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Conventional Wisdom

◦ Moore’s Law provides transistors
◦ Simple cores improve energy efficiency

◦ Parallelism recovers lost performance
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Simple Cores

◦ Pursue aggregate throughput, energy efficiency
◦ Assume task parallelism

◦ Assume latency tolerance
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Applications in Transition

• Conventional Enterprise
◦ Process independent requests

◦ Exhibit high memory, I/O intensity

◦ Ex: web, database, Java, mail, file servers

• Emerging Cloud
◦ Extract information, value from data

◦ Exhibit high compute intensity

◦ Ex: analytics, machine learning
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Computational Intensity
◦ Microsoft Bing ranks pages with neural network

◦ RMS foreshadows future analytic workloads
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Cloud Efficiency

• Challenges
◦ Migrate computation, data to cloud

◦ Choose efficient components

◦ Understand application, component interaction

• Case Study
◦ Mobile cores for efficiency, parallelism for performance?

◦ Achieve efficiency with mobile cores (Intel Atom)

◦ Quantify price of efficiency (Microsoft Bing)
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Efficiency
Atom is more energy, cost efficient than Xeon

Price of Efficiency
Atom limitations impact latency, relevance, flexibility

Mitigating Price of Efficiency
Atom over-provisioning should consider platform overheads
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Search Architecture

◦ Rank pages using neural network

◦ Deploy on server (Xeon), mobile (Atom) processors
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Processor Activity

◦ Compare Xeon (4-issue, OOO) and Atom (2-issue, IO)

◦ Measure µarch activity with hardware counters
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Processor Power

◦ Compare Xeon (15W per core) and Atom (1.5W per core)

◦ Measure processor power at voltage regulator
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Processor Efficiency
◦ Demonstrate energy, cost efficiency with Atom

◦ Measure max QPS within QoS target
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Price of Efficiency

• Latency
◦ Cut-off latency limits refinement opportunities

◦ Per query latency impacts quality-of-service

• Relevance
◦ Search rank orders documents

◦ Choice, ordering of results impact relevance

• Flexibility
◦ Query activity, complexity increase load

◦ Processor resources impact flexibility
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Latency
◦ Atom increases latency average (µ) by 3×
◦ Atom increases latency variance (σ2)
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Relevance
◦ Consider choice, ordering of top N documents

◦ Atom impacts relevance under all query loads
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Flexibility
◦ Consider activity, complexity of queries

◦ Atom harms QoS for more complex queries
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Mitigating Price of Efficiency

Efficiency
Atom is more energy, cost efficient than Xeon
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Mitigating Price of Efficiency

Mitigating Price of Efficiency

• Addressing Latency & Relevance
◦ Address µarchitectural limitations

◦ Integrate application-specific accelerators

◦ Manage heterogeneous servers

• Addressing Flexibility
◦ Over-provision Atoms

◦ Mitigate platform overheads

◦ Integrate more cores per chip
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Mitigating Price of Efficiency

Platform Overheads
◦ Xeon: 4-core, 2-socket

◦ Atom: 2-core, 1-socket⇒ Hyp-Atom: 8-core, 2-socket
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Mitigating Price of Efficiency

Total Cost of Ownership (TCO)

◦ Pie slice shows breakdown of TCO $

◦ Pie size shows throughput per TCO $
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Mitigating Price of Efficiency

Case for Integration

◦ Hyp-Atom attributes more per TCO $ to servers

◦ Hyp-Atom achieves greater throughput per TCO $
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Conclusion

Efficiency
Atom is more energy, cost efficient than Xeon

Price of Efficiency
Atom limitations impact latency, relevance, flexibility

Mitigating Price of Efficiency
Atom over-provisioning should consider platform overheads
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Conclusion

Also in the paper ...

• µarchitecture
◦ Processor activity from hardware counters

◦ µarchitectural bottlenecks

• Search
◦ Application phases in computation

◦ Execution time breakdown

• Mitigating Price of Efficiency
◦ µarchitectural enhancements

◦ Heterogeneous, accelerated processors

23



Conclusion

Conclusion

• Emerging Cloud Applications
◦ Extract value from data

◦ Increase compute intensity

• Energy Efficiency
◦ Improve efficiency by 5× with mobile processors

◦ Exact price in latency, relevance, flexiblity

• Future Challenges
◦ Pursue efficiency given compute intensity

◦ Consider heterogeneous, accelerated processors
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