearity or non-

monotonicity are quantified rougher. (Section 3.4)

These techniques further designer understanding of the superscalar, out-of-order mi-

croarchitecture. More importantly, they establish a rigorous foundation for char-

acterizing less intuitive design spaces as we consider emerging design domains with

significant design and metric diversity.

3.1 Parameter Sensitivity

Before considering more comprehensive techniques for design space characterization,

we first summarize the current approach to assessing parameter sensitivity. Designers

typically take a parameter of interest and sweep a range of values in simulation while

fixing all other parameters to a constant baseline value. Such constrained studies may

simply shift bottlenecks from the parameter of interest to another parameter outside

the scope of study, thereby producing results that may not generalize to the broader

design space. Furthermore, the constrained scope of study will limit the discovered

performance gains or power savings.

3.1.1 Pitfalls of One-Dimensional Sensitivity

The microarchitectural design space is defined by tunable parameters that impact

performance and power. The compromise between these metrics for a given parameter

Xi may be expressed as its sensitivity:

Chapter 3: Characterizing Performance and Power Topologies 56

SXi(x) =

∣∣∣∣∣
(

δPerf/δXi

Perf

)
×
(

δPower/δXi

Power

)−1
∣∣∣∣∣
x=(x̃1,...,x̃p)

(3.1)

where Perf , Power, and their partial derivatives are evaluated at a particular design

point x = (x̃1, . . . , x̃p). Sensitivity is the absolute magnitude of the percentage change

in performance for a percentage change in power. Sensitivities for an optimized

design should be balanced so that marginal power costs of performance from all

tunable parameters are equal [49, 75]. Computing these derivatives with respect to

each parameter, designers identify each parameter’s performance and power trade-

off at a particular design point. High sensitivity indicates parameters from which

significant performance gains are possible with modest power costs. Sensitivities

must be recomputed after optimizing a parameter since relative sensitivities likely

change from point to point in the space. Thus, sensitivity is a metric for ranking

parameter significance at any given design.

Figure 3.1 presents parameter sensitivities for ammp and mcf evaluated at a design

point resembling the IBM POWER4 (Table 3.1). Ammp performs well at the baseline

and there are few opportunities to further tune performance. Observing superscalar

width is most sensitive and L1 cache sizes are least sensitive, any additional tuning

should first enhance superscalar width and then re-assess sensitivity. In contrast,

sensitivities for mcf indicate opportunities to tune the cache hierarchy by increasing

L1 data cache size. Intuitively, this analysis suggests the L1 data cache provides a

much greater performance benefit for every percentage change in power cost while

large L2 caches deliver performance in a relatively power inefficient manner.

One-dimensional optimization simply shifts sensitivities and efficient tuning should

Chapter 3: Characterizing Performance and Power Topologies 57

Processor Core

Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions

Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 3.1: POWER4 Baseline. Superscalar, out-of-order microarchitectural design
resembling the IBM POWER4.

Figure 3.1: Sensitivity at Baseline. Parameter sensitivity for ammp (L) and mcf
(R) computed at a baseline design resembling the IBM POWER4 design (Table 3.1).

Chapter 3: Characterizing Performance and Power Topologies 58

Figure 3.2: Sensitivity after Single Parameter Optimization. Parameter sen-
sitivity for ammp (L) and mcf (R) computed after optimizing the most sensitive
parameters, superscalar width for ammp and L1 data cache for mcf.

occur at higher dimensions by considering all design parameters simultaneously. Fig-

ure 3.2 shows sensitivities of designs after tuning the most sensitive parameters for

ammp and mcf. For ammp, we increase issue bandwidth from 4 to 8 since super-

scalar width is most sensitive. However, all non-width parameters remain constant

at POWER4-like values leading to a new bottleneck in the L1 instruction cache. Fur-

thermore, this width optimization is ineffective and generates a net bips/w efficiency

loss, increasing performance and power by 40.7 and 62.8 percent, respectively. A sim-

ilar optimization for mcf illustrates that a doubling of L1 data cache size from 32 to 64

KB relieves L2 cache sensitivity, but has no appreciable impact on performance and

power efficiency. Thus, one-dimensional optimization simply shifts sensitivities and

tuning must occur at higher dimensions, considering all design parameters simulta-

neously. This point is well understood by designers in principle, but single parameter

sensitivity has become the status quo owing to the computational costs of detailed

simulation for multi-dimensional alternatives.

Chapter 3: Characterizing Performance and Power Topologies 59

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table 3.2: Design Space II. Used for design characterization and optimization where
regression models are evaluated exhaustively for every point in the space. p = 7,
|S| = 3.8E+5.

3.1.2 Case Study of Pipeline Depth

Pipeline depth is a particularly important design parameter. Parameter studies of

depth convinced the microprocessor industry to moderate pipelining; deep pipelines

were inefficient, delivering performance with high power costs [26, 28, 74]. However,

prior pipeline studies consider various depths while holding most other design param-

eters at constant values to avoid the simulation costs of varying multiple parameters

simultaneously. Thus constraining the space may lead to narrowly defined studies

with conclusions that may not generalize. Regression models enable a more com-

plete characterization of pipeline depth by varying all parameters simultaneously. A

more comprehensive depth analysis ensures observed trends are not an artifact of the

constant baseline values to which other parameters are held.

Chapter 3: Characterizing Performance and Power Topologies 60

SPEC CPU 2000
ammp Simulates molecular dynamics
applu Solves parabolic/elliptic partial differential equations (PDE’s)
equake Simulates seismic wave propagation
gcc Compiles C programs
gzip Performs compression
mcf Performs combinatorial optimization
mesa Provides 3-D graphics library support
twolf Simulates circuit place and route

SPEC JBB 2000
jbb 3-tier Java business server

Table 3.3: Benchmarks.

Pipeline depth is specified by the number of fan-out-of-four (FO4) inverter delays

per pipeline stage. FO4 delay is defined as the delay of one inverter driving four

copies of an equally sized inverter. When logic per pipeline stage is measured in

terms of FO4 delay, deeper pipelines have smaller FO4 delays. We first apply the

approach of earlier studies as a reference and then enhance these studies by allowing

all parameters to vary simultaneously. Specifically, for an average of the nine SPEC

benchmarks in Table 3.3, we compare and contrast the following approaches:

• Original Analysis: Consider the POWER4-like baseline architecture of Table

3.1, predicting bips3/w efficiency as depth varies and all other design parameters

are held constant at baseline values.

• Enhanced Analysis: Consider the comprehensive design space of Table 3.2,

predicting bips3/w efficiency as all parameters vary simultaneously.

The line plot of Figure 3.3 presents predicted efficiency relative to the bips3/w

maximizing baseline design in the constrained original analysis. This analysis sweeps

Chapter 3: Characterizing Performance and Power Topologies 61

Figure 3.3: Pipeline Depth Analysis. bips3/w for original (line plot) and enhanced
(boxplots) analyses. Efficiency relative to bips3/w optimum in original analysis at 18
FO4.

pipeline depth holding all other parameters fixed. 18 FO4 delays per stage is optimal

for an average of the benchmark suite and efficiency is normalized to this optimum in

Figure 3.3. Although choosing the deepest (12 FO4) or shallowest (36 FO4) pipeline

will achieve only 85.9 or 87.6 percent of this optimal efficiency, respectively, the models

suggest a plateau around the optimum and not a sharp peak.

The superimposed boxplots of Figure 3.3 show the bips3/w distribution of all the

designs that implement each pipeline depth in the enhanced analysis. In a space of

375,000 points and ten pipeline depths, there are 37,500 designs represented in each

boxplot. From the bips3/w quartiles, the boxplot for 18 FO4 indicate 75, 50, and 25

percent of these designs achieve efficiency of at least 79, 102, and 131 percent of the

original bips3/w optimum. The maxima of these boxplots constitute a potential bound

on bips3/w efficiency achievable in this design space with up to 2.1x improvements at

Chapter 3: Characterizing Performance and Power Topologies 62

the optimal 18 FO4 pipeline depth. These bounding architectures are characterized

by wide pipelines as well as larger queue and register file sizes. Thus, higher efficiency

is achieved when width and register file sizes vary with depth.

The points at which the line plot intersect the boxplots indicate unexploited ef-

ficiency. Intersection at a lower point in the boxplot indicates a larger number of

configurations are predicted more efficient than the baseline at a particular depth.

More than 58 percent of 12 FO4 and 39 percent of 30 FO4 designs are predicted

more efficient than baseline, corresponding to more than 21,000 and 14,000 designs,

respectively. Such a large number of more efficient designs is not surprising, how-

ever, since the baseline resembles designs for server workloads with less emphasis on

energy efficiency. Less efficient designs may be pruned from further study enabling

more judicious use of detailed simulators should additional simulation be necessary.

Predicted efficiency penalties for sub-optimal depths are also more significant for

the bounding architectures. In the original analysis, the bips3/w maximizing depth is

15-18 FO4 and the sub-optimal 30 FO4 design achieves 88 percent of the optimal effi-

ciency, incurring a 12 percent efficiency penalty as shown by the line plot. The num-

bers above each boxplot in Figure 3.3 quantify each bounding architecture’s efficiency

relative to that of the bips3/w maximizing bound architecture at 18 FO4. While the

bounding architectures are also most efficient at 15 to 18 FO4 in the enhanced analy-

sis, the sub-optimal 30 FO4 design achieves only 81 percent of the optimal efficiency

and incurs a 19 percent penalty (greater than the 12 percent penalty in the original

analysis). This trend is observed for all depths shallower than the optimal 18 FO4.

Since bounding architectures are characterized by wider pipelines, choice of depth

Chapter 3: Characterizing Performance and Power Topologies 63

Figure 3.4: Pipeline and Cache Sizes. Distribution of d-L1 cache sizes for designs
in 95th percentile.

becomes more significant and sub-optimal depths incur greater efficiency penalties.

For the average across our benchmark suite, wide pipelines with shallow depths result

in greater design imbalances and power-performance inefficiencies.

Figure 3.4 presents the distribution of L1 data cache sizes in the most efficient

designs at each depth. In particular, we take the 37,500 designs at each depth and

consider designs in the 95-th percentile (i.e., 1,875 designs in the top 5 percent of

each depth’s boxplot). Small 8 KB data caches are observed for 20.3 percent of

top designs at 30 FO4 while such caches are optimal for only 1.4 percent of top

designs at 12 FO4. The percentage of top designs with larger 64 KB caches increases

from 22.8 to 34.4 percent with deeper pipelines. Thus, small caches are increasingly

viable at shallow pipelines while top designs often have large caches at deep pipelines,

confirming our intuition that deeper pipelines favor larger caches to mitigate the

Chapter 3: Characterizing Performance and Power Topologies 64

increased costs of cache misses. Given these interactions, cache design parameters

should vary simultaneously with pipeline depth.

As shown in the discussion of one-dimensional sensitivity and the case study for

pipeline depth, efficiency is maximized when we simultaneously consider multiple

parameters. As illustrated in our case study, our regression models enable this more

holistic view of parameter sensitivity. Although sensitivity is the standard approach

to performance and power analysis, regression models also enable more sophisticated

analysis of these metrics.

3.2 Pareto Frontiers

Pareto optimality is an economic concept with broad applications to engineering.

Given a set of design parameters and a set of design metrics, a Pareto optimization

changes the parameters to improve at least one metric without negatively impacting

any other metric. A design is Pareto optimal when no further Pareto optimizations

can be implemented. For the microarchitectural design space, Pareto optima are

designs that minimize delay for a given power budget or minimize power for a given

delay target. A Pareto frontier is defined by a set of Pareto optima.

Regression models enable a complete characterization of the microarchitectural de-

sign space. In particular, we exhaustively evaluate a design space containing 375,000

points (Table 3.2). Such a characterization reveals all trade-offs between a large

number of design parameters simultaneously compared to an approach that relies on

per parameter sensitivity analysis. Given this characterization, we construct Pareto

frontiers. While we cannot explicitly validate the regression-predicted Pareto frontier

Chapter 3: Characterizing Performance and Power Topologies 65

Figure 3.5: Design Characterization. Regression-predicted delay, power for
375,000 designs of Table 3.2 running representative SPEC benchmarks ammp (L)
and mcf (R). Arrows indicate trends as parameter values change. Colors map to L2
cache sizes.

against a hypothetical frontier found by exhaustive simulation, the former is likely

close to the latter given the accuracy observed in validation.

3.2.1 Characterizing the Design Space

Figure 3.5 plots predicted delay (inverse performance) and power by exhaustively

evaluating the regression models for representative benchmarks. The design space is

characterized by several overlapping clusters of similar designs. Each cluster contains

designs with a particular pipeline depth-width combination. For example, the shaded

mcf cluster is comprised of designs with depths of 12 FO4 and widths of 8 functional

units. This cluster minimizes delay at the greatest power cost with delays ranging

from 1.9 to 5.3 seconds and power ranging from 100 to 160 watts.

The arrows of Figure 3.5 identify power-delay trends as a particular resource

size increases. Consider the shaded 12 FO4, 8-wide design clusters for ammp and

Chapter 3: Characterizing Performance and Power Topologies 66

Figure 3.6: Pareto Frontier. Pareto optima for 375,000 designs of Table 3.2 running
representative SPEC benchmarks ammp (L) and mcf (R). The green boxes illustrate
a region within 25 percent of the bips3/w optimal delay and power from Table 3.4.

mcf. Mcf performance benefits from larger caches with delay shifting from 5.3 to 1.9

seconds as L2 cache size shifts from 0.25 to 4 MB. In contrast, ammp achieves limited

performance benefits with delay shifting from 1.0 to 0.8 seconds as L2 cache size

increases by the same amount. Ammp also appears to exhibit greater instruction level

parallelism, effectively utilizing additional physical registers and reservation stations

to reduce delay from approximately 1.8 to 0.8 seconds compared to mcf’s reduction

of 2.5 to 2.0 seconds.

3.2.2 Identifying the Pareto Frontier

Figure 3.6 plots regression predicted Pareto optima. These optima minimize delay for

a given power budget or minimize power for a given delay target. Given exhaustively

predicted power and delay characteristics, the frontier is constructed by discretizing

the range of delays and identifying the design that minimizes power for each delay

in a range of delay targets. These designs are Pareto optimal with respect to the

Chapter 3: Characterizing Performance and Power Topologies 67

Depth Width Reg Resv I-$ D-$ L2-$ Delay Power
(KB) (KB) (MB) Model Model

ammp 27 8 130 12 32 128 2 1.0 35.9
applu 27 8 130 15 16 8 0.25 0.8 39.6
equake 27 8 130 15 64 8 0.25 1.2 41.5
gcc 15 2 70 9 16 8 1 1.2 44.1
gzip 15 2 70 6 16 8 0.25 0.8 24.2
jbb 15 8 80 12 16 128 1 0.6 80.9
mcf 30 2 70 6 256 8 4 3.5 12.9
mesa 15 8 80 13 256 32 0.25 0.4 86.9
twolf 27 8 130 15 128 128 2 1.1 34.5

Table 3.4: Efficient Pareto Optima. bips3/w maximizing designs for nine SPEC
benchmarks of Table 3.3.

regression models, but may not be the same optima obtained via a hypothetical

exhaustive simulation of the space.

Although Pareto optima are useful for particular delay targets or power budgets,

not all Pareto optima are efficient with respect to bips3/w, the inverse energy delay-

squared product.1 We compute this efficiency metric for each design on the Pareto

frontier and identify the most efficient designs for each benchmark in Table 3.4. The

bips3/w optimal design for ammp is located at 1.0 seconds and 35.9 watts in the

delay-power space, the knee of the Pareto optimal curve. Similarly, the mcf bips3/w

optimum is located at 3.5 seconds and 12.9 watts. Overall, these optima are drawn

from diverse design regions motivating comprehensive space exploration. Although

Table 3.4 indicates these optima occupy very different parts of the design space, they

reside in very similar regions of the power-delay space. Most of the optima are located

between 0.5 and 1.5 seconds, 25 and 50 watts.

1bips3/w is a voltage invariant power-performance metric derived from the cubic relationship
between power and voltage [6, 23].

Chapter 3: Characterizing Performance and Power Topologies 68

3.2.3 Validating the Pareto Frontier

Figure 3.6 superimposes regression-predicted Pareto frontiers with simulations of

points on those frontiers, suggesting good relative accuracy. Regression effectively

captures the delay-power trends of the Pareto frontier. As performance prediction is

slightly less accurate than power prediction, however, differences are characterized by

horizontal shifts in delay. Performance model accuracy is the limiting factor for more

accurate Pareto frontier prediction across all benchmarks in our suite. Mcf highlights

these trends, but its absolute performance error is more an exception than a common

case. Ammp is more representative of accuracy for the broader benchmark suite.

Figure 3.7 presents error distributions from predicting the performance and power

of pareto optima. The median performance error ranges from 4.3 percent (ammp) to

15.6 percent (mcf) with an overall median of 8.7 percent. Similarly, the median power

error ranges from 1.4 percent (mcf) to 9.5 percent (applu) with an overall median

of 5.5 percent. These error rates are consistent with the median error rates of 7.2

and 5.4 percent observed in the validation of random designs (Figure 2.8), suggesting

predictions for Pareto optima are as accurate as those for the overall design space.

In practice, not all Pareto optima are interesting and viable designs. The high

power or high delay designs located at the frontier extrema are not particularly inter-

esting due to unfavorable power and delay trade-offs. For the majority of benchmarks,

we find our models more accurate for more interesting points near the bips3/w opti-

mum of Table 3.4. Figure 3.8 presents restricted error distributions when considering

only Pareto optima exhibiting delay and power within 25 percent of the bips3/w opti-

mal delay and power (boxes of Figure 3.6). Comparing complete and restricted error

Chapter 3: Characterizing Performance and Power Topologies 69

Figure 3.7: Complete Pareto Frontier Accuracy. Boxplots capture error dis-
tributions for performance (L) and power (R) predictions for complete set of Pareto
optima. Pareto frontiers constructed for design space of Table 3.2 and nine SPEC
benchmarks of Table 3.3.

Figure 3.8: Restricted Pareto Frontier Accuracy. Boxplots capture error distri-
butions for performance (L) and power (R) predictions on restricted subset of Pareto
optima exhibiting delay and power within 25 percent of bips3/w optima in Table 3.4.
Pareto frontiers constructed for design space of Table 3.2 and nine SPEC benchmarks
of Table 3.3.

Chapter 3: Characterizing Performance and Power Topologies 70

distributions of Figures 3.7–3.8, we find the median and interquartile range decrease

for a majority of benchmark errors as we examine only the region around the bips3/w

optimum.

The differing error distributions in Figures 3.7–3.8 motivate future work on hierar-

chical modeling schemes in which high-level models are first constructed for a compre-

hensive design space to identify regions of interest around particular optima. Further

detail and accuracy may be achieved by performing constrained spatial sampling and

constructing localized regression models for regions of interest. Such a scheme over-

comes the models’ potential regional biases and may further reduce model error as

we shift emphases from the complete design space to particular subspaces.

3.3 Contours for Visualizing Topologies

Contour maps enable efficient and comprehensive visualizations of microarchitectural

performance and power topologies. A large number of these maps may be quickly

generated using performance and power estimates from regression models. Once

constructed, contour maps reveal microarchitectural bottlenecks and enable workload

comparisons based on microarchitectural resource requirements. After demonstrating

these applications of contour maps, we quantify contour roughness and ensure our

roughness metrics corroborate graphically observed roughness.

3.3.1 Contour Maps

Contour maps are constructed by exhaustively evaluating regression models for per-

formance and power. Two-dimensional projections of the design space lay the foun-

Chapter 3: Characterizing Performance and Power Topologies 71

Figure 3.9: Performance Contours. Contour maps of SPEC ammp bips for depth,
width (L) and register file, width (R).

dation for analysis in higher dimensions. These maps illustrate the topology for a

metric of interest, revealing non-linearities that may arise from non-monotonic trends

(hills, valleys) or diminishing marginal returns from additional resources (plateaus).

The visualization also identifies a path to optimality from any initial design point.

Figure 3.9L presents ammp’s performance contours for a two-dimensional projection

of pipeline depth and superscalar width from the seven-dimensional design space of

Table 3.2, revealing a clear path to optimal performance in the direction of deeper,

wider pipelines. This particular space favors balanced pipeline dimensions, indicating

depth and width should increase together to most effectively deliver performance.

While we plot contours that span a continuous range of width values, in practice,

we are likely to examine only feasible design points in the contour maps (e.g., 2-, 4-,

8-wide designs).

Gradients produce vector fields that point in the direction of increasing values.

We compute these vector fields using numerical gradients and visualize them using

Chapter 3: Characterizing Performance and Power Topologies 72

arrows in the contour maps. Furthermore, contour levels closely spaced together

imply steeper slopes since smaller microarchitectural changes are required to achieve

the same performance or efficiency increase. Thus, closely spaced contour levels result

in larger gradient magnitudes. These vector fields complement the contour maps and

reveal paths to design optima more quickly.

3.3.2 Bottleneck Analysis

The path to optimality reveals the changing source of bottlenecks for the metric of

interest. Figure 3.9R presents ammp’s performance contours for a two-dimensional

projection of the register file and superscalar width. We observe two distinct regions

divided horizontally by the 80-entry register file. The ammp benchmark experiences

significant register pressure when running on designs in the lower region of this map.

Performance in this lower region is most effectively optimized by increasing both

register file sizes and superscalar width. In contrast, we observe diminishing marginal

returns in performance from larger register file sizes in the upper region of the map.

This is illustrated by vertical contour levels in which changing register file sizes cannot

lead to higher performance. The register file is no longer a bottleneck in this region

and other design parameters should be analyzed.

Power metrics are easily included into the analysis. Power contours alone are less

interesting as power often increases monotonically with increases in microarchitectural

resources. Figure 3.10 considers the same projections of Figure 3.9 using a bips/w

efficiency metric. Figure 3.10L examines trade-offs for pipeline dimensions, suggesting

this design space favors shallower, narrower pipelines once the optimization metric

Chapter 3: Characterizing Performance and Power Topologies 73

Figure 3.10: Power-Performance Contours. Contour maps of SPEC ammp
bips/w for depth, width (L) and register file, width (R).

accounts for the power costs of deeper, wider pipelines. Pipeline depth is the primary

efficiency bottleneck for the more aggressive designs as illustrated by the vertical

contour levels in the 9 to 15 FO4 region. As we consider increasingly shallow pipelines,

superscalar width begins to limit efficiency and we see a more pronounced trend

toward fewer instructions issued per cycle (i.e., issue bandwidth from 8 to 2) in the

24 to 36 FO4 region.

Figure 3.10R illustrates performance and power trade-offs for the register file and

superscalar width. The bips/w efficiency metric strongly favors narrower pipelines.

This metric more clearly identifies the optimal register file size between 60 and 90

entries based on the power costs of over-provisioning this resource. In contrast, the

performance analysis of Figure 3.9R favors more than 80 entries and does not capture

the power costs that make 130-entry register files unattractive.

The gradients and vector fields are consistent with the high level observations

from the contour maps. For example, perfectly vertical or horizontal gradients in

Chapter 3: Characterizing Performance and Power Topologies 74

Figure 3.11: Performance Contours. Contour maps of SPEC ammp (L) and mcf
(R) for L2 cache, register file.

the two dimensions indicate δf/δx1 ≈ 0 or δf/δx2 ≈ 0, respectively. In Figure

3.9R, for example, we observe δPerf/δreg ≈ 0 for register files with more than 80

entries, indicating diminished register pressure. In contrast, a large partial derivative

δPerf/δwidth >> 0 indicates significant performance changes as superscalar width

varies. The gradients of Figure 3.9L and Figure 3.10L include both vertical and

horizontal components, indicating non-zero sensitivities for both parameters in the

two-dimensional projection.

3.3.3 Workload Characterization

Bottleneck analysis with contour maps enables workload comparisons based on their

microarchitectural resource requirements. Figure 3.11 illustrates such a comparison

between ammp and mcf performance by examining demands on the register file and

L2 cache. As observed earlier, the register file is a bottleneck for ammp. The verti-

cal contour levels indicate negligible performance advantages from larger caches until

Chapter 3: Characterizing Performance and Power Topologies 75

register pressure has been relieved with at least 80 entries. Once the register file con-

tains 80 entries, performance is enhanced by cache sizes larger than 1 MB. In contrast,

the horizontal contour levels for mcf reveal significant performance advantages from

larger caches, indicating the workload is relatively memory bound. We also observe

more subtle indicators that 80-entry register files are optimal for mcf. The vertical

dips in the horizontal contour levels all occur at 70 or 80 physical registers, indicating

greater performance at this register file size for any L2 cache size.

Microarchitecture independent workload characterizations examine and assess per-

formance through fundamental program characteristics, such as instruction mix and

register traffic. However, contour maps enable a more direct analysis based on compu-

tational resource requirements. For example, the number of independent instructions

within an instruction window is a microarchitecture independent metric to assess

instruction level parallelism (ILP) [60]. In contrast, a contour map of pipeline dimen-

sions would assess ILP based on the optimality of various depths and widths, revealing

a workload’s characteristics and its direct implications for microarchitectural design.

Similarly, contour maps of the L2 cache would reveal a workload’s memory intensity

while exposing implications for cache design.

3.4 Metrics for Quantifying Roughness

The roughness of microarchitectural performance and power topologies has direct im-

plications for regression modeling. Rough topologies require greater model flexibility

in the form of additional spline knots. Rough regression models imply an underly-

ing topology at least as rough as the derived model. These effects are most easily

Chapter 3: Characterizing Performance and Power Topologies 76

observed in contours where non-linearity and non-monotonicity are evident.

In the context of visualization, roughness metrics quantify the relative roughness

between contours. Rough contours imply more challenging inputs to optimization

heuristics as hills and valleys in the topology increases the likelihood of heuristics

converging to local sub-optima. While contour maps are feasible for low-dimensional

analysis, roughness metrics extend to higher dimensions and provide a more complete

assessment of a topology. By quantifying topology roughness that would otherwise be

assessed subjectively with contour maps, these metrics lay the foundation for robust

modeling and optimization in the presence of rough topologies.

We apply the roughness metrics proposed by Green and Silverman for smoothed,

non-parametric regression [24]. Equation (3.2) defines a measure of roughness R1

for a one-dimensional function f(x). This measure of roughness is unaffected by the

addition of a constant or linear function since R1 depends on the second derivative.

Furthermore, this definition has a basis in mechanical engineering; if a thin piece

of flexible wood is bent to the shape of f(x), the leading term in the strain energy

is proportional to R1. Equation (3.3) is a two-dimensional extension of the one-

dimensional definition. Intuitively, R2 captures roughness since the second derivatives

in R2 are large if the function f(x1, x2) exhibits high local curvature. As in R1, the

bending energy of a thin plate is, to first order, proportional to R2.

R1 =

∫
x

(
δ2f

δx2

)2

dx (3.2)

R2 =

∫
x2

∫
x1

{(
δ2f

δx2
1

)2

+ 2

(
δ2f

δx1x2

)2

+

(
δ2f

δx2
2

)2
}

dx1dx2 (3.3)

Rd =

∫
xd

. . .

∫
x1

∑ m!

v1!. . .vd!

(
δmf

δx1
v1 . . .δxd

vd

)2

dx1. . .dxd (3.4)

Chapter 3: Characterizing Performance and Power Topologies 77

Equation (3.4) provides a more general d-dimensional metric based on m-th deriva-

tives, where 2m > d [24]. The sum within the integral is over all non-negative integers

v1, . . . , vd such that v1 + . . . + vd = m. For example, this particular work considers

a seven-dimensional design space and computes R7 based on 4-th derivatives. As in

the one- and two-dimensional cases, Rd = 0 only if f(x1, . . . , xd) is a polynomial of

total degree less than m. Throughout, we report relative roughness rankings since the

absolute roughness values are not known to have an intuitive physical interpretation

in the microarchitectural context.

3.4.1 Numerical Approximations

Derivatives are approximated using numerical gradients. These approximations use

centered differences at the interior and one-sided differences at design space bound-

aries. A three-point estimate using centered differences computes the slope of a secant

line through (x∗ − h, f(x∗ − h)) and (x∗ + h, f(x∗ + h)) as shown by Equation (3.5).

Since this approximation is possible only at the interior of the space, the one-sided

approximation of Equation (3.6) is needed for derivatives evaluated at the boundaries.

δf

δx

∣∣∣∣
x=x∗

≈ f(x∗ + h)− f(x∗ − h)

2h
(3.5)

δf

δx

∣∣∣∣
x=x∗

≈ f(x∗ + h)− f(x∗)

h
(3.6)

Integrals are approximated with Riemann sums as shown for one and two dimensions

in Equations (3.7)–(3.8). Riemann sums divide the domain of x into n intervals of

equal width ∆x = max[x]−min[x]
n

and identify approximation points x∗1, x
∗
2, . . . , x

∗
n such

that x∗i lies in the i-th interval.

Chapter 3: Characterizing Performance and Power Topologies 78

∫
x

f(x)dx ≈ lim
n→∞

n∑
i=1

f(x∗i)∆x (3.7)

∫
x2

∫
x1

f(x1, x2)dx1dx2 ≈ lim
m,n→∞

m∑
i=1

n∑
i=j

f(x∗1,i,j, x
∗
2,i,j)∆x1∆x2 (3.8)

This approximation is valid if f is a continuous, positive function defined over

the domain of x. In the microarchitectural context, f is a regression model for per-

formance, power, or efficiency. The function f is continuous because models are

constructed with piecewise cubic polynomials using smooth, continuous knot connec-

tions. The function is positive because values for our design metrics are positive.

The approximation points x∗1, . . . , x
∗
n correspond to the defined resolution of design

parameters in our space. The n points for parameter xi correspond to the number of

values in the parameter range of xi (|Si| in Tables B.2–B.4). Although f is a regression

model that can be evaluated at arbitrarily high resolution, accuracy is constrained

by the resolution of the design space used to construct the model. The limits in

Equations (3.7)–(3.8) suggest higher resolution design spaces with parameter values

observed at finer granularity lead to more accurate approximations.

3.4.2 Roughness and Regression

The functional mapping between designs and metrics would ideally be provided by the

simulator. Due to computational costs of extensive simulation, we approximate these

functions with regression models formulated from sparsely simulated design space

samples. This approximation may smooth non-linear, non-monotonic trends in the

design space. Assessing the roughness of the underlying microarchitectural design

Chapter 3: Characterizing Performance and Power Topologies 79

topology through regression models captures only high-level roughness since more

detailed roughness may be obscured by smoothing in least squares fitting. Thus, we

should treat these roughness metrics computed with regression models as conservative

estimates of the true design space roughness.

Piecewise cubic splines provide the flexibility needed to capture non-linear trends

in the design space. Regression models that most utilize this flexibility for a non-

linear design topology are likely trying to capture more difficult trends, resulting in

greater modeling error. To assess these effects, Figures 3.12–3.13 plot the nine SPEC

benchmarks of Table 3.3 in the error-roughness space for performance and power. We

consider median and maximum errors across 100 randomly collected validation points.

We then correlate these errors against seven-dimensional roughness. Both error and

roughness are expressed relative to their maxima across the nine benchmarks.

Figure 3.12 correlates roughness with median and maximum performance errors,

illustrating a positive relationship. For example, ammp and jbb’s performance topolo-

gies are least and most rough, respectively. Median and maximum jbb errors are 91

and 89 percent greater than those for ammp. The trendline for the nine benchmarks

is positive with correlation coefficients of 0.33, 0.38 between roughness and median,

maximum errors. Similarly, Figure 3.13 indicates mcf and jbb’s power topologies

are least and most rough, respectively. Jbb roughness translates into median and

maximum errors 58 and 67 percent greater than those for mcf. Power roughness cor-

relations are non-trivial with coefficients of 0.42, 0.48 for median, maximum errors.

Given this relationship between roughness and model accuracy, the model spec-

ification may be optimized based on its quantified roughness. A rough model likely

Chapter 3: Characterizing Performance and Power Topologies 80

Figure 3.12: Roughness and Performance Error. Plots roughness against median
(L) and maximum (R) regression errors for performance. Roughness and error are
relative to maximum across nine SPEC benchmarks of Table 3.3. Trendlines indicate
positive correlations.

Figure 3.13: Roughness and Power Error. Plots roughness against median (L)
and maximum (R) regression errors for power. Roughness and error are relative to
maximum across nine SPEC benchmarks of Table 3.3. Trendlines indicate positive
correlations.

Chapter 3: Characterizing Performance and Power Topologies 81

reflects the underlying roughness of the design space. Design space roughness may be

more accurately captured by increasing the knot count, thereby increasing the flexi-

bility of the model specification. While the approach of Chapter 2 uses a single model

specification across all benchmarks, optimizing models based on topology roughness

requires application-specific knot counts.

3.4.3 Roughness and Contours

Given the computational speed of regression models, designers can quickly gener-

ate a large number of contour maps. However, designers will also need strategies to

sift through this plethora of visualized data. Prior work demonstrated analysis with

microarchitectural contours, but did not provide any objective mechanism for focus-

ing designer attention [59]. In contrast, we propose metrics to identify interesting

contours. We assess the effectiveness of our roughness metrics by computing R2 for

contour maps and validating against graphically observed roughness.

This analysis reveals two contributors to larger roughness values: range and vari-

ability. Range is the difference between minimum and maximum metric values in a

given contour plot. Variability is curvature in the topology, manifested in contour

non-linearity or non-monotonicity. Empirically, we observe a significant range com-

ponent in the roughness metrics. For example, we find R2(Figure 3.10L) > R2(Figure

3.10R) and R2(Figure 3.11R) > R2(Figure 3.11L) due to range differences.

For a more thorough analysis, we construct all two-dimensional contours from

the seven-dimensional design space and rank them by R2 roughness. In a seven-

dimensional space, each benchmark is visualized using
(
7
2

)
= 21 contours. For each

Chapter 3: Characterizing Performance and Power Topologies 82

Figure 3.14: Contour Roughness-Range Correlation. Correlation between
topology roughness and range of performance, power, and bips/w efficiency values
in contour maps. Range is computed by dividing the maximum contour value by the
minimum contour value.

benchmark, we correlate the roughness and range of the 21 contours. Figure 3.14

illustrates large correlation coefficients (most exceeding 0.65), suggesting a strong

relationship between the range and roughness of contour maps for various benchmarks

and design metrics.

We isolate contributions from variability by standardizing all contours to compa-

rable ranges. We subtract the mean and divide by the standard deviation to produce

similar ranges primarily between -3.0 and 3.0, the dominant range of a standard Nor-

mal distribution. Figure 3.15 presents standardized bips/w contours of varying rough-

ness from the
(
7
2

)
= 21 possible two-dimensional contours. We observe qualitative

differences in non-linearity and non-monotonicity as we progress from most rough to

least rough contours. These trends are representative of two-dimensional contours for

Chapter 3: Characterizing Performance and Power Topologies 83

Figure 3.15: Roughness and Observed Contour Variability. Standardized
bips/w contours for mcf. Ranking the

(
7
2

)
contours in order of decreasing roughness,

we present contours ranked most rough (1st, 2nd of 21), moderately rough (10th,
11th of 21) and least rough (20th, 21st of 21) from left to right, top to bottom.

Chapter 3: Characterizing Performance and Power Topologies 84

other workloads, with rankings corroborating graphically observed roughness. Hills,

valleys, and plateaus are frequently observed for rough contours while regular vector

fields and vertical, horizontal contour levels dominate smooth contours.

This comparison of roughness metrics to observed topologies in the easily visual-

ized two-dimensional contours qualitatively validates our measures of non-linearity.

Contours with high roughness rankings do indeed appear rough. We thus build con-

fidence in the proposed metrics, especially when applying them to high-dimensional

topologies that cannot be effectively visualized. Thus, roughness metrics enable quan-

titative and objective comparisons of contour range and variability.

This quantitative assessment of roughness eliminates much of the subjectivity in

contour analysis and provide a rigorous mechanism for focusing designer attention on

the most significant parameters and interesting topologies. This focus is especially

important since contours are often considered for low k-dimensional projections of a

p-dimensional space. When p is large and k is small (typically less than three), the

number of possible contour maps
(

p
k

)
= p!

(p−k)!k!
increases rapidly. While regression

models can be used to quickly construct these contours, such contours are useful only

if designers can sift through the plethora of data to find rough topologies that expose

interesting design compromises. Thus, roughness metrics must accompany contour

maps for tractable analysis and interpretation.

3.5 Related Work

Design space characterization is a necessary first step prior to performance and power

optimization. We compare our approach to comprehensive analysis against related

Chapter 3: Characterizing Performance and Power Topologies 85

work in characterizing the sensitivity of design parameters, such as pipeline depth.

We also draw on related work in statistics to characterize the roughness of microar-

chitectural performance and power topologies.

3.5.1 Sensitivity

Zyuban, et al., measures hardware and voltage intensity to quantify compromises be-

tween energy and delay from circuit-level tuning and voltage scaling, respectively [75].

Intensity is computed as D
δD

δE
E

where D is delay and E is energy. Zyuban uses these in-

tensity metrics to derive conditions for optimal microarchitectural power-performance

from mathematical relations, but do not compute the needed gradients. Our pro-

posed regression models provide a mechanism for computing these gradients. Instead

of implementing symbolically derived optimality conditions, we would optimize with

heuristics using empirically derived regression models as objective functions.

Markovic, et al., further the work by Zyuban, et al., by deriving sensitivity δE/δX
δD/δX

for tunable circuit parameters X such as gate sizing, supply voltage, and threshold

voltage [49]. Markovic, et al., show optimal values for the circuit parameters are

those that equalize sensitivity. Sensitivity is equalized by jointly optimizing registers

and logic within microarchitectural blocks (e.g., arithmetic-logic units). In contrast

to this circuit-level emphasis, we consider high-level interactions across a wide range

of microarchitectural blocks and cache structures. Furthermore, they calculate the

needed gradients from analytical circuit equations and simulations while we illustrate

the feasibility of analogous studies at the microarchitectural and macro block level

using statistical inference.

Chapter 3: Characterizing Performance and Power Topologies 86

3.5.2 Optimizing Pipeline Depth

Most prior work in optimizing pipeline depth focuses exclusively on improving per-

formance. Kunkel, et al., demonstrate that vector code performance is optimized on

deeper pipelines while scalar codes perform better on shallower pipelines [41]. Dubey,

et al., develop a more general analytical pipeline model to show that the optimal

pipeline depth decreases with increasing overhead from partitioning logic between

pipeline stages [15].

Prior work also finds optimal pipeline depths from simulation. In particular,

Hartstein, et al., perform detailed simulations of a four-way superscalar, out-of-order

microprocessor with a memory execute pipeline to identify a 10.7 FO4 performance

optimal pipeline design for the SPEC2000 benchmarks [26]. Similarly, Hrishkesh,

et al., perform simulations for an Alpha 21264-like machine to identify 8 FO4 as

a performance optimal design running the SPEC2000 benchmarks [28]. Zyuban, et

al., find 18 FO4 delays the power-performance optimal pipeline design point for a

single-threaded microprocessor [74].

3.5.3 Roughness Metrics

Green, et al., propose roughness metrics to penalize the least squares fit for spline-

based regression [24]. For example, a roughness term may be added to the sum of

square errors minimized in least squares. Accounting for roughness when fitting re-

gression coefficients, this roughness penalty approach favors smooth regression equa-

tions. We use roughness metrics only to characterize the performance and power

regression models and do not implement roughness penalties.

Chapter 3: Characterizing Performance and Power Topologies 87

3.6 Summary

This chapter applies the computational efficiency of statistical inference to compre-

hensive design space characterization, addressing fundamental limitations in low-

dimensional sensitivity analysis. Instead of constraining a study’s scope based on

simulation costs, we fully characterize performance and power trends for spaces con-

taining hundreds of thousands of designs. This scalability ensures a broad under-

standing of the space, thereby effectively managing design and metric diversity for

emerging design priorities.

We supplement sensitivity analysis with more comprehensive and sophisticated

techniques. Pareto frontiers quickly identify the set of performance and power effi-

cient designs, revealing feasible performance targets and power budgets for a com-

prehensive space. Contour maps tractably visualize performance and power gradi-

ents, illustrating bottlenecks within a workload and contrasting bottlenecks across

workloads. Roughness metrics efficiently quantify the degree of non-linearity and

non-monotonicity with a design topology, focusing designer attention on rough de-

sign regions likely to contain interesting trends and compromises. Although these

techniques are commonly applied in other engineering domains, their robust appli-

cation to computer engineering is enabled by the speed of statistical inference. By

using regression models to capture the relationship between design metrics and design

parameters, we remove detailed microarchitectural simulation from the critical path.

Designer intuition and experience are invaluable assets in hardware design. As de-

signers move into domains where intuition is less mature, however, they will require

robust characterization techniques to supplement their domain knowledge. This chap-

Chapter 3: Characterizing Performance and Power Topologies 88

ter demonstrates a few of these techniques, providing a quantitative basis for design

characteristics, which were only understood subjectively until now. In general, sta-

tistical inference bridges the divide between detailed simulation and robust analysis,

allowing designers to leverage the wealth of history and literature in classical analysis.

Chapter 4

Optimizing Performance and

Power Topologies

Contents
4.1 Robust Optimization . 92

4.1.1 Implementation . 95

4.1.2 Evaluation . 97

4.2 Multiprocessor Heterogeneity 101

4.2.1 Exhaustive Optimization 103

4.2.2 Heuristic Clustering . 104

4.2.3 Heterogeneity Efficiency Trends 107

4.2.4 Heterogeneity Validation . 110

4.3 Microarchitectural Adaptivity 113

4.3.1 Adaptivity Dimensions . 114

4.3.2 Heuristic Optimization . 116

4.3.3 Temporal Adaptivity . 120

4.3.4 Spatial Adaptivity . 128

4.4 Related Work . 135

4.4.1 Optimization . 135

4.4.2 Multiprocessor Heterogeneity 135

89

Chapter 4: Optimizing Performance and Power Topologies 90

4.4.3 Microarchitectural Adaptivity 136

4.5 Summary . 139

Given metrics, every space of designs will contain a global optimum that maximizes

those metrics. Robust optimization will traverse the design space to identify either

this optimum or some other design that performs comparably for the metrics of

interest. Given this definition of robustness, low-dimensional sensitivity analysis and

optimization lacks robustness due to its limited scope and significantly sub-optimal

results. To improve robustness, we increase the scope of optimization and consider a

design space that varies all parameters simultaneously.

Designers have two options when optimizing a large, comprehensive space of de-

signs: exhaustive or heuristic search. Exhaustive search evaluates the design metric

for every point in the space to report the global optimum with certainty. Thus, ex-

haustive search is a trivially robust optimization strategy. Exhaustive search with

regression models may be tractable for design spaces with up to hundreds of thou-

sands of points (e.g., seven-dimensional design space of Table B.3). However, such an

approach becomes intractable when considering application-specific models for a large

number of applications or when considering even larger design spaces with hundreds

of billions of points (e.g., fifteen-dimensional design space of Table B.4).

In contrast, heuristic search iteratively traverses the design space, evaluating met-

rics for a subset of points in the space, to report a possible optimum. The incomplete

evaluation of the space makes heuristic search attractive in scenarios where exhaus-

tive search is prohibitively expensive or intractable. However, heuristic-reported op-

tima are potentially deficient relative to the true global optimum. The robustness of

Chapter 4: Optimizing Performance and Power Topologies 91

heuristic search highly depends on the heuristic and its implementation. Strategies to

improve robustness of iterative optimization heuristics (e.g., increasing the number

of iterations) also increase their computational costs.

This chapter considers robust optimization before applying both exhaustive and

heuristic optimization to analyze fundamental hardware design paradigms:

• Robust Optimization: We consider factors influencing the robustness of gra-

dient ascent, a popular and well-known optimization heuristic. Robust im-

plementations require a greater number of random trials, iterations per trial,

and predictions of metrics per iteration. Simulation alone cannot provide the

large number of required performance and power estimates. Regression mod-

els provide the needed efficiency for robust implementations of these iterative

optimization heuristics. (Section 4.1)

• Multiprocessor Heterogeneity: Multiprocessor heterogeneity mitigates the

performance and power penalties of homogeneous design compromises. We im-

plement exhaustive optimization with regression models to identify efficiency

maximizing designs for each workload. These per workload optima are clus-

tered to identify heterogeneous compromises where the degree of heterogeneity

determines the number of clusters used. The analysis quantifies efficiency trends

and limits from multiprocessor heterogeneity. (Section 4.2)

• Microarchitectural Adaptivity: Microarchitectural adaptivity reconfigures

the hardware to match application dynamics, thereby enhancing performance

while localizing associated power costs. We implement heuristic optimization

Chapter 4: Optimizing Performance and Power Topologies 92

with regression models to identify, for each of many adaptive intervals, the best

configuration from a space with hundreds of billions of hardware configura-

tions. The analysis quantifies efficiency trends and limits from microarchitec-

tural adaptivity. (Section 4.3)

Collectively, our analyses illustrate robust optimization techniques, demonstrating

both exhaustive and heuristic optimization for fundamental hardware design paradigms.

These more sophisticated optimization techniques, combined with regression models,

enable a more detailed analysis of these design paradigms than was previously possible

using traditional approaches to simulation.

4.1 Robust Optimization

To consider the trade-offs between heuristic robustness and computational cost, we

consider a representative heuristic: gradient ascent [51]. Also known as steepest ascent

or hill climbing, gradient ascent is an iterative optimization heuristic that begins at

an initial point and steps toward a local maximum by moving in the direction of

steepest change specified by the gradient. In practice, the gradient is approximated

by identifying the direction toward a point’s best neighbor in the p-dimensional space.

Since the heuristic may identify a local maximum, robust implementations iterate and

start at different initial points to ensure a reported maximum is reached consistently,

thus increasing the likelihood of an accurate approximation to the global maximum.

The computational efficiency of regression models provide an opportunity to assess

gradient ascent in a manner previously not possible by

Chapter 4: Optimizing Performance and Power Topologies 93

Trials Number of random starting points. Gradient ascent
returns best result across all trials.

Iterations Number of steps required before a trial converges
to a point with no significantly better neighbors.

Deficiency Difference between optima from gradient ascent and
exhaustive search.

Table 4.1: Gradient Ascent Terms and Definitions. Gradient ascent is an iter-
ative optimization heuristic with several measures of cost and effectiveness.

• comparing search results from gradient ascent against the true global optimum,

which is identified by exhaustively evaluating regression models.

• assessing the frequency and likelihood of identifying the true global optimum

across trials of gradient ascent beginning at random starting points.

• assessing the distribution of convergence times (i.e., number of steps before

a trial of gradient ascent stops) across trials of gradient ascent beginning at

random starting points.

Collectively, this thorough analysis of gradient ascent cost and effectiveness shows ro-

bust implementations are not possible under conventional approaches to simulation.

Furthermore, the large number of iterations needed to thoroughly evaluate gradient

ascent is prohibitively expensive using detailed simulation. We analyze gradient as-

cent since it is widely known and is likely the first method tried by a typical user, but

our conclusions may be more generally interpreted for iterative optimization heuris-

tics where robustness depends on algorithmic or implementation knobs exposed to

the user.

Chapter 4: Optimizing Performance and Power Topologies 94

for (t = 1 to max_trials)

x_old = <random initial design>

e_old = EVAL(x_old)

term_flag = 0;

while(term_flag == 0) {

// evaluate optimal neighbor

N = neighborset(x_old);

x_new = argmax{N | EVAL(N)};

e_new = EVAL(x_new);

// compare new against previous

// and terminate if difference is less

// than threshold (e.g., 1.001)

if (e_new/e_old < 1.001) {

term_flag = 1;

}

x_old = x_new;

e_old = e_new;

} // end while

metric(t) = e_old;

design(t) = x_old;

} // end for

// identify optimal design across

// per trial maxima

m = argmax(t | metric(t))

return(metric(m), design(m))

Figure 4.1: Gradient Ascent Implementation. Gradient ascent iteratively steps
in direction of gradient until convergence criteria are satisfied. Multiple trials start
at different random points.

Chapter 4: Optimizing Performance and Power Topologies 95

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table 4.2: Design Space II. Used for design characterization and optimization where
regression models are evaluated exhaustively for every point in the space. p = 7,
|S| = 3.8E+5.

4.1.1 Implementation

Figure 4.1 outlines our implementation of gradient ascent. Each trial begins at a

randomly chosen design. Each iteration in the while loop of this trial will exhaustively

compare the current design against all neighboring designs, identifying and selecting

the best neighbor for the next iteration of the loop. A trial terminates if the new

design’s metric differs from old design’s metric by less than some threshold (e.g., 0.1

percent). At termination, the maximum identified by the trial is logged into a list of

search results. Gradient ascent returns the best of these results after max trials.

We implement gradient ascent to search the performance (bips) and efficiency

(bips/w) topologies of Table 4.2. The appropriate regression models are used to

compute EVAL(n) for each neighbor. The set of neighbors is defined by all designs

Chapter 4: Optimizing Performance and Power Topologies 96

SPEC CPU 2000
ammp Simulates molecular dynamics
applu Solves parabolic/elliptic partial differential equations (PDE’s)
equake Simulates seismic wave propagation
gcc Compiles C programs
gzip Performs compression
mcf Performs combinatorial optimization
mesa Provides 3-D graphics library support
twolf Simulates circuit place and route

SPEC JBB 2000
jbb 3-tier Java business server

SPLASH
cholesky Factorizes sparse matrix using blocked Cholesky method
ocean Simulates ocean using Gauss-Seidel multigrid solver
radiosity Computes equilibrium distribution of light
raytrace Renders three-dimensional images

BIOPERF
blast Searches database for protein/nucleotide sequencing

Table 4.3: Benchmarks.

that can be reached by changing any combination of parameter values by at most one

step where parameter step sizes are specified in the range column of Table 4.2. We

define each neighbor in a p-dimensional design space with a p-element vector where

each element can take one of three values: step-up, step-down, unchanged. Points at

the interior of the design space have 3p such vectors, resulting in 2, 187 neighbors for

our seven-dimensional design space. The computational efficiency of our performance

and power regression models enable us to evaluate such a large number of predictions

per iteration until the trial converges. This process is repeated for max trials=1,000.

Chapter 4: Optimizing Performance and Power Topologies 97

4.1.2 Evaluation

Since each trial begins at a randomly chosen initial design, the search result may vary

from trial to trial. Figure 4.2 captures the distribution of identified bips and bips/w

values from the 1,000 trials. The histograms shown for ammp are representative of

those for the broader benchmark suite. There are obvious modes for both metrics,

but Figure 4.2L suggests the bips topology is more effectively explored by gradient

ascent. Although sub-optimal local maxima are occasionally identified, 57.6 percent

of trials converged to the same optimal value of 1.34 bips. In contrast, the bips/w

mode in Figure 4.2R is more pronounced with 79.1 percent of trials converging to

0.045 bips/w, but 14.0 percent of trials identify more efficient designs ranging from

0.048 to 0.062 bips/w.

The performance and power trade-offs increase the non-linearity of the bips/w

topology resulting in modes below the max. Figure 4.3 summarizes the bips and

bips/w differences across the suite of benchmarks by identifying the fraction of trials

that report the best results (i.e., the right-most bar of Figure 4.2 for each benchmark).

37.5 percent of trials for bips and, for most benchmarks, less than 10.0 percent for

bips/w report the best result. Although gradient ascent requires only one trial to

identify a maximum, a sub-optimal mode reduces the likelihood of such a trial and

implies a larger number of trials is needed to find a global maximum with confidence.

Gradient ascent is a search heuristic that may identify local maxima. Multiple

trials increase the likelihood of finding the global maximum, but this result is not

guaranteed for non-monotonic topologies. Figure 4.4 assesses the deficiency of gradi-

ent ascent in the bips/w topology for several representative benchmarks. Deficiency

Chapter 4: Optimizing Performance and Power Topologies 98

Figure 4.2: Gradient Ascent Results. Histogram of values reported by 1,000
trials of gradient ascent with ten bips (L) and bips/w (R) bins for a representative
benchmark SPEC ammp.

Figure 4.3: Gradient Ascent Effectiveness. Number of gradient ascent trials
achieving bips (L) and bips/w (R) in the optimal bin. Equivalent to the right-most
bar of Figure 4.2 across nine SPEC benchmarks of Table 4.3.

Chapter 4: Optimizing Performance and Power Topologies 99

Figure 4.4: Gradient Ascent Deficiency. Gradient ascent bips/w deficiency com-
puted relative to global optimum identified by exhaustively evaluating regression mod-
els for every point in the design space of Table 4.2.

quantifies the difference between the results of gradient ascent and those of exhaus-

tive search using regression models. Deficiency may decrease with trial count, but is

often observed to stabilize at 400 to 500 trials when optimizing bips/w. In contrast,

gradient ascent achieves zero deficiency when traversing the bips topologies. Table

4.4 summarizes gradient ascent effectiveness, assessing stable deficiencies and trial

counts needed for stabilization.

In addition to trial count, the number of iterations per trial illustrates gradient

ascent’s ability to converge to a maximum quickly when starting at various random

points in the topology. Figure 4.5 uses boxplots to examine the distribution of conver-

gence times for 1,000 trials when optimizing bips and bips/w. Figure 4.5L indicates

the median number of iterations per trial is 10 and most trials converge and exit the

while loop in fewer than 20 iterations. In contrast, the bips/w topology may be more

Chapter 4: Optimizing Performance and Power Topologies 100

Benchmark bips bips/w
GA Def (%) Trials GA (10−2) Def (%) Trials

ammp 1.36 0.00 100 6.36 0.00 400
applu 1.44 0.00 100 7.37 0.81 500
equake 1.02 0.00 100 5.22 12.94 500
gcc 1.47 0.00 100 5.22 2.72 200
gzip 2.23 0.00 100 8.63 5.92 300
jbb 2.40 0.00 100 7.95 1.89 900
mcf 0.54 0.00 100 2.72 0.00 400
mesa 3.73 0.00 100 8.95 0.97 100
twolf 1.64 0.00 100 6.01 0.91 300

Table 4.4: Gradient Ascent Results. Gradient ascent deficiency and the number
of trials required to minimize deficiency.

Figure 4.5: Gradient Ascent Convergence. Distribution of trial convergence times
for 1,000 gradient ascent trials optimizing performance (L) and bips/w efficiency (R).
Time measured in number of iterations before convergence criteria satisfied.

Chapter 4: Optimizing Performance and Power Topologies 101

difficult to traverse with a median convergence time of 9 iterations over five bench-

marks (applu, equake, jbb, mesa, twolf), but a median convergence time of 30 over

the remaining benchmarks (ammp, gcc, gzip, mcf). Convergence times exceeding 20

iterations is common for these latter benchmarks.

Thus, a robust implementation of gradient ascent may require hundreds of trials

and tens of iterations per trial to ensure the optimal design is identified. Each of

these iterations must identify the gradient by evaluating the performance and power

of all neighboring points. The number of points increases exponentially with design

space dimensionality; a point in a p dimensional design space has 3p neighbors.

Cycle-accurate simulation cannot tractably handle a large number of trials, itera-

tions per trial, or predictions per iteration. Furthermore, in simulation-based iterative

heuristics, each step towards the optimum requires simulation. The collected simula-

tor data is specific to the particular optimization path and cannot be re-used for other

studies. In contrast, simulations to construct regression models are quickly amortized

across multiple optimization studies, multiple possible optimization heuristics, and

multiple paths within each heuristic.

4.2 Multiprocessor Heterogeneity

In a uniprocessor or homogeneous multiprocessor design, the core is designed as a

compromise between per workload optima to accommodate a range of workloads.

Heterogeneous multiprocessor core design mitigates the efficiency penalties of this

compromise [39]. Multiple heterogeneous design compromises increase the likelihood

that each workload will execute on a compromise that more closely resembles the

Chapter 4: Optimizing Performance and Power Topologies 102

workload’s optimal design. However, prior work could not identify heterogeneous

core designs from a broad space due to simulation costs. These costs constrained

prior analyses to consider three to four existing core designs or cores drawn from a

modestly sized space. In contrast, this study identifies design compromises for the

bips3/w design metric from a comprehensive design space and quantifies a theoretical

upper bound on the potential efficiency gains from heterogeneity.

This section combines regression models with exhaustive optimization and heuris-

tic clustering to assess the trends and limits of multiprocessor heterogeneity:

• Exhaustive Optimization: We leverage the computational efficiency of re-

gression models to exhaustively evaluate the performance and power efficiency

of every design point. The most efficient design for each workload is identified.

These optima are the basis for design compromises.

• Heuristic Clustering: We implement K-means clustering to examine a range

of design compromises. The continuum between completely homogeneous and

completely heterogeneous multiprocessors is expressed in the clustering heuristic

as a continuum between one cluster across the workload suite and one cluster

per workload, respectively. By varying the number of clusters, we assess varying

degrees of heterogeneity.

• Heterogeneity Efficiency Trends: We assess bips3/w efficiency trends and

limits from multiprocessor heterogeneity. Complete heterogeneity, where every

workload executes on its efficiency maximizing design, achieves significant ef-

ficiency gains of up to 2.4x relative to homogeneous multiprocessors. We also

Chapter 4: Optimizing Performance and Power Topologies 103

Depth Width Reg Resv I-$ D-$ L2-$ Delay Power
(KB) (KB) (MB) Model Model

ammp 27 8 130 12 32 128 2 1.0 35.9
applu 27 8 130 15 16 8 0.25 0.8 39.6
equake 27 8 130 15 64 8 0.25 1.2 41.5
gcc 15 2 70 9 16 8 1 1.2 44.1
gzip 15 2 70 6 16 8 0.25 0.8 24.2
jbb 15 8 80 12 16 128 1 0.6 80.9
mcf 30 2 70 6 256 8 4 3.5 12.9
mesa 15 8 80 13 256 32 0.25 0.4 86.9
twolf 27 8 130 15 128 128 2 1.1 34.5

Table 4.5: Per Benchmark Optima for Heterogeneity Clustering. bips3/w
maximizing designs for nine SPEC benchmarks of Table 4.3. Per benchmark optima
are identified by exhaustively evaluating performance and power regression models
for design space of Table 4.2.

expose diminishing marginal returns; four heterogeneous core designs are suffi-

cient to achieve efficiency gains of 2.2x for the nine SPEC workloads considered.

4.2.1 Exhaustive Optimization

We consider the space of Table 4.2 with 375,000 points spanned by seven design

parameters. Exhaustively evaluating every point in this design space using regression

models for performance and power, we identify each benchmark’s global optimum with

respect to bips3/w. As shown in Table 4.5, the optimal design parameters exhibit

significant diversity across benchmarks with depth ranging from 15 to 30 FO4, width

ranging from 2 to 8 instructions decoded per cycle, and L2 caches ranging from

0.25 to 4 MB. Each benchmark’s execution characteristics are reflected in its optimal

architecture. For example, compute-intensive gzip has the smallest L2 cache while

memory-intensive mcf has the largest.

Chapter 4: Optimizing Performance and Power Topologies 104

These per benchmark optima are the basis for design compromises with varying

degrees of heterogeneity. At one end of this continuum, we consider no heterogeneity

and identify a single, homogeneous design compromise for these nine optima. At the

other end of this continuum, we consider complete heterogeneity and implement all

nine optima with no compromise required. K-means clustering is used to explore all

intermediate options where the per benchmark optima of Table 4.5 constitute the set

to be partitioned into K subsets.

4.2.2 Heuristic Clustering

We combine our regression models with K-means clustering. A K-clustering parti-

tions a set S into K subsets to optimize some clustering criterion, usually a similarity

metric. Well defined clusters are such that all objects in a cluster are similar and any

two objects from distinct clusters are dissimilar. General K-clustering is NP-hard

and K-means clustering is a heuristic approximation [21, 47].

We perform K-means clustering for nine per benchmark optima to identify com-

promise architectures. The heuristic for K clusters consists of the following:

1. Define K centroids, one for each cluster, and place randomly at initial locations

in space containing objects to be clustered.

2. Assign each object to cluster with closest centroid.

3. When all objects have been assigned, recompute placement of K centroids to

minimize its distance to objects in its cluster.

Chapter 4: Optimizing Performance and Power Topologies 105

4. Since centroids may have moved in step 3, object assignment to clusters may

change. Steps 2 and 3 are repeated until centroid placement is stable.

We use a normalized and weighted Euclidean distance as our measure of similar-

ity in steps 2 and 3. For a particular design parameter, we normalize its values by

subtracting its mean and dividing by its standard deviation thereby transforming all

design parameter values to the same mean and deviation. Furthermore, we weight

these normalized values by the parameter’s correlation coefficient with bips3/w, ef-

fectively giving greater emphasis in the distance calculation to parameters with a

greater impact on bips3/w. Thus, if correlation coefficients ρ2
i > ρ2

j , an increase in

parameter pi will change the distance more than the same increase in parameter pj.

The distance between two architectures represented by vectors ~a,~b of p parameter

values is determined by normalizing and weighting the values in ~a,~b and computing

the Euclidean distance.

dEuclidean =

(
p∑

i=1

|ai − bi|2
)1/2

(4.1)

For example, pipeline depth values range from 12 to 30 FO4 in increments of

3 with a mean of 21 and standard deviation of 6.48. The normalized depth values

range from -1.39 to 1.39 with mean 0 and standard deviation of 1.0. We then use

samples from regression model training to compute the correlation between depth and

bips3/w for a weighting factor. The process is repeated for each of the p parameters

to produce design vectors ~a and ~b.

Chapter 4: Optimizing Performance and Power Topologies 106

Cluster Depth Width Reg Resv I-$ D-$ L2-$ Delay Power
(KB) (KB) (MB) Model Model

1 15 8 80 12 64 64 0.5 2.26 82.17
2 27 8 130 14 32 32 0.5 1.05 32.53
3 15 2 70 8 16 8 0.5 0.93 37.55
4 30 2 70 6 256 8 4 0.29 12.91

Table 4.6: Heterogeneous Cluster Centroids. Design specifications of centroids
from K-means clustering for per benchmark optima of Table 4.5. Figure 4.6 shows
cluster assignments for benchmarks. Per benchmark optima identified from design
space of Table 4.2 for nine SPEC benchmarks of Table 4.3.

Figure 4.6: Optimization and Clustering. Delay and power for per benchmark
optima of Table 4.5 (radial points) and resulting compromises/centroids of Table 4.6
(circles).

Chapter 4: Optimizing Performance and Power Topologies 107

4.2.3 Heterogeneity Efficiency Trends

Each K-means cluster corresponds to a grouping of similar architectures and each cen-

troid represents its cluster’s compromise architecture. We take the number of clusters

as the number of distinct compromise designs and, thus, a measure of heterogeneity.

Table 4.6 uses a K = 4 clustering to identify compromise architectures and their av-

erage power-delay characteristics when executing their associated benchmarks. This

analysis illustrates our models’ ability to identify optima and compromises occupying

very different parts of the design space. For example, the four compromise architec-

tures capture all combinations of pipeline depths and widths. Cluster 1 contains the

aggressive deep, wide pipeline for jbb and mesa. Cluster 4, containing the memory-

intensive mcf, is characterized by a large L2 cache and shallow, narrow pipeline.

Clusters 2 and 3 trade-off pipeline depth and width depending on application-specific

opportunities for instruction level parallelism. Identifying diverse optima is increas-

ingly important as we observe microarchitectural differentiation for various market

segments and applications.

Figure 4.6 plots the delay and power characteristics of the nine per benchmark

architectures executing their corresponding benchmarks (radial points). Aggressive

architectures with deep, wide pipelines are located in the upper left quadrant and

the less aggressive cores with shallow, narrow pipelines are located in the lower right

quadrant. Deep, narrow and shallow, wide architectures both occupy the moderate

center. The four compromise architectures executing their benchmark clusters are

also plotted (circles) to demonstrate the extent of delay and power compromises. Al-

though we cluster in a p-dimensional microarchitectural space, the strong relationship

Chapter 4: Optimizing Performance and Power Topologies 108

between a design and its design metrics means we also observe clustering in the 2-

dimensional delay-power space. Spatial locality between a centroid and its cluster’s

objects suggest modest delay and power penalties from architectural compromises.

Thus, delay and power for the benchmark suite executing on a K = 4 heterogeneous

multiprocessor are similar to those when executing on the nine per benchmark op-

tima. As a corollary, the benchmarks could achieve close to ideal bips3/w efficiency

on this heterogeneous design.

Figure 4.6 also reveals new opportunities for workload similarity analysis based on

microarchitectural resource requirements. For example, ammp, applu, equake, and

twolf may be similar workloads since they are most efficient at similar pipeline di-

mensions and cache sizes. While much prior work in similarity analysis has been used

to reduce the number of benchmarks for microarchitectural simulation, similarity ex-

posed by microarchitectural clustering may be most useful for hardware accelerator

design. In the ideal case, accelerators would be designed for every kernel of interest.

However, resource constraints necessitate compromises and penalties from such com-

promises may be minimized by designing an accelerator to meet the needs of multiple

similar kernels. Further exploring these opportunities is future work.

Figure 4.7 plots predicted bips3/w efficiency gains for the nine benchmarks and

their average as the number of clusters increases in the K-means heuristic. Recall

cluster count quantifies the degree of heterogeneity. Efficiency is presented relative

to the POWER4-like baseline (cluster count 0, Table 4.7). The homogeneous ar-

chitecture identified by K-means clustering (cluster count 1) is predicted to improve

average efficiency by 1.46x with the largest gains for mesa (4.6x) at the expense of

Chapter 4: Optimizing Performance and Power Topologies 109

Figure 4.7: Heterogeneity Efficiency Trends and Limits. Predicted efficiency
gains as a function of heterogeneity. Cluster 0 is baseline of Table 4.7, cluster 1 is
homogeneous multicore from K-means, cluster 4 is heterogeneous multicore of Table
4.6, cluster 9 is heterogeneous multicore of Table 4.5.

Processor Core

Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions

Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 4.7: POWER4 Baseline. Superscalar, out-of-order microarchitectural design
resembling the IBM POWER4.

Chapter 4: Optimizing Performance and Power Topologies 110

mcf (0.46x). For three cores, all benchmarks see benefits from heterogeneity resulting

in an average gain of 1.9x. We observe diminishing marginal returns in heterogeneity

beyond four cores. The four cores in Table 4.6 are predicted to benefit efficiency

by 2.2x, 8 percent less than the theoretical upper bound of 2.4x that is achievable

only from the much greater heterogeneity of seven to nine cores. The benefits for

nine different cores is the theoretical upper bound on heterogeneity benefits as each

benchmark executes on its bips3/w maximizing core.

4.2.4 Heterogeneity Validation

Figure 4.8 compares the simulator reported heterogeneity gains against those of our

regression models. The models are pessimistic for lower degrees of heterogeneity (i.e.,

cluster counts less than four). The gap between predicted and simulated efficiency

narrows from 37.9 percent at cluster count zero to 14.4 percent at cluster count three.

The simulated four core average benefit is 2.0x compared to the regression-predicted

benefit of 2.2x. This point of diminishing marginal returns from additional hetero-

geneity is predicted with a 7.8 percent error; the regression models are relatively

optimistic. At higher degrees of heterogeneity (i.e., cluster counts greater than six),

we observe much greater accuracy with error rates less than 3.0 percent. The pre-

dicted upper bound on heterogeneity benefits of 2.4x is accurate with only 1.7 percent

difference in simulation.

Figure 4.9 assesses benchmark level effects, illustrating efficiency trends at vary-

ing degrees of heterogeneity. The regression models effectively capture application-

specific effects such as significant benefits for mesa at the cost of mcf for low cluster

Chapter 4: Optimizing Performance and Power Topologies 111

Figure 4.8: Heterogeneity Validation for Benchmark Average. bips3/w effi-
ciency validation for average of nine SPEC benchmarks of Table 4.3. X-axis inter-
preted as in Figure 4.7.

counts. We also observe similar heterogeneity trends for benchmarks within the same

cluster. For example, Figure 4.6 identified a cluster with ammp, applu, equake and

twolf. Since these benchmarks have similar resource requirements at the microar-

chitectural level, their achieved efficiency gains in the range of 1.5x to 2.0x are also

similar. Collectively, these figures illustrate our models’ abilities to capture the rela-

tive benefits of heterogeneity across benchmarks.

Chapter 4: Optimizing Performance and Power Topologies 112

Figure 4.9: Heterogeneity Validation for Representative Benchmarks.
bips3/w efficiency validation for representative SPEC CPU benchmarks of Table 4.3.
X-axis interpreted as in Figure 4.7.

Chapter 4: Optimizing Performance and Power Topologies 113

4.3 Microarchitectural Adaptivity

Adaptive microarchitectures arise from a design paradigm that promises greater per-

formance and power efficiency by dynamically allocating computational resources to

meet the requirements of a workload more effectively. Adaptivity enables power ef-

ficient, high-performance microarchitectures by provisioning (or over-provisioning)

resources to maximize overall performance while increasing the locality of associated

power costs; resources are active and consume power only in periods of computation

that utilize those resources. The feasibility of this paradigm will be decided by as-

sessing benefits and costs, but a comprehensive assessment of potential benefits has

long eluded researchers due to the challenging dimensionality of the analysis.

Combining regression with heuristic optimization, we assess the trends and limits

of microarchitectural adaptivity in both temporal and spatial dimensions:

• Adaptivity Dimensions: Microarchitectural adaptivity is defined in two di-

mensions. The temporal dimension describes the frequency of hardware adap-

tivity while the spatial dimension describes the scope of these reconfigurations.

Using traditional approaches to simulation, an analysis of high temporal and

spatial adaptivity is intractable.

• Heuristic Optimization: We leverage the computational efficiency of regres-

sion models to implement genetic algorithms, an iterative optimization heuristic,

capable of traversing a design space with hundreds of billions of points. Genetic

algorithms identify bips3/w optima for each adaptive interval to assess potential

benefits from comprehensive spatial adaptivity.

Chapter 4: Optimizing Performance and Power Topologies 114

• Temporal Adaptivity: We assess varying degrees of temporal adaptivity un-

der comprehensive spatial adaptivity, demonstrating significant efficiency gains

of up to 5.3x (median 2.4x) from high temporal adaptivity (e.g., adapt for every

interval of 0.08M instructions) relative to low-temporal adaptivity (e.g., adapt

for every application).

• Spatial Adaptivity: We assess varying degrees of spatial adaptivity un-

der high temporal adaptivity, showing three parameters are often sufficient to

achieve, on average, 77.3 percent of fifteen-parameter adaptive efficiency. How-

ever, the three most significant parameters differ across applications and may

be unknown during hardware design.

Collectively, this work establishes a rigorous foundation for assessing the benefits of

comprehensive microarchitectural adaptivity and motivates a complementary, equally

rigorous analysis of the associated costs and complexities.

4.3.1 Adaptivity Dimensions

An alternative to static general-purpose design, adaptive computing increases the

flexibility of the microarchitecture along two dimensions. In one dimension, the de-

gree of temporal adaptivity determines the frequency at which resources reconfigure to

optimize efficiency. Broadly, this dimension might range from application-level adap-

tivity to interval-level (i.e., sub-application) adaptivity. Greater temporal adaptivity

improves microarchitectural responsiveness to underlying workload heterogeneity but

places greater burdens on the adaptive control algorithm.

Chapter 4: Optimizing Performance and Power Topologies 115

In the other dimension, the degree of spatial adaptivity determines the microarchi-

tectural scope of reconfigurations. The number and adaptive range of reconfigurable

design parameters is a unit of measurement for this dimension. More comprehensive

spatial adaptivity leverages synergies and interactions between parameters to improve

efficiency at the cost of greater complexity.

Nested within these two adaptivity dimensions is a highly expensive optimization

problem. Microarchitectural adaptivity achieves the greatest potential efficiencies

from high temporal and spatial adaptivity. However, this scenario translates into

frequent, short intervals optimized over an adaptive space of many design param-

eters, a computationally daunting procedure exacerbated by limitations of detailed

simulation. Despite its computational costs, such an optimization is critical to an

accurate assessment of potential efficiencies and would provide half the data needed

for a rigorous cost-benefit analysis. Furthermore, significant efficiency gains, if found,

would motivate more thorough cost and complexity analyses of adaptivity.

The computational complexity of this problem has hindered advances in microar-

chitectural adaptivity as prior work often constrained adaptivity in the temporal (e.g.,

applications[48], working sets[14], subroutines[29], and multimedia frames[30]) and/or

spatial (e.g., two or three parameters among depth [17, 67], width[30], queues [2, 61],

and caches [5, 48]) dimension. Constraints to temporal adaptivity produce analyses

that do not fully illustrate the potential efficiency gains of dynamic structural recon-

figuration. Without an analysis of comprehensive spatial adaptivity, prior studies do

not account for interactions between parameters as structures adapt, resulting in mi-

grating bottlenecks and limited efficiency gains. Furthermore, only a comprehensive

Chapter 4: Optimizing Performance and Power Topologies 116

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

functional units count 1,2,4
S3 Branch BTB associativity sets 1,2,4,8 4

Predictor BTB size log2(entries) 12::1::15
S4 Load/Store load/store queue entries 9::5::54 10
S5 Physical general purpose (GP) count 40::10::130 10

Registers floating-point (FP) count 40::8::112
special purpose (SP) count 42::6::96

S6 Reservation branch entries 6::1::15 10
Stations fixed-point/memory entries 10::2::28

floating-point entries 5::1::14
S7 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S8 i-L1 cache assoc. sets 1,2,4,8 4
S9 D-L1 Cache d-L1 cache size KB 8::2x::128 5
S10 d-L1 cache assoc. sets 1,2,4,8 4
S11 load/store latency cycles 1::1::5 5
S12 L2 Cache L2 cache size MB 0.25::2x::4 5
S13 L2 cache assoc. sets 1,2,4,8 4
S14 L2 cache latency cycles 8::2::16 5
S15 Main Memory main memory latency cycles 70::5::115 10

Table 4.8: Design Space III. Used for design optimization where regression models
are optimized with with iterative heuristics. p = 15, |S| = 2.8E+11.

study will reveal the most significant parameters for adaptivity in the presence of

such interactions.

4.3.2 Heuristic Optimization

We consider the space of Table 4.8 with 240 billion points spanned by twelve design

parameters. Figure 4.10 summarizes the analysis framework. Temporal sampling

identifies representative instructions, which are divided into intervals depending on

the desired degree of temporal adaptivity. In parallel, we define the space of adaptive

Chapter 4: Optimizing Performance and Power Topologies 117

Figure 4.10: Framework for Adaptivity Analysis. Framework combines elements
of temporal and spatial sampling to construct regression models. Regression models
are used to implement genetic algorithms that iteratively search the adaptive space
for efficiency maximizing designs. Efficient designs are identified for each adaptive
interval.

parameters S. We then sparsely sample and simulate n designs from this space for

each of m adaptive instruction intervals. These simulations train per interval regres-

sion models for performance and power. Finally, we identify optimal configurations

for each interval using genetic algorithms on the regression models.

We estimate upper bounds on the efficiency gains from microarchitectural adap-

tivity by quantifying gains under best-case, oracle-driven scenarios. In practice, this

approach requires identifying efficiency maximizing designs for each interval. Al-

though regression models are orders of magnitude faster than detailed microprocessor

simulation, exhaustive search to optimize these models across a design space of 240

Chapter 4: Optimizing Performance and Power Topologies 118

billion points remains intractable. We must combine regression models with scalable

heuristics, such as genetic algorithms, for global combinatorial optimization.

Genetic algorithms mimic the process of natural selection in which a candidate

solution to the optimization problem is treated as an organism and a candidate’s

optimality is treated as the organism’s fitness [22]. Breeding among highly fit or-

ganisms increases the likelihood of passing desirable attributes to future generations.

Breeding among less fit organisms and the possibility of mutation ensures population

diversity. As the population evolves from one generation to the next, the population

of candidate solutions improves and the likelihood of observing the global optimum

within the population increases. We describe the genetic algorithm in the context of

microprocessor optimization and discuss tunable elements of this algorithm includ-

ing (1) population size and number of generations, (2) parent selection, (3) genetic

crossover, and (4) mutation rates.

Population Size and Generation Count. In our adaptivity study, each organ-

ism is a candidate design represented by a vector of p = 15 design parameter values.

The algorithm is initialized to a random population of 100 candidates and the sys-

tem is evolved for 100 generations. If computationally feasible, larger populations

are favored since they provide a more diverse genetic pool from which to generate

offspring, thereby diversifying the search and discouraging premature convergence to

sub-optima. The algorithm should terminate when population diversity is low and

the algorithm has converged. We empirically find 100 generations strikes an effective

balance between diversity and convergence for our design space.

Parent Selection. Both parents are selected by fitness rank where fitness is

Chapter 4: Optimizing Performance and Power Topologies 119

quantified by bips3/w efficiency and computed using regression models for perfor-

mance and power. Alternative selection schemes might include selecting one or both

parents uniformly at random. These alternatives allow for the possibility of passing

weak design attributes from random parents to subsequent generations, thereby slow-

ing convergence and allowing a more diverse search of the space. We evaluated these

alternatives and did not find any empirical advantage to random parent selection for

this design space.

Genetic Crossover. Once two parents are selected, a variety of genetic operators

may be applied to obtain an offspring. In the microarchitectural context, a new

candidate design is obtained by constructing a vector of design parameter values

from some combination of values from the parents’ vectors. The simplest crossover

method uses a random position in the p-element vector. Offspring values to the left

of this position come from one parent and values to the right of this position come

from the other parent. Alternatively, we consider random crossover in which each

offspring value is taken from either parent uniformly at random. In practice, we find

this latter approach more effective in preserving population diversity through greater

genetic mixing.

Mutation. Mutations randomly alter an offspring’s genetic code to increase pop-

ulation diversity and provide a mechanism for escaping local optima. We implement

an aggressive mutation scheme in which each value of the offspring’s design vector

can independently mutate up or down by one step (as defined by ranges of Table 4.8)

with 5 percent probability. This particular mutation rate is empirically found effec-

tive when sweeping a range of possible values. If this rate is too low, many potentially

Chapter 4: Optimizing Performance and Power Topologies 120

good innovations will be missed. If this rate is too high, the algorithm’s ability to

preserve desirable attributes will be degraded.

Parents are repeatedly selected to produce mutated offspring until the previous

generation is replaced. The algorithm proceeds until the pre-determined generation

limit is reached. At termination, the best design in the population is returned. It

is not computationally possible to validate results from genetic algorithms against

those from exhaustive search. However, we find the same optima are produced with

high frequency when repeatedly invoking the genetic algorithm with different starting

populations, giving us confidence in the algorithm’s ability to converge consistently

toward superior designs.

4.3.3 Temporal Adaptivity

Regression models are derived for a maximum temporal adaptivity of 80,000 (0.08M)

instructions; the hardware adapts at the beginning of each 0.08M-instruction interval.

We compare against lower degrees of temporal adaptivity by recursively combining

adjacent pairs of basic 0.08M-instruction intervals to obtain longer intervals with

lengths ranging from 0.16M to 81.92M instructions. Practically, combining intervals

requires aggregating regression performance and power predictions from the basic

0.08M-instruction intervals to obtain a prediction for the larger interval.

We compare each benchmark’s efficiency gains from sub-application adaptivity

against those from application-level adaptivity in which an oracle provides the best

configuration for the overall application (Table 4.9). This baseline architecture is

identified from optimizing the 81.92M-instruction interval. Thus, each benchmark’s

Chapter 4: Optimizing Performance and Power Topologies 121

amm app equ gcc gzi jbb mcf mes cho oce rad ray bla

S1 depth 9 9 12 15 33 9 18 36 30 27 30 24 15
S2 width 2 8 2 4 2 2 2 2 8 8 2 8 2
S3 bp 8 8 1 4 8 8 8 2 8 8 8 8 4
S4 lsq 31 36 31 31 11 26 11 11 41 41 26 56 21
S5 reg 80 130 70 130 130 130 130 130 130 130 130 130 130
S6 resv 11 13 15 6 6 6 6 11 11 12 15 6 6
S7 i1Size(KB) 16 16 16 64 32 16 16 16 16 16 16 32 32
S8 i1Assoc 1 1 1 1 1 1 1 1 1 1 1 8 1
S9 d1Size(KB) 8 16 8 64 32 8 64 64 64 64 64 8 8
S10 d1Assoc 2 1 4 1 1 8 1 1 1 1 1 1 1
S11 d1Lat 1 1 1 1 1 2 1 1 1 2 1 2 2
S12 l2Size(MB) 0.5 0.25 0.25 1 2 1 2 2 2 2 2 0.25 1
S13 l2Assoc 4 1 8 8 1 1 8 2 1 2 1 2 8
S14 l2Lat 8 8 14 14 8 8 8 8 8 8 8 8 8
S15 memLat 90 85 70 70 115 115 70 115 115 70 115 115 90

Table 4.9: Per Benchmark Optima for Adaptivity Baseline. bips3/w maxi-
mizing designs for benchmarks of Table C.1. Per benchmark optima are identified by
genetic algorithms implemented with performance and power regression models for
Table 4.8.

baseline microarchitecture has already been optimized for overall application efficiency

and we quantify only the additional impact from increasing sub-application temporal

adaptivity.

Efficiency Trends. Figure 4.11 presents performance, power, and efficiency

trends as the adaptive period decreases from 81.92M to 0.08M instructions. The pe-

riod of 0.08M instructions represents the greatest temporal adaptivity as the microar-

chitecture adapts to maximize bips3/w efficiency every 0.08M instructions. These

figures illustrate monotonically improving efficiency as temporal adaptivity increases

with up to 5.3x efficiency gains (gcc). The source of efficiency gains vary across

benchmarks and arise from performance improvements and/or power reductions.

For example, Figure 4.11UL illustrates efficiency gains for blast dominated by

performance improvements. These trends are also representative of those for equake

and mcf. Adapting the microarchitecture every 0.08M instructions improves efficiency

Chapter 4: Optimizing Performance and Power Topologies 122

Figure 4.11: Temporal Adaptivity Trends. Representative bips3/w efficiency
trends for blast (UL), ammp (UR), gcc (LL) and radiosity (LR). Microarchitecture
reconfigures every 81.92M (low temporal adaptivity) to 0.08M instructions (high tem-
poral adaptivity).

Chapter 4: Optimizing Performance and Power Topologies 123

by 4.1x, derived from a 62.0 percent increase in performance and negligible 3.1 percent

increase in power relative to application-level adaptivity. Power trends are flat and

incremental performance improvements contribute to much of the efficiency gains as

the adaptive interval sizes decrease from 81.92M to 0.08M instructions.

In contrast, Figure 4.11UR illustrates efficiency gains for ammp characterized by

significant power reductions. These trends are also representative of those for applu

and cholesky. Ammp achieves maximum efficiency gains of 2.3x from a modest 6.9

percent increase in performance and 46.7 percent decrease in power relative to the

static baseline. Although modest, incremental performance improvements between

2.56M- and 0.08M-instruction intervals provides monotonically increasing efficiency,

adaptivity notably reduces power by 29.4 to 46.7 percent contributing significantly

to greater efficiency across all adaptive periods.

Figure 4.11LL illustrates the more common case in which increasing temporal

adaptivity both increases performance and decreases power. Trends are illustrated

for gcc, but are representative of those for gzip, jbb, raytrace, and ocean. Microar-

chitectural reconfigurations every 0.08M instructions improves gcc performance by

59.6 percent and reduces power by 23.25 percent for a 5.3x increase in efficiency.

Adaptive optimizations for many short intervals exploit their differing computational

requirements. Greater power may be consumed for high performance intervals that

require additional resources, but the associated high power costs are incurred only

for the duration of these particular intervals and do not translate to significantly

higher power dissipation for the overall workload. Similarly, low power designs with

fewer resources are often favored for non-computational intensive intervals, thereby

Chapter 4: Optimizing Performance and Power Topologies 124

Figure 4.12: Temporal Adaptivity and Efficiency. Performance, power (L) and
efficiency impact (R) from high temporal adaptivity. Microarchitecture reconfigures
every 0.08M instructions (high temporal adaptivity).

reducing power without significantly impacting performance. Thus, higher tempo-

ral adaptivity matches hardware to application dynamics and localizes power costs,

simultaneously enabling net performance increases and net power reductions.

Lastly, Figure 4.11LR illustrates a trend observed only for radiosity in which adap-

tivity increases performance and power together for a net efficiency gain. Microar-

chitectural reconfigurations every 0.08M instructions improves radiosity efficiency by

1.6x from a 30.5 and 36.3 percent increase in performance and power, respectively.

The bips3/w metric emphasizes performance over power such that a one percent in-

crease in performance is efficient if power increases by less than approximately three

percent. In the case of radiosity, performance and power increases track linearly as

temporal adaptivity increases, improving efficiency despite increasing power costs.

Figure 4.12 summarizes the potential performance, power and efficiency impact of

high temporal adaptivity (0.08M-instruction intervals) under the comprehensive spa-

tial adaptivity of Table 4.8. Figure 4.12L illustrates diverse performance and power

Chapter 4: Optimizing Performance and Power Topologies 125

effects across the benchmark suite. Performance increases by up to 62.0 percent (mcf)

and power decreases by as much as 51.7 percent (cholesky). As observed for repre-

sentative benchmarks in Figure 4.11, various combinations of performance and power

compromises are used to achieve greater efficiency and no single trade-off dominates.

Figure 4.12R illustrates efficiency gains for the benchmark suite with median and

maximum efficiency gains of 2.4x and 5.3x, respectively.

Utilized Adaptivity. The significant efficiency gains from greater temporal

adaptivity suggest diverse requirements for computational resources within a given

workload and significant opportunities for adaptivity. We characterize the amount

of utilized adaptivity by examining (1) the number of design parameters that adapt

between consecutive intervals and (2) the magnitude of these adaptive changes in

parameter value.

Figure 4.13 plots the cumulative distribution function (CDF) for the number of

parameters that change between consecutive intervals. Taking Figure 4.13L for a

representative workload, raytrace, 50 and 75 percent of transitions between 0.08M-

instruction intervals require design value changes for at most 3 and 6 parameters,

respectively. 95 percent of these transitions require changes for at most 10 parameters.

However, the degree of temporal adaptivity impacts the number of parameter changes

between consecutive intervals.

High temporal adaptivity (e.g., 0.08M-instruction intervals) smoothes microarchi-

tectural reconfigurations by enabling smaller, intermediate changes for more frequent,

shorter intervals. Reduced temporal adaptivity (e.g., 10.24M-instruction intervals)

degrades this smoothing effect, requiring changes to increase in scope to include more

Chapter 4: Optimizing Performance and Power Topologies 126

Figure 4.13: Number of Parameters Utilizing Adaptivity. Number of parame-
ters that adapt between consecutive intervals for raytrace(L) and twolf(R).

parameters. For example, Figure 4.13L illustrates a CDF shift where less frequent

adaptivity requires changes to more parameters. For 10.24M-instruction intervals,

every transition requires at least changes for 2 parameters. 50 and 75 percent of

transitions now require changes for at most 6 and 8 parameters, respectively.

Reduced temporal adaptivity also acts as a low pass filter on microarchitectural

reconfiguration, removing short term variations and leaving only the long term trend.

This filtering effect reduces the number of parameter changes optimized for specific

short intervals with uncommon resource requirements. Figure 4.13L illustrates this

filtering effect where reducing temporal adaptivity from 0.08M-instruction to 10.24M-

instruction intervals eliminates the uncommon 5 percent of transitions that change

more than 10 parameters. Thus, reduced temporal adaptivity reduces smoothing

and increases filtering effects to shift the distribution toward middle range parameter

counts. These trends for raytrace are comparable to those for 9 of 14 benchmarks.

In contrast, Figure 4.13R illustrates trends from twolf that are representative of

Chapter 4: Optimizing Performance and Power Topologies 127

gzip, mesa, twolf, ocean, and radiosity. Twolf is characterized by low reconfiguration

diversity with 95 percent of its transitions between 0.08M-instruction intervals requir-

ing changes to at most 5 parameters. The filtering effects from reduced adaptivity

dominate and 70 percent of transitions between 10.24M-instruction intervals do not

require reconfiguration.

While Figure 4.13 illustrates the number of parameters that adapt between inter-

vals, Figure 4.14 quantifies the magnitude of changes in design parameter values. We

quantify relative step size by reporting the change in a parameter’s value relative to

the number of steps in the parameter’s range. For example, we consider register file

sizes from 40 to 130 entries in increments of 10 entries (9 possible steps). If the mi-

croarchitecture changes from 70 to 90 entries, the register file effectively takes 2 steps

over 9 possible values for a 0.22 relative step size. As relative step sizes approach one,

the interval transition approaches reconfigurations that change a parameter from its

minimum to its maximum value.

Figure 4.14 indicates parameter values change more significantly when a greater

number of parameters change simultaneously. Taking raytrace as an example,1 the

median step size increases from 0.23 to 0.67 as the number of changing parameters

increases from 1 to 10. If 7 or more parameters are adapted in an interval transi-

tion, 50 percent of these transitions will require changes that span more than half

the possible values in parameters’ ranges. Note the relative location of the median

within each box shifts upward as the number of changed parameters increases, further

indicating shifts from small step sizes to large step sizes. Collectively, these trends

1The trends for raytrace are representative of all benchmarks except twolf whose trends are flat
and not shown.

Chapter 4: Optimizing Performance and Power Topologies 128

Figure 4.14: Changes for Parameters Utilizing Adaptivity. Magnitude of
change for parameters that adapt between consecutive intervals for raytrace.

suggest synergies between parameters as they simultaneously change to ensure no

bottlenecks are created. As more parameters change, each parameter will change

more significantly. Taken together, Figures 4.13–4.14 characterize the utilized adap-

tivity for representative benchmarks by quantifying the number of parameters that

change between consecutive intervals and the magnitude of these changes.

4.3.4 Spatial Adaptivity

The previous analysis of temporal adaptivity assumed comprehensive spatial adap-

tivity where every parameter of Table 4.8 could be changed to fit each interval’s

requirements. However, we can also use our framework to assess the impact of re-

duced spatial adaptivity. In particular, we reduce the number of parameters available

for reconfiguration while assuming high temporal adaptivity where reconfigurations

Chapter 4: Optimizing Performance and Power Topologies 129

occur every 0.08M instructions. We also consider the effects of increased spatial

adaptivity by adding dynamic voltage and frequency scaling to the adaptive space.

Reduced Spatial Adaptivity. We identify the three most significant parameters

for achieving efficiency by exhaustively evaluating the
(
15
k

)
possible combinations for

k = 1, . . . , 3. In particular, there are
(
15
1

)
= 15,

(
15
2

)
= 105,

(
15
3

)
= 455 ways

to select one, two, and three parameter(s) for adaptivity, respectively. For each k

and each of the
(
15
k

)
possible combinations given k, we repeat the optimization of

Section 4.3.3 to identify the efficiency maximizing combination. Although prior work

in adaptive microarchitectures frequently consider two or three parameters, the choice

of parameters is often made prior to any analysis. In contrast, we consider two or

three parameters empirically found to be most significant for each benchmark. Thus,

this analysis compares comprehensive spatial adaptivity against best-case scenarios

in limited adaptivity where the most significant parameters are considered.

Table 4.10 identifies the one, two, and three parameter(s) that provide the great-

est efficiency gains from microarchitectural adaptivity. Adaptive pipeline depths are

most promising with all benchmarks ranking the depth parameter among the top

three. Also significant, but more sparsely ranked, are cache hierarchy parameters.

Benchmarks benefit from adaptive caches, suggesting optimal cache sizes and asso-

ciativities vary significantly across intervals. We consider adaptive memLat as a proxy

for an adaptive L3 cache that reduces effective memory latency. Logic (e.g., width)

and associated queues (e.g., lsq, bp) are less prominent relative to depth, suggesting

interval-to-interval variability is greater for memory access patterns than instruction

level parallelism.

Chapter 4: Optimizing Performance and Power Topologies 130

amm app equ gcc gzi jbb mcf mes cho oce rad ray bla

S1 depth 1 2 1 1 1 1 1 1 1 2 1 1 2
S2 width 2 3 2
S3 bp
S4 lsq 3
S5 reg
S6 resv 2*
S7 i1Size
S8 i1Assoc
S9 d1Size 2 2 2
S10 d1Assoc 3 3
S11 d1Lat 2 3
S12 l2Size 3 3 3
S13 l2Assoc 3 2 2* 3 2*
S14 l2Lat 3 2 2
S15 memLat 2 1 3 3 1 2* 1

Table 4.10: Reduced Spatial Adaptivity and Significant Parameters. Choice
of k = 1, . . . , 3 parameters that maximize adaptive efficiency gains. * denotes param-
eters that became less significant with additional adaptivity (e.g., 2* for gcc l2Assoc
indicates it was among the 2, but not the 3, most significant parameters.)

From the perspective of hardware implementation, Table 4.10 has significant im-

plications for design complexity. The highly ranked parameters differ across the

benchmark suite and most parameters are highly ranked for at least one benchmark

(except the register file and instruction cache parameters). This motivates a hard-

ware substrate for comprehensive adaptivity, especially for the memory hierarchy.

Furthermore, these parameter rankings do not necessarily contain hierarchical sub-

sets; a parameter that might be significant when two parameters are considered may

be much less significant when three are considered. We observe this scenario for gcc,

cholesky, radiosity, and raytrace.

Figure 4.15 quantifies the best achievable efficiency when at most three parame-

ters are chosen for adaptivity. The efficiency for each benchmark is reported under

its optimal subset as shown in Table 4.10. Most benchmarks require only a few adap-

tive parameters to achieve a high fraction of potential efficiency gains. On average,

Chapter 4: Optimizing Performance and Power Topologies 131

Figure 4.15: Reduced Spatial Adaptivity and Efficiency. Efficiency comparison
between reduced and comprehensive spatial adaptivity. Efficiency for 1-3 parame-
ters is reported for the 1-3 parameters that maximize bips3/w. Each benchmark is
evaluated for different sets of 1-3 parameters as described in Table 4.10.

benchmarks are able to achieve 60.3, 71.1, and 77.3 percent of 15-parameter efficiency

as the number of adaptive parameters increases from one to three (medians of 61.4,

76.4, 82.3 percent). However, as illustrated in Table 4.10, the optimal choice of two

or three parameters needed to deliver such efficiency may differ substantially across

benchmarks. This variation makes identifying any minimal adaptive microarchitec-

tural substrate difficult.

Four benchmarks, ammp, gcc, jbb and mcf, are notable for achieving relatively

small fractions of potential. Adapting their three optimally chosen parameters only

produces efficiency between 36.2 and 66.3 percent of potential. We observe steady, but

modest, efficiency benefits from increasing the number of adaptive parameters from

one to three. Given that results are reported for three parameters exhaustively found

Chapter 4: Optimizing Performance and Power Topologies 132

to be most significant, additional parameters are also likely to produce only modest

and incremental efficiency increases toward the 15-parameter potential. Indeed, a

subsequent search for a fourth significant parameter for these benchmarks further

increases efficiency by a modest 8 to 10 percent, putting efficiency between 39.4

and 71.7 percent of potential. Thus, we expect much more comprehensive spatial

adaptivity is required to close the gap for these benchmarks, drawing on incremental

efficiency improvements and synergies from additional parameters.

In summary, most benchmarks are able to leverage a modest number of param-

eters to achieve a significant fraction of the potential efficiency from 15-parameter

adaptivity. However, the optimal choice of parameters differs significantly across

benchmarks and a comprehensive adaptive hardware substrate would be needed to

fully realize these benefits. Lastly, a few benchmarks may require significantly more

than three parameters to achieve efficiency closer to the projected bound.

Voltage and Frequency Scaling. Dynamic voltage and frequency scaling

(DVFS) adapts pipeline sensitivity to memory latency by, for example, slowing com-

putation and reducing power dissipation during long memory stalls. Since DVFS

changes the relative clock speeds between the processor core and memory, we model

its effects by scaling off-chip memory latency. Since the performance models were

derived for a baseline frequency, we must further scale regression predicted bips to

account for the frequency change. Similarly, we scale regression predicted power to

account for voltage and frequency changes.

Figure 4.16 quantifies efficiency gains from DVFS when applied to various degrees

of temporal adaptivity. Most benchmarks do not realize significant bips3/w efficiency

Chapter 4: Optimizing Performance and Power Topologies 133

Figure 4.16: Spatial Adaptivity and DVFS. Additional efficiency from DVFS
applied to various degrees of spatial adaptivity: none (Static), high-spatial/low-
temporal (Adapt-App), and high-spatial/high-temporal (Adapt-Interval). Each bar
is normalized to the corresponding level of spatial adaptivity without DVFS.

gains. This is due, in part, to the choice of efficiency metric. Recall that bips3/w is a

voltage, frequency invariant metric. As shown in Equation (4.2), DVFS will produce

gains for bips3/w only if it significantly improves pipeline throughput. Specifically,

assume baseline throughput ipc0, voltage V0, and frequency f0. Frequency and voltage

scaling may impact throughput ipc1 while scaling voltage and frequency by ∆. Since

the ∆ scaling cancels, only throughput effects remain.

bips3
1

w1

(
bips3

0

w0

)−1

∝ ipc3
1×f 3

0×∆3

V 2
0 ×f0×∆3

× V 2
0 ×f0

ipc3
0×f 3

0

=

(
ipc1

ipc0

)3

(4.2)

Figure 4.16 shows, for benchmarks that benefit from DVFS, the greatest gains

arise when DVFS is applied to a static, general-purpose, POWER4-like architecture

with no resource adaptivity. For comparison, Figure 4.16 also includes the effects

Chapter 4: Optimizing Performance and Power Topologies 134

of DVFS when applied to the comprehensive resource adaptivity of Table 4.8 at

the application-level (81.92M instructions) and interval level (0.08M instructions).

Each of the three bars is normalized to the static, application-adaptive, and interval-

adaptive architecture with no DVFS, respectively. Benchmarks equake and mcf realize

gains of 3.7x and 6.8x, respectively, relative to a static architecture with no DVFS.

The benefits of DVFS decrease as resource adaptivity increases. Resource adap-

tivity at the application-level significantly degrades the additional benefits of DVFS

to 2.8x and 1.0x for equake and mcf. Equake efficiency gains are further degraded

to 2.1x when sub-application, interval-level adaptivity is introduced. More generally,

this data suggests DVFS becomes progressively less effective as an additional tun-

ing parameter when combined with increasing spatial adaptivity. The bulk of ipc

throughput gains are likely extracted from microarchitectural resource tuning and

any additional throughput gains from voltage and frequency scaling on the tuned

architecture are likely modest and incremental. Since Equation (4.2) indicate such

gains are required to make DVFS effective, DVFS is likely to have a diminished role

in a microarchitecture capable of comprehensive spatial adaptivity.

Overall, this comprehensive assessment of efficiency benefits from microarchitec-

tural adaptivity reveals significant benefits from high temporal adaptivity. Further-

more, we find these gains are most accessible from a hardware substrate with compre-

hensive spatial adaptivity due to differing adaptive requirements across applications.

Chapter 4: Optimizing Performance and Power Topologies 135

4.4 Related Work

Design optimization typically takes the form of exhaustive simulation, but a few re-

searchers have considered more sophisticated techniques. Our contributions to mul-

tiprocessor heterogeneity and microarchitectural adaptivity build upon prior work,

which relied primarily on simulation to consider constrained studies of their perfor-

mance and power benefits.

4.4.1 Optimization

Eyerman, et al., combine synthetic trace simulation with heuristics to search for global

optima within a design space, producing a comprehensive survey of these heuristics

for the microarchitectural design space [19]. Their analysis included gradient ascent,

genetic algorithms, and tabu search. However, these simulations are specific to a

given optimization problem since they simulate design points along a particular path

taken to the estimate of a particular metric’s optimum. In contrast, regression models

require simulations per design space that may be formulated once and used in multiple

studies. Furthermore, Eyerman, et al., compute gradient ascent deficiency relative to

results from other heuristics while we assess deficiency relative to exhaustive search

with regression models. We study gradient ascent costs in greater detail, decomposing

costs into trial, iteration, and neighbor counts.

4.4.2 Multiprocessor Heterogeneity

For homogeneous multiprocessors, Davis, et al., suggest less aggressive in-order cores

are performance optimal [12], and Huh, et al., suggest larger out-of-order cores max-

Chapter 4: Optimizing Performance and Power Topologies 136

imize throughput [31]. Both design spaces are relatively modest as experience and

intuition were used to prune the space. In contrast, we consider the entire design

space, enabling the discovery of potentially unexpected optima.

Kumar, et al., identify heterogeneous cores constructed from existing core designs

[38, 40] or cores designed from scratch using a modestly sized design space [39]. De-

sign alternatives were evaluated with exhaustive simulation to illustrate the potential

energy efficiency of heterogeneity. In contrast, we implement a more thorough analy-

sis, considering heterogeneity trends as the number of design compromises increases

and heterogeneity limits as we explore the full continuum between complete homo-

geneity and complete heterogeneity. Both analyses are intractable in simulation for

a diverse, broadly defined design space.

4.4.3 Microarchitectural Adaptivity

There has been much prior work in microarchitectural adaptivity [3]. Broadly, prior

work differs in their study of particular adaptive structures and/or control algorithms.

These prior studies consider either high temporal, low spatial adaptivity or low spatial,

high temporal adaptivity as shown in Figure 4.17. Each study limited the adaptive

scope to include limited combinations of design values for at most two or three mi-

croarchitectural parameters and implemented a heuristic control algorithm to predict

the best configuration from these limited choices. Most papers cite or imply compu-

tational costs as the cause for these restrictions. In contrast, we consider both high

temporal and spatial adaptivity and leverage advances in statistical inference and op-

timization to control computational costs. This enables a significant expansion in the

Chapter 4: Optimizing Performance and Power Topologies 137

Figure 4.17: Related Work in Adaptivity. Prior studies considered low temporal
or spatial adaptivity. In contrast, we consider much higher spatial adaptivity without
compromising temporal adaptivity.

space of adaptive structures to include all major datapath and memory parameters.

Furthermore, we search the design space to identify efficiency maximizing designs for

each instruction interval, thereby providing an oracle-based analysis of potential gains

from comprehensive spatial adaptivity.

Hardware Mechanisms. Many microarchitectural structures have been selected

for adaptivity studies and, collectively, they represent all major design parameters.

However, each study considers only a very small subset of these parameters. Albonesi,

et al., pioneers this work by describing buffering mechanisms that enable adaptivity

in data caches and instruction queues [2]. Following work by Mai, et al., and Balasub-

ramonian, et al., separately expand on these ideas for the memory hierarchy [5, 48].

Folegnani, et al., consider optimizing issue logic and queues while Ponomarev, et al.,

study adaptivity for the reorder buffer and other various queues [20, 61]. Adaptive

Chapter 4: Optimizing Performance and Power Topologies 138

pipeline depth and width are also considered for energy and reliability [17, 30, 67].

Collectively, these prior works provide the basis for implementing many of the config-

urations we consider in our comprehensive evaluation of adaptivity. However, each of

these prior works consider only a few parameters and, notably, often separate pipeline

and cache adaptivity. In contrast, we consider adapting all major microarchitectural

parameters simultaneously.

Control Algorithms. Control algorithms and heuristics have been proposed

to trigger adaptive reconfiguration at various granularities. Ponomarev, et al., use

prior occupancy to predict future occupancy of various queues every 2,000 cycles

[61]. Dhodapkar, et al., assess the similarity of working sets to trigger reconfiguration

[14]. Hughes, et al., consider adapting resources for multimedia workloads based on

frame type while Huang, et al., consider adapting resources for code sections defined

by subroutine boundaries [29, 30]. Collectively, prior work provides heuristics for

dynamically determining optimal configurations and have been demonstrated for a

limited number of adaptive parameters. These heuristics apply concepts from phase

analysis to identify an effective degree of temporal adaptivity. Our framework may be

extended to include phase information, but we currently use phase-oblivious adaptive

intervals. Furthermore, in contrast to prior heuristics, we provide an oracle-based

assessment of efficiency gains from comprehensive adaptivity. This optimistic analysis

allow designers of control algorithms to quantify their heuristic effectiveness against

a best case scenario.

Chapter 4: Optimizing Performance and Power Topologies 139

4.5 Summary

This chapter applies the computational efficiency of statistical inference to compre-

hensive design space optimization, addressing fundamental limitations in current sim-

ulation methodology. Current approaches exhaustively evaluate designs in simulation

to identify an optimum, an approach lacking scalability as design diversity increases

design space sizes. Robust heuristic optimization is intractable as heuristics itera-

tively search for the optimum and simulations would be required for every iteration.

In contrast, statistical inference addresses limitations in both exhaustive and

heuristic optimization. Exhaustively evaluating regression equations to identify an

optimum is tractable for spaces with hundreds of thousands of points. Heuristic

optimization becomes possible as regression equations replace simulation in the iter-

ative loop, allowing robust implementations to use a large number of iterations and

improve search effectiveness. These contributions in microarchitectural optimization

enable qualitatively new analyses of fundamental design paradigms, including multi-

processor heterogeneity and microarchitectural adaptivity.

Multiprocessor heterogeneity is, more generally, a framework for identifying mul-

tiple design compromises from per workload optima. The concept of multiple com-

promises is the basis for special-purpose hardware accelerators, an emerging design

priority. Given a broad range of workloads critical to performance, a heterogeneity

analysis identifies common resource requirements within clusters or classes of work-

loads. These commonalities form the basis for any hardware accelerator targeting

a given class of workloads. Heterogeneity analysis requires best known practices in

modeling to tractably consider a comprehensive design space, optimization to quickly

Chapter 4: Optimizing Performance and Power Topologies 140

identify per workload optima from the space, and clustering to effectively identify

multiple design compromises between the optima.

Microarchitectural adaptivity is, more generally, a framework for reasoning about

resource management to match workload dynamics. Identifying, at high frequency,

optimal resource configurations from a large space of possible configurations requires

efficient heuristic optimization. Not only must the heuristic identify optima from

multi-billion point spaces, it must do so for every adaptive interval. This chapter

quantifies trends and limits using oracle-driven resource management, but future work

will require time series analysis to deliver efficiencies at run-time.

The optimization results from heterogeneity and adaptivity analyses are easily

reconciled with designer intuition. Designers might easily sanity-check heuristic re-

sults that identify the k most efficient design compromises or identify the k most

important design parameters for adaptivity. Confirming the results with intuition,

designers more readily accept heuristic results and examine design implications. How-

ever, designers relying solely on intuition are unlikely to reveal trends and limits for

these design paradigms as intuition is less effective as the scope of study increases.

Thus, synergies between intuition and robust optimization are necessary.

Chapter 5

Conclusions and Future Directions

Contents
5.1 Summary of Themes and Results 142

5.2 Future Directions . 145

5.2.1 Modeling Methodology . 145

5.2.2 Multiprocessor Core Interaction 146

5.2.3 Hardware-Software Interface 150

This dissertation presents the case for statistical inference in microarchitectural de-

sign, proposing a simulation paradigm that (1) defines a comprehensive design space,

(2) simulates sparse samples from that space, and (3) derives inferential regression

models to reveal salient trends. These regression models accurately capture perfor-

mance and power associations for comprehensive multi-billion point design spaces.

Moreover, they are capable of providing thousand’s of predictions per second. As

computationally efficient surrogates for detailed simulation, regression models enable

previously intractable analyses of energy efficiency. This dissertation demonstrates

such capabilities for design characterization and optimization.

141

Chapter 5: Conclusions and Future Directions 142

Statistical inference enables further research in pressing microarchitectural design

questions. For example, inferential models could enable comprehensive analysis and

optimization for integrated graphics processors or system-on-chip accelerator-based

architectures. Designers will also need a fundamental understanding of the trade-offs

between core complexity and interconnect complexity.

Statistical inference and the new capabilities demonstrated by this dissertation

also establish a strong foundation for interdisciplinary research across the hardware-

software interface. Inferential models have the potential to capture design trends and

compromises at each abstraction layer. Clean interfaces between models at each layer

enable co-optimization across the hardware-software interface.

5.1 Summary of Themes and Results

Statistical Inference. The complexity of modern microarchitectural designs is cap-

tured using extensible software simulators and evaluated using efficient inferential

models trained with those simulators. Thus, designers sacrifice little detail for signif-

icant gains in speed and tractability.

• Comprehensive: Scalable regression models capture performance and power

trends for spaces with up to 15 parameters spanning 240 billion points.

• Sparsely Trained: As few as 500 training simulations, sampled sparsely and

uniformly at random, are sufficient to construct effective regression models.

• Accurate: Regression models predict performance and power with median

errors of 5 to 8 percent and maximum errors rarely exceeding 20 percent. Such

Chapter 5: Conclusions and Future Directions 143

accuracy is sufficient for early stage design optimization.

• Efficient: Performance and power regression estimates are expressed as matrix-

vector multiplication. Depending on model size and complexity, thousands of

predictions per second are possible.

Comprehensive Design Characterization. Holistic design analysis is necessary

given technology trends that increase design diversity. Leveraging the efficiency of

inferential models, this dissertation considers design spaces several orders of magni-

tude larger than those tractable in detailed simulation. This more complete under-

standing is critical as Moore’s Law provides increasingly abundant microarchitectural

resources and designers must use these resources to deliver performance in a power

efficient manner.

• Pareto Frontiers: Regression models identify pareto optima from a space with

hundreds of thousands of designs, minimizing delay for a given power budget or

minimizing power for a given delay target. Performance and power predictions

for pareto optima, with median errors between 5 and 9 percent, are as accurate

as those for the overall design space.

• Contour Analysis: Performance and power topologies are visualized to reveal

bottlenecks within a workload and across workloads. Regression models can

quickly generate all
(

p
2

)
contour maps for p-dimensional design spaces.

• Roughness Analysis: High-order derivatives and multi-dimensional integrals

are numerically computed for regression equations to quantify contour rough-

Chapter 5: Conclusions and Future Directions 144

ness, ranking contours to focus designer attention to interesting design regions.

Contours ranked rough graphically appear rough.

Robust Design Optimization. Increasing metric diversity requires effective de-

sign optimization. Exhaustive optimization is robust and is feasible for spaces with

hundreds of thousands of designs. For larger multi-billion point spaces, heuristic op-

timization iteratively traverses a subset of the space to search for optima and are

more effective with a larger number of iterations. Robust optimization enables pre-

viously intractable analyses of energy efficiency for emerging design paradigms, such

as heterogeneous multiprocessors or adaptive microarchitectures.

• Robust Optimization: Iterative optimization heuristics require a large num-

ber of performance and power predictions across many iterative loops. Ro-

bust heuristics are implemented by replacing simulation with regression models

within the loop. With a larger number of iterations, heuristics are more likely

to identify the true optimum.

• Multiprocessor Heterogeneity: Multiple design compromises mitigate the

performance and power penalties of those compromises. For nine workloads

and four design compromises, heterogeneity delivers a 2.2x increase in bips3/w

efficiency, only 8 percent less than the 2.4x increase from much higher degrees

of heterogeneity with seven to nine compromises.

• Microarchitectural Adaptivity: Reconfigurable hardware provides resources

to match application dynamics. Frequent adaptivity across a large space of

configurations improves bips3/w efficiency by up to 5.3x (median 2.4x). From

Chapter 5: Conclusions and Future Directions 145

a space of fifteen adaptive parameters, three parameters are often sufficient to

achieve, on average, 77.3 percent of fifteen-parameter adaptive efficiency. How-

ever, the three most significant parameters differ across applications and are

unknown during hardware design.

5.2 Future Directions

This dissertation emphasizes the performance and power trends within the micro-

processor core. Once the core has been effectively modeled, interactions between

cores in multiprocessor systems might be scalably analyzed. Beyond microarchitec-

ture, statistical inference is highly extensible and might be broadly applied across the

hardware-software interface. In both trajectories for future work, modular inference

and composable models are necessary for scalable training and evaluation.

5.2.1 Modeling Methodology

Statistical Inference and Machine Learning. Other techniques in statistical

inference may be applicable. A few of these techniques were described in Section

2.3.4. Quantifying and comparing the accuracy and computational efficiency of these

techniques is an avenue for future work. Machine learning techniques seek to auto-

mate model construction, removing the user from the derivation process. Heuristics

and algorithms drive the derivation, eliminating the need for user feedback. These

automated approaches are easier to adopt and use, but tend to be less efficient. Com-

paring the effectiveness and efficiency of statistical inference and machine learning is

an avenue for future work. Assessing the benefits of automated model construction

Chapter 5: Conclusions and Future Directions 146

is more difficult but also necessary to balance computational efficiency and ease of

construction.

Time Series Analysis. We focus primarily on predicting spatial characteristics,

performing multivariate regression to model performance or power topology as a func-

tion of design parameters. In addition to this spatial dimension, computer system

design often includes a temporal dimension where past system behavior may be in-

dicative of future system behavior. Predicting events or behavior in time may require

time series regression which identifies correlations in time (e.g., if an event occurs now,

another event is likely to occur t time steps from now). We may also require more

sophisticated techniques, such as hidden Markov models (HMM’s). HMM’s consist of

unobserved states and observed characteristics. HMM training must determine the

nature of the unobserved states as well as the probability of observing a characteristic

given a particular state. This formulation is attractive since many computer systems

are fundamentally implemented as state machines and HMM’s provide mechanisms to

model the underlying state machine from observed system behavior. Thus, exploring

techniques for time series analysis is a rich avenue for future work.

5.2.2 Multiprocessor Core Interaction

Homogeneous Multiprocessor Models. This dissertation primarily considers mi-

croprocessor cores without considering their interactions. In the future, such interac-

tions should be considered for multiprocessor analysis. Interactions might arise from

communication through shared memory, contention for shared resources, and synchro-

nization for parallel workloads. Models for microprocessor cores and mechanisms to

Chapter 5: Conclusions and Future Directions 147

account for interactions would provide a more thorough assessment of multiprocessor

performance and power.

Building on this dissertation’s contribution for uniprocessor core models, a poten-

tial multiprocessor framework might use a combination of uniprocessor, contention,

and penalty models. Figure 5.1 illustrates such a framework, predicting n-core ho-

mogeneous multiprocessor performance for core design X. The uniprocessor model,

as demonstrated in this dissertation, would predict delay as a function of the homo-

geneous core design X for each benchmark Bi in B = {B1, . . . , Bn}.

In parallel, the contention model predicts measures of interaction between the

cores (e.g., cache misses due to contention and interference) as a function of design

parameters for shared resources Xs ⊂ X when executing a particular combination

of benchmarks B. The contention model would be trained by only a small number

of multiprocessor simulations since the size of Xs is much smaller than the size of

X. Given per-core delays and per-core contention metrics, the penalty model would

estimate contention-adjusted delay for benchmark Bi executing in a multiprocessor

with other benchmarks in the set B. This penalty model would also require only a

small number of multiprocessor simulations since it is a small model which takes only

core delay and contention as inputs. Thus, this approach requires a larger number of

inexpensive uniprocessor simulations to capture most of the core design complexity

while minimizing the number of more expensive multiprocessor simulations to capture

only the interactions between cores. This modular approach abstracts each core using

an inferential model and combines individual core performance using hierarchically

composed penalizing models.

Chapter 5: Conclusions and Future Directions 148

Figure 5.1: Composable Multiprocessor Models. Contention models adjust
uniprocessor performance and power estimates with a penalty model. Uniproces-
sor models would be trained by core simulations while contention and penalty models
would be trained by multi-core simulations.

Heterogeneous System-on-Chip Architectures. The modular framework

for homogeneous multiprocessors extends naturally to heterogeneous multiprocessors

and system-on-chip architectures by generalizing each of the three component mod-

els. Generalizing the uniprocessor model, we might replace the homogeneous core

model with libraries of inferential models containing one model for each core type;

each model would encapsulate the performance and power trends for each core’s

design space. The library would include models for both general-purpose and special-

purpose cores. For general-purpose cores, we could consider trade-offs between com-

plex and simple processing elements. Although models in this dissertation capture

design trends for cores with out-of-order execution, future heterogeneous architec-

tures may implement a combination of out-of-order and simpler, in-order execution

to best serve combinations of latency-sensitive and thread-level parallel applications.

Chapter 5: Conclusions and Future Directions 149

For special-purpose cores, the framework could consider both coarse-grained (e.g.,

GPU – graphics processing units, DSP – digital signal processing) and fine-grained

(e.g., audio, video compression) accelerators. For an example of coarse-grained ac-

celerators, the optimal GPU design (e.g., number of vector computing tiles and tile

geometry) is impacted by the integration of a general-purpose core onto the same chip.

Contention for off-chip bandwidth will fundamentally change GPU performance and

power characteristics. In contrast, fine-grained accelerators for audio and graphics

compression might expose tunable design parameters that include the size of data

blocks for compression, the hash function, and the size of compressed output blocks.

These parameters are highly dependent on bandwidth and memory utilization re-

quiring, therefore, joint optimization with other cores on the chip. In contrast to

coarse-grained variants, fine-grained accelerators most efficiently implement particu-

lar algorithms, but their contribution to overall system performance is limited since

they may not effectively accelerate general-purpose code. The library of inferential

models for the diverse core types found in system-on-chip architectures would be basic

building blocks for a generalized framework.

The framework would generalize the contention model, replacing it with a broadly

defined interaction model. This interaction model would estimate the performance

and power overheads from inter-core communication, coherence, and contention.

While the core models are likely constructed from detailed simulation, these interac-

tion models may be constructed by less expensive means. Communication models,

for example, might be derived analytically for very regular workloads (e.g., vector

operations, compression) depending on whether code and data are communicated via

Chapter 5: Conclusions and Future Directions 150

explicit message passing or shared memory. Coherence and contention models may

require only functional simulation to, for example, extract cache access characteristics

and may not require full microarchitectural simulation with detailed timing models.

Given sufficient training data, these interaction models will estimate relevant statistics

(e.g., cache access patterns, interconnect utilization) to characterize the interaction

between various diverse cores. Lastly, the framework would generalize the penalty

model, replacing it with a broadly defined adjustment model to calibrate individual

core performance given various points of interaction.

5.2.3 Hardware-Software Interface

Statistical inference and regression modeling establishes a strong foundation for inter-

disciplinary research across the hardware-software interface. Inferential models may

be constructed to encapsulate performance and power trends at each abstraction layer.

Given such models, the challenge becomes creating clean interfaces between models

to enable optimization across abstraction layers. Such interdisciplinary understand-

ing enhances performance and power, for example, by understanding interactions

between compiler optimizations and microarchitectural design or by exposing circuit

implementation details to influence the design of microarchitectural blocks.

Applications. Application performance optimization is increasingly important

as applications are ported to novel architectures. Effective performance tuning eases

the transition by parameterizing the application with knobs that impact performance.

The optimal knob configurations vary from platform to platform, requiring models

to explore this space. For example, parameterized numerical methods and scientific

Chapter 5: Conclusions and Future Directions 151

computing applications will expose knobs for the data decomposition (i.e., blocks of

work), the processor topology (i.e., processor assignments to those blocks), and the

algorithms (i.e., numerical algorithms used for each block).

We have applied successfully statistical inference and machine learning to nu-

merical methods, including semi-coarsening multigrid (SMG) and High-Performance

LINPACK (HPL) [46]. SMG solves discretized three-dimensional equations while

HPL solves a dense linear system. Regression models effectively capture performance

trends as the working set size and processor topology vary in SMG. Similar models

for HPL estimate performance from the matrix block size, processor assignment to

those blocks, and algorithmic choices for the LU decomposition.

More generally, implementing parallel algorithms or applications is difficult. With

parameterized or sketched implementations, designers focus on delivering function-

ality while expecting models and optimization heuristics to extract performance by

identifying the optimal parameter configurations. Such an approach separates parallel

functionality from parallel performance and eases programmer burden. Furthermore,

these parameterized implementations provide software sufficiently flexible to adapt

to the multiple possible trajectories into multiprocessor hardware design.

Compilers. Effective back-end compiler optimizations are critical to delivering

performance, but the effects and interactions between individual optimizations are

highly complex and non-intuitive. Identifying the best combination of optimization

flags to activate is difficult. Iterative compilation techniques search the space of

optimizations to optimize metrics, such as performance, energy, and code size.

Prior works prune the search space and apply heuristics, such as genetic algo-

Chapter 5: Conclusions and Future Directions 152

rithms, to reduce search time [11, 37, 68]. Instead of measuring the impact for each

set of optimizations, prior studies also propose analytical models to estimate perfor-

mance [68, 72]. Statistical inference, machine learning, and heuristic optimization

may be applied to improve search efficiency [1, 8, 9]. These predictive models encap-

sulate the performance trends in back-end compiler optimization like our regression

models encapsulate performance and power trends in microarchitectural design.

Microarchitectural simulation currently relies on static instruction traces collected

for particular hardware platforms. The same trace is used for every point in the design

space. However, application performance for any design depends on the effectiveness

of compiler optimizations for that design. In the future, hardware design should

re-optimize the application as different hardware design points are considered. For

example, designers might re-schedule instructions or apply different combinations of

optimization flags. We must determine the impact of separately optimizing software

and hardware, considering the possibilities of joint optimization to extract greater

software performance from a hardware design space.

Circuits and Devices. Transistor tuning becomes increasingly important in

nanoscale technologies. Not only must transistors be sized correctly, circuit delay

analyses must account for process variations and statistical deviations from nominal

sizes. Statistical inference and machine learning may be applied to capture relation-

ships between circuit delays and device parameters (e.g., transistor length, width,

threshold voltage). Such predictive models might be trained with data from detailed

circuit simulations and used for circuit tuning, statistical timing analysis, and Monte

Carlo experiments to evaluate process variations.

Chapter 5: Conclusions and Future Directions 153

Microarchitectural simulation relies on abstractions of the underlying circuits.

However, the capabilities of any tunable microarchitectural block from Tables B.2–

B.4 depend on their circuit implementations. Modular inference may provide op-

portunities to integrate circuit and microarchitectural analysis by first encapsulating

their respective performance and power trends using separate inferential models and

then composing these models for joint analysis and optimization.

Statistical inference and its capabilities in performance and power analysis extend

across the hardware-software interface. Inference is extensible and might be applied

at each abstraction layer, ranging from applications to devices. Interfaces between

adjacent layers might enable composable inference where models combine to provide

designers a holistic view of computing. Achieving such a vision requires best-known

practices in statistical inference, machine learning, and optimization heuristics to

deliver efficiency in the multiprocessor era.

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thom-
son, M. Toussaint, and C. Williams. Using machine learning to focus iterative
optimization. In CGO: International Symposium on Code Generation and Opti-
mization, Mar 2006.

[2] D.H. Albonesi. Dynamic IPC/clock rate optimization. In ISCA: International
Symposium on Computer Architecture, June 1998.

[3] D.H. Albonesi, R. Balasubramonian, S.G. Dropsho, S. Dwarkadas, E.G. Fried-
man, M.C. Huang, V. Kursun, G. Magklis, M.L. Scott, G. Semezaro, P. Bose,
A. Buyuktosunoglu, P.W. Cook, and S.E. Schuster. Dynamically tuning proces-
sor resources with adaptive processing. IEEE Computer, December 2003.

[4] D.A. Bader, Y. Li, T. Li, and V. Sachdeva. Bioperf: A benchmark suite to eval-
uate high-performance computer architecture on bioinformatics applications. In
IISWC: IEEE International Symposium on Workload Characterization, October
2005.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Mem-
ory hierarchy reconfiguration for energy and performance in general-purpose pro-
cessor architectures. In MICRO: International Symposium on Microarchitecture,
December 2000.

[6] D. Brooks and et. al. Power-aware microarchitecture: Design and modeling chal-
lenges for next-generation microprocessors. IEEE Micro, 20(6):26–44, Nov/Dec
2000.

[7] David Brooks, Pradip Bose, Viji Srinivasan, Michael Gschwind, Philip G. Emma,
and Michael G. Rosenfield. New methodology for early-stage, microarchitecture-
level power-performance analysis of microprocessors. IBM Journal of Research
and Development, 47(5/6), Oct/Nov 2003.

[8] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam.
Rapidly selecting good compiler optimizations using performance counters. In

154

Bibliography 155

CGO: International Symposium on Code Generation and Optimization, Mar
2007.

[9] J. Cavazos and M. O’Boyle. Method-specific dynamic compilation using logistic
regression. In OOPSLA: Conference on Object-Oriented Programming Systems,
Languages, and Applications, Oct 2006.

[10] C.Dubach, T.Jones, and M.O’Boyle. Microarchitectural design space exploration
using an architecture-centric approach. In MICRO: International Symposium on
Microarchitecture, December 2008.

[11] K.D. Cooper, P.J. Schielke, and D. Subramanian. Optimizing for reduced code
space using genetic algorithms. In LCTES: Conference on Languages, Compilers,
and Tools for Embedded Systems, May 1999.

[12] J.D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP throughput with
mediocre cores. In PACT: International Conference on Parallel Architectures
and Compilation Techniques, September 2005.

[13] T.F. Devlin and B.J. Weeks. Spline functions for logistic regrssion modeling. In
Eleventh Annual SAS Users Group International Conference, Cary, NC, 1986.

[14] A. Dhodapkar and J.E. Smith. Managing multi-configuration hardware via dy-
namic working set analysis. In ISCA: International Symposium on Computer
Architecture, June 2002.

[15] P. Dubey and M. Flynn. Optimal pipelining. J. Parallel and Distributed Com-
puting, 1990.

[16] L. Eeckhout, S. Nussbaum, J. Smith, and K. DeBosschere. Statistical simulation:
Adding efficiency to the computer designer’s toolbox. IEEE Micro, Sept/Oct
2003.

[17] A. Efthymiou and J.D. Garside. Adaptive pipeline structures for speculation
control. In ASYNC: International Symposium on Asynchronous Circuits and
Systems, May 2003.

[18] E.Ipek, S.A.McKee, B.R. de Supinski, M. Schulz, and R. Caruana. Efficiently
exploring architectural design spaces via predictive modeling. In ASPLOS: Ar-
chitectural support for programming languages and operating systems, October
2006.

[19] S. Eyerman, L. Eeckhout, and K. De Bosschere. Efficient design space explo-
ration of high performance embedded out-of-order processors. In DATE: Design,
Automation, and Test in Europe, March 2006.

Bibliography 156

[20] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In ISCA: Interna-
tional Symposium on Computer Architecture, June 2001.

[21] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to NP-
Completeness. W.H. Freeman, 1979.

[22] G.H. Givens and J.A. Hoeting. Computational Statistics. Wiley, 2005.

[23] S. Gochman, R. Ronen, and et al. The Intel Pentium M processor: Microarchi-
tecture and performance. Intel Technology Journal, 7(2), May 2003.

[24] P.J. Green and B.W. Silverman. Nonparametric regression and generalized linear
models: A roughness penalty approach. Monographs on Statistics and Applied
Probability, 1994.

[25] F.E. Harrell. Regression modeling strategies. Springer, 2001.

[26] A. Hartstein and T.R. Puzak. The optimum pipeline depth for a microprocessor.
In ISCA: International Symposium on Computer Architecture, May 2002.

[27] J.L. Henning. SPEC CPU2000: Measuring CPU performance in the new mille-
nium. IEEE Computer, July 2000.

[28] M.S. Hrishikesh, K. Farkas, N.P. Jouppi, D.C. Burger, S.W. Keckler, and
P. Sivakumar. The optimal logic depth per pipeline stage is 6 to 8 FO4 in-
verter delays. In ISCA: International Symposium on Computer Architecture,
May 2002.

[29] M.C. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: Ap-
plication to energy reduction. In ISCA: International Symposium on Computer
Architecture, June 2003.

[30] C. Hughes, J. Srinivasan, and S. Adve. Saving energy with architectural and
frequency adaptations for multimedia applications. In MICRO: International
Symposium on Microarchitecture, December 2001.

[31] J. Huh, D.C. Burger, and S.W. Keckler. Exploring the design space of future
CMPs. In PACT: International Conference on Parallel Architectures and Com-
pilation Techniques, September 2001.

[32] V. Iyengar, L.H. Trevillyan, and P. Bose. Representative traces for processor
models with infinite cache. In HPCA: International Symposium on High Perfor-
mance Computer Architecture, February 1996.

[33] C.R. Johns and D.A. Brokenshire. Introduction to the Cell Broadband Engine
architecture. IBM Journal of Research and Development, 51(5), 2007.

Bibliography 157

[34] P.J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and use of
linear regression models for processor performance analysis. In HPCA: Interna-
tional Symposium on High Performance Computer Architecture, February 2006.

[35] P.J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive performance
model for superscalar processors. In MICRO: International Symposium on Mi-
croarchitecture, December 2006.

[36] T.S. Karkhanis and J.E. Smith. Automated design of application specific super-
scalar processors: An analytical approach. In ISCA: International Symposium
on Computer Architecture, June 2007.

[37] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast
searches for effective optimization phase sequences. In PLDI: Conference on
Programming Language Design and Implementation, June 2004.

[38] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-
ISA heterogeneous multi-core architectures: The potential for processor power
reduction. In MICRO: International Symposium on Microarchitecture, December
2003.

[39] R. Kumar, D. Tullsen, and N. Jouppi. Core architecture optimization for het-
erogeneous chip multiprocessors. In PACT: International Conference on Parallel
Architectures and Compilation Techniques, April 2006.

[40] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas. Single-ISA
heterogeneous multi-core architectures for multithreaded workload performance.
In ISCA: International Symposium on Computer Architecture, June 2004.

[41] S.R. Kunkel and J.E. Smith. Optimal pipelining in supercomputers. In ISCA:
International Symposium on Computer Architecture, June 1986.

[42] B.C. Lee and D.M. Brooks. Accurate and efficient regression modeling for mi-
croarchitectural performance and power prediction. In ASPLOS: International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 2006.

[43] B.C. Lee and D.M. Brooks. Illustrative design space studies with microar-
chitectural regression models. In HPCA: International Symposium on High-
Performance Computer Architecture, February 2007.

[44] B.C. Lee and D.M. Brooks. Efficiency trends and limits from comprehensive
microarchitectural adaptivity. In ASPLOS: International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, March
2008.

Bibliography 158

[45] B.C. Lee and D.M. Brooks. Roughness of microarchitectural design topologies
and its implications for optimization. In HPCA: International Symposium on
High-Performance Computer Architecture, February 2008.

[46] B.C. Lee, D.M. Brooks, B.R. de Supinski, M. Schulz, K. Singh, and S.A. Mc-
Kee. Methods of inference and learning for performance modeling of parallel
applications. In PPoPP: Symposium on Principles and Practice of Parallel Pro-
gramming, March 2007.

[47] J.B. MacQueen. Some methods for classification and analysis of multivariate
observations. In 5-th Berkeley Symposium on Mathematical Statistics and Prob-
ability, 1967.

[48] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart mem-
ories: A modular reconfigurable architecture. In ISCA: International Symposium
on Computer Architecture, June 2000.

[49] D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and R. Broderson. Methods
for true energy-performance optimization. IEEE Journal of Solid-State Circuits,
39(8), August 2004.

[50] Sun Microsystems. Throughput computing: Changing the economics and ecol-
ogy of the data center with innovative sparc technology. Sun Microsystems
(http://www.sun.com/processors/throughput/), November 2005.

[51] T. Mitchell. Machine Learning. WCB/McGraw Hill, 1997.

[52] A. Moore. Decision trees. Tutorial Slides (http://www.autonlab.org/tutorials/
dtree18.pdf).

[53] A. Moore. Eight more classic machine learning algorithms. Tutorial Slides
(http://www.autonlab.org/tutorials/bestregress11.pdf).

[54] A. Moore. Instance-based learning. Tutorial Slides (http://www.autonlab.org/
tutorials/mbl08.pdf).

[55] G. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8), April 1965.

[56] M. Moudgill, J. Wellman, and J. Moreno. Environment for PowerPC microar-
chitecture exploration. IEEE Micro, 19(3):9–14, May/June 1999.

[57] D.B. Noonburg and J.P. Shen. Theoretical modeling of superscalar processor per-
formance. In MICRO: International Symposium on Microarchitecture, December
1994.

Bibliography 159

[58] S. Nussbaum and J. Smith. Modeling superscalar processors via statistical sim-
ulation. In PACT: International Conference on Parallel Architectures and Com-
pilation Techniques, Sept 2001.

[59] M. Oskin, F.T. Chong, and M. Farren. HLS: Combining statistical and sym-
bolic simulation to guide microprocessor designs. In ISCA-27: International
Symposium on Computer Architecture, June 2000.

[60] A. Phansalkar, A. Joshi, L. Eeckhout, and L.K. John. Measuring program sim-
ilarity: Experiments with SPEC CPU benchmark suites. In ISPASS: Inter-
national Symposium on Performance Analysis of Systems and Software, March
2005.

[61] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power requirements of in-
struction scheduling through dynamic allocation of multiple datapath resources.
In MICRO: International Symposium on Microarchitecture, December 2001.

[62] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automat-
ically characterizing large scale program behavior. In ASPLOS: International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 2002.

[63] P. Shivakumar and N. Jouppi. An integrated cache timing, power, and area
model. In Technical Report 2001/2, Compaq Computer Corporation, August
2001.

[64] B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, and J.B. Joyner. Power5
system microarchitecture. IBM Journal of Research and Development, 49(4/5),
July/September 2005.

[65] C.J. Stone. Comment: Generalized additive models. Statistical Science, 1:312–
314, 1986.

[66] C.J. Stone and C.Y. Koo. Additive splines in statistics. In Statistical Computing
Section ASA, Washington, DC, 1985.

[67] A. Tiwari, S. Sarangi, and J. Torrellas. Recycle: Pipeline adaptation to tolerate
process variation. In ISCA: International Symposium on Computer Architecture,
June 2007.

[68] S. Triantafyllis, M. Vacharajani, and D. August. Compiler optimization space
exploration. Journal of Instruction-Level Parallelism, Jan 2005.

[69] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2
programs: Characterization and methodological considerations. In ISCA: Inter-
national Symposium on Computer Architecture, June 1995.

Bibliography 160

[70] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.
SMARTS: Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In ISCA: International Symposium on Computer Architecture, June 2003.

[71] J. Yi, D. Lilja, and D. Hawkins. Improving computer architecture simulation
methodology by adding statistical rigor. IEEE Computer, Nov 2005.

[72] M. Zhao, B.R. Childers, and M.L. Soffa. Predicting the impact of optimizations
for embedded systems. In LCTES: Conference on Languages, Compilers, and
Tools for Embedded Systems, June 2003.

[73] V. Zyuban. Inherently lower-power high-performance superscalar architectures.
In Ph.D. Thesis, University of Notre Dame, March 2000.

[74] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose, P. Strenski, and
P. Emma. Integrated analysis of power and performance for pipelined micropro-
cessors. IEEE Transactions on Computers, August 2004.

[75] V. Zyuban and P. Strenski. Balancing hardware intensity in microprocessor
pipelines. IBM Journal of Research and Development, 47(5/6), Oct/Nov 2003.

Appendix A

Simulator Framework

We use Turandot, a generic and parameterized, out-of-order, superscalar processor

simulator [56]. Turandot is enhanced with PowerTimer to obtain power estimates

based on circuit-level power analyses and resource utilization statistics [7]. The

modeled baseline architecture is similar to the current POWER4/POWER5. The

simulator has been validated against both a POWER4 RTL model and a hardware

implementation. This simulator implements pipeline depth performance and power

models based on prior work [74]. Power scales superlinearly as pipeline width in-

creases, using scaling factors derived for an architecture with clustered functional

units [73]. Cache power and latencies scale with array size according to CACTI [63].

We do not leverage any particular feature of the simulator in our models and our

framework may be generally applied to other simulation frameworks.

161

Appendix B

Design Spaces

Turandot and PowerTimer originally modeled the POWER4-like design of Table B.1.

The performance and power models have since been modified to consider a much

larger range of designs.

Within this simulation environment, we consider several design spaces of varying

size and complexity as described in Tables B.2–B.4. Each table identifies p sets or

groups of parameters varied simultaneously. Parameters within a group are varied

together to avoid fundamental design imbalances. The range of values considered

for each parameter group is specified by a set of values, S1, . . . , Sp. The Cartesian

product of these sets, S =
∏p

i=1 Si, defines the entire design space. The cardinality

of this product, |S| =
∏p

i=1 |Si|, defines the design space size.

162

Appendix B: Design Spaces 163

Processor Core

Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions

Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table B.1: POWER4 Baseline. Superscalar, out-of-order microarchitectural design
resembling the IBM POWER4.

Appendix B: Design Spaces 164

Set Parameters Measure Range |Si|
S1 Depth Depth FO4 9::3::36 10
S2 Width Width issue b/w 2,4,8 3

L/S Reorder Queue entries 15::15::45
Store Queue entries 14::14::42
Functional Units count 1,2,4

S3 Physical General Purpose (GP) count 40::10::130 10
Registers Floating-Point (FP) count 40::8::112

Special Purpoes (SP) count 42::6::96
S4 Reservation Branch entries 6::1::15 10

Stations Fixed-Point/Memory entries 10::2::28
Floating-Point entries 5::1::14

S5 I-L1 Cache I-L1 Cache Size log2(entries) 7::1::11 5
S6 D-L1 Cache D-L1 Cache Size log2(entries) 6::1::10 5
S7 L2 Cache L2 Cache Size log2(entries) 11::1::15 5

L2 Cache Latency cycles 6::2::14
S8 Main Memory Main Memory Latency cycles 70::5::115 10
S9 Control Latency Branch Latency cycles 1,2 2
S10 Fixed-Point ALU Latency cycles 1::1::5 5

Latency FX-Multiply Latency cycles 4::1::8
FX-Divide Latency cycles 35::5::55

S11 Floating-Point FPU Latency cycles 5::1::9 5
Latency FP-Divide Latency cycles 25::5::45

S12 Memory Latency Load/Store Latency cycles 3::1::7 5

Table B.2: Design Space I. Used for initial model derivation and proof of concept.
p = 12, |S| = 9.4E+8.

Appendix B: Design Spaces 165

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

L/S reorder queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose (GP) count 40::10::130 10
Registers floating-point (FP) count 40::8::112

special purpose (SP) count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point/memory entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table B.3: Design Space II. Used for design characterization and optimization
where regression models are evaluated exhaustively for every point in the space. p = 7,
|S| = 3.8E+5.

Appendix B: Design Spaces 166

Set Parameters Measure Range |Si|
S1 Depth depth FO4 9::3::36 10
S2 Width width issue b/w 2,4,8 3

functional units count 1,2,4
S3 Branch BTB associativity sets 1,2,4,8 4

Predictor BTB size log2(entries) 12::1::15
S4 Load/Store load/store queue entries 9::5::54 10
S5 Physical general purpose (GP) count 40::10::130 10

Registers floating-point (FP) count 40::8::112
special purpose (SP) count 42::6::96

S6 Reservation branch entries 6::1::15 10
Stations fixed-point/memory entries 10::2::28

floating-point entries 5::1::14
S7 I-L1 Cache i-L1 cache size KB 16::2x::256 5
S8 i-L1 cache assoc. sets 1,2,4,8 4
S9 D-L1 Cache d-L1 cache size KB 8::2x::128 5
S10 d-L1 cache assoc. sets 1,2,4,8 4
S11 load/store latency cycles 1::1::5 5
S12 L2 Cache L2 cache size MB 0.25::2x::4 5
S13 L2 cache assoc. sets 1,2,4,8 4
S14 L2 cache latency cycles 8::2::16 5
S15 Main Memory main memory latency cycles 70::5::115 10

Table B.4: Design Space III. Used for design optimization where regression models
are optimized with with iterative heuristics. p = 15, |S| = 2.8E+11.

Appendix C

Benchmarks

We report experimental results based on PowerPC traces of the benchmarks in Table

C.1 [4, 27, 69]. The traces used in this study were sampled from the full reference

input set to obtain 100 million instructions per benchmark program. Systematic

validation was performed to compare the sampled traces against the full traces to

ensure accurate representation [32]. Our benchmark suite is representative of larger

suites frequently used in the microarchitectural research community [60].

167

Appendix C: Benchmarks 168

SPEC CPU 2000
ammp Simulates molecular dynamics
applu Solves parabolic/elliptic partial differential equations (PDE’s)
equake Simulates seismic wave propagation
gcc Compiles C programs
gzip Performs compression
mcf Performs combinatorial optimization
mesa Provides 3-D graphics library support
twolf Simulates circuit place and route

SPEC JBB 2000
jbb 3-tier Java business server

SPLASH
cholesky Factorizes sparse matrix using blocked Cholesky method
ocean Simulates ocean using Gauss-Seidel multigrid solver
radiosity Computes equilibrium distribution of light
raytrace Renders three-dimensional images

BIOPERF
blast Searches database for protein/nucleotide sequencing

Table C.1: Benchmarks.

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Citations to Previously Published Work
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Technology Trends
	1.2 Simulation Challenges
	1.3 Simulation Paradigm
	1.4 Qualitatively New Capabilities
	1.5 Summary of Contributions

	2 Statistical Inference
	2.1 Spatial Sampling
	2.1.1 Spatial and Temporal Synergies
	2.1.2 Uniformly Random Sampling
	2.1.3 Alternative Sampling Strategies

	2.2 Model Derivation
	2.2.1 Hierarchical Clustering
	2.2.2 Association Analysis
	2.2.3 Correlation Analysis
	2.2.4 Model Specification

	2.3 Model Evaluation
	2.3.1 Evaluating Fit
	2.3.2 Evaluating Bias
	2.3.3 Evaluating Accuracy
	2.3.4 Alternative Modeling Strategies

	2.4 Related Work
	2.4.1 Temporal Sampling
	2.4.2 Parameter Significance Testing
	2.4.3 Empirical and Analytical Modeling

	2.5 Summary

	3 Characterizing Performance and Power Topologies
	3.1 Parameter Sensitivity
	3.1.1 Pitfalls of One-Dimensional Sensitivity
	3.1.2 Case Study of Pipeline Depth

	3.2 Pareto Frontiers
	3.2.1 Characterizing the Design Space
	3.2.2 Identifying the Pareto Frontier
	3.2.3 Validating the Pareto Frontier

	3.3 Contours for Visualizing Topologies
	3.3.1 Contour Maps
	3.3.2 Bottleneck Analysis
	3.3.3 Workload Characterization

	3.4 Metrics for Quantifying Roughness
	3.4.1 Numerical Approximations
	3.4.2 Roughness and Regression
	3.4.3 Roughness and Contours

	3.5 Related Work
	3.5.1 Sensitivity
	3.5.2 Optimizing Pipeline Depth
	3.5.3 Roughness Metrics

	3.6 Summary

	4 Optimizing Performance and Power Topologies
	4.1 Robust Optimization
	4.1.1 Implementation
	4.1.2 Evaluation

	4.2 Multiprocessor Heterogeneity
	4.2.1 Exhaustive Optimization
	4.2.2 Heuristic Clustering
	4.2.3 Heterogeneity Efficiency Trends
	4.2.4 Heterogeneity Validation

	4.3 Microarchitectural Adaptivity
	4.3.1 Adaptivity Dimensions
	4.3.2 Heuristic Optimization
	4.3.3 Temporal Adaptivity
	4.3.4 Spatial Adaptivity

	4.4 Related Work
	4.4.1 Optimization
	4.4.2 Multiprocessor Heterogeneity
	4.4.3 Microarchitectural Adaptivity

	4.5 Summary

	5 Conclusions and Future Directions
	5.1 Summary of Themes and Results
	5.2 Future Directions
	5.2.1 Modeling Methodology
	5.2.2 Multiprocessor Core Interaction
	5.2.3 Hardware-Software Interface

	Bibliography
	A Simulator Framework
	B Design Spaces
	C Benchmarks

