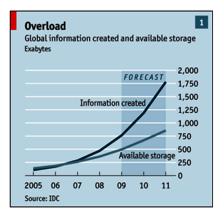
Mega-servers vs Micro-blades for Data Centers


Benjamin C. Lee Stanford University bcclee@stanford.edu

Architectural Concerns in Large Datacenters International Symposium on Computer Architecture 19 June 2010

Data Deluge

- Data centers are not keeping up
- Data is not information!

"Data, data everywhere." The Economist, 25 Feb 2010.

Value from Data

Statistical Inference

- Draw useful information from free data
- Useful information applies statistical inference
- Free data drawn from Internet's webpages
- Ex: Langugage Translation
 - Statistical inference trumps linguistic structure
 - Early 1990's, IBM French/English with O(1E+6) documents
 - Presently, Google Translate with O(1E+9) documents

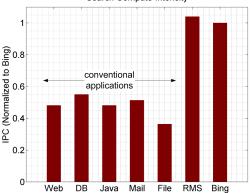
3

"Clicking for gold." The Economist, 25 Feb 2010.

Value from Data

Statistical Inference

- Draw useful information from free data
- Useful information applies statistical inference
- Free data drawn from Internet's webpages


• Ex: Langugage Translation

- Statistical inference trumps linguistic structure
- Early 1990's, IBM French/English with O(1E+6) documents
- Presently, Google Translate with O(1E+9) documents

"Clicking for gold." The Economist, 25 Feb 2010.

Computational Intensity

- o Bing web search ranks pages with neural network
- RMS foreshadows future analytic workloads

Search Compute Intensity

V.J. Reddi et al. "Web search using mobile cores" ISCA, 2010.

4

SW: Latency is Paramount

Applications are Evolving

- Apps not memory, I/O bound anymore!
- Past: Response time insensitive to compute latency
- Present: Response quality sensitive to compute latency
- Future: Algorithmic gains require expendable latency
- Architectures are Conservative
 - Separation of SW/HW interests
 - Deploy homogeneous, over-provisioned hardware

SW: Latency is Paramount

Applications are Evolving

- Apps not memory, I/O bound anymore!
- Past: Response time insensitive to compute latency
- Present: Response quality sensitive to compute latency
- Future: Algorithmic gains require expendable latency

Architectures are Conservative

- Separation of SW/HW interests
- Deploy homogeneous, over-provisioned hardware

HW: Efficiency is Paramount

Multicore is Unsustainable

- Dennard scaling is dead!
- Past: Dennard provides constant power density
- Present: Scaling increases power density
- Future: Many-core unrealizable
- Heterogeneity is Solution
 - Go big or go home!
 - Past: CMP of homogeneous cores
 - Present: CMP of big/small & graphics cores
 - Future: SoC of general-purpose & accelerators

HW: Efficiency is Paramount

Multicore is Unsustainable

- Dennard scaling is dead!
- Past: Dennard provides constant power density
- Present: Scaling increases power density
- Future: Many-core unrealizable

Heterogeneity is Solution

- Go big or go home!
- Past: CMP of homogeneous cores
- Present: CMP of big/small & graphics cores
- Future: SoC of general-purpose & accelerators

Economics is Paramount

Specialization is Expensive

- O(10M)\$ for custom HW/SW!
- Past: Customization for standard computation
- Present: ASIC production falling
- Future: Generalizable specialization
- Economics can Improve
 - Increase volume via generality, more app targets
 - Reduce cost via methodology
 - Technology challenges even more costly!

Economics is Paramount

• Specialization is Expensive

- O(10M)\$ for custom HW/SW!
- Past: Customization for standard computation
- Present: ASIC production falling
- Future: Generalizable specialization

Economics can Improve

- Increase volume via generality, more app targets
- Reduce cost via methodology
- Technology challenges even more costly!

Mega-servers vs Micro-blades for Data Centers

Benjamin C. Lee Stanford University bcclee@stanford.edu

Architectural Concerns in Large Datacenters International Symposium on Computer Architecture 19 June 2010

8