
8

Applied Inference: Case Studies
in Microarchitectural Design

BENJAMIN C. LEE
Duke University
DAVID BROOKS
Harvard University

We propose and apply a new simulation paradigm for microarchitectural design evaluation and
optimization. This paradigm enables more comprehensive design studies by combining spatial
sampling and statistical inference. Specifically, this paradigm (i) defines a large, comprehensive
design space, (ii) samples points from the space for simulation, and (iii) constructs regression
models based on sparse simulations. This approach greatly improves the computational efficiency
of microarchitectural simulation and enables new capabilities in design space exploration.

We illustrate new capabilities in three case studies for a large design space of approximately
260,000 points: (i) Pareto frontier, (ii) pipeline depth, and (iii) multiprocessor heterogeneity analy-
ses. In particular, regression models are exhaustively evaluated to identify Pareto optimal designs
that maximize performance for given power budgets. These models enable pipeline depth studies in
which all parameters vary simultaneously with depth, thereby more effectively revealing interac-
tions with nondepth parameters. Heterogeneity analysis combines regression-based optimization
with clustering heuristics to identify efficient design compromises between similar optimal archi-
tectures. These compromises are potential core designs in a heterogeneous multicore architecture.
Increasing heterogeneity can improve bips3/w efficiency by as much as 2.4×, a theoretical up-
per bound on heterogeneity benefits that neglects contention between shared resources as well
as design complexity. Collectively these studies demonstrate regression models’ ability to expose
trends and identify optima in diverse design regions, motivating the application of such models in
statistical inference for more effective use of modern simulator infrastructure.

Categories and Subject Descriptors: B.8.2 [Performance Analysis and Design Aids]; I.6.5
[Model Development]: Modeling Methodologies

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Microarchitecture, simulation, statistics, regression

ACM Reference Format:
Lee, B. C. and Brooks, D. 2010. Applied inference: Case studies in microarchitectural design. ACM
Trans. Architec. Code Optim. 7, 2, Article 8 (September 2010), 37 pages.
DOI = 10.1145/1839667.1839670 http://doi.acm.org/10.1145/1839667.1839670

Authors’ addresses: B. C. Lee, Duke University; D. Brooks, Harvard University; e-mail:
bcclee@post.harvard.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1544-3566/2010/09-ART8 $10.00
DOI 10.1145/1839667.1839670 http://doi.acm.org/10.1145/1839667.1839670

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:2 • B. C. Lee and D. Brooks

1. INTRODUCTION

Microarchitectural design space exploration is a computationally expensive
combinatorial problem, requiring a large number of detailed simulations for
performance and power estimation. Furthermore, recent industry trends sug-
gest a number of new challenges as designers consider the multiprocessor
domain. Designers are increasingly targeting differentiated market segments
each with particular metric emphases. For example, designs might implement
different compromises between latency, throughput, power, and temperature
depending on application and operating cost factors specific to each market
segment. Thus, increasing market differentiation implies increasing metric
diversity, which further implies more interesting optimization objectives and
constraints.

Increasing metric diversity will also lead to nonintuitive design optima that
potentially occupy very different regions of the design space. Design diversity
has already been observed in the set of interesting microarchitectures consid-
ered for industry implementation. For example, the IBM POWER5, Intel Pen-
tium 4 and Sun UltraSPARC T1 occupy very different parts of the design space.
POWER5 implements relatively wide pipelines, Pentium4 implements rela-
tively deep pipelines, and UltraSPARC T1 cores are relatively simple in-order
pipelines [Intel Corporation 2001; Kongetira et al. 2005; Sinharoy et al. 2005].

Metric and design diversity illustrate the need for scalable techniques to
more comprehensively explore a space and assess the relative advantages of
very different design options. Current approaches to design evaluation are often
inefficient and ad hoc due to the significant computational costs of modern sim-
ulator infrastructure. The detail in modeling microprocessor execution result in
long simulation times. Designers circumvent these challenges by constraining
the design space considered (often using intuition or experience) and reducing
the size of simulator inputs via instruction trace sampling. However, by prun-
ing the design space with intuition before a study, the designer risks obtaining
conclusions that simply reinforce prior intuition and may not generalize to the
broader space.

Instruction trace sampling, while effective in reducing the simulator input
size by orders of magnitude, only impacts per simulation costs and does not
address the number of simulations required in a comprehensive design space
study. Trace sampling alone is insufficient as per simulations costs decrease
linearly, albeit by a large factor, while the number of potential simulation points
increase exponentially with the number of design parameters. This exponential
increase is currently driven by the design of multicore, multithreaded micropro-
cessors targeting diverse metrics including single-thread latency, throughput
for emerging parallel workloads, and energy. These trends will also lead to more
variety in the set of viable and interesting designs (e.g., simpler, less aggres-
sive cores), thereby requiring a more thorough exploration of a comprehensive
design space.

Techniques in statistical inference are necessary for a scalable simulation
approach that addresses these fundamental challenges, modestly reducing
detail for substantial gains in speed and tractability. Even for applications

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:3

in which obtaining extensive measurement data is feasible, efficient analysis
of this data often lends itself to statistical modeling. Such an approach typi-
cally requires an initial data set for model formulation or training. The model
responds to predictive queries by leveraging correlations in the original data
for inference.

Regression modeling is integrated into a simulation paradigm designed to
increase the information content for a given simulation cost (Section 2). This
paradigm specifies a large, comprehensive design space, selectively simulates
a modest number of designs sampled from that space, and more efficiently
leverages that simulation data using regression models to identify trends and
optima. Design space sampling and statistical inference enables the designer
to perform a tractable number of simulations independent of design space size
or resolution. Applying this simulation paradigm, we sample 1,000 points uni-
formly at random from a design space of 375,000 points for simulation. Given
these samples, we formulate nonlinear regression models for microarchitec-
tural performance and power prediction (Section 3), achieving median error
rates of 7.2% and 5.4%, respectively, relative to simulation. We apply the de-
rived models to comprehensively explore a design space for three optimization
problems

(1) Pareto Frontier Analysis. We comprehensively characterize the design
space, constructing a regression predicted Pareto frontier in power delay
coordinates. We find predictions for Pareto optima exhibit median errors
comparable to those for the broader space (Section 4).

(2) Pipeline Depth Analysis. We compare a constrained pipeline depth study
against an enhanced study that varies all parameters simultaneously via
regression modeling. We find constrained sensitivity studies may not gen-
eralize when many other design parameters are held at constant values.
Furthermore, such generalized studies more effectively reveal interactions
between design parameters (Section 5).

(3) Multiprocessor Heterogeneity Analysis. We identify efficiency maximizing
architectures for each benchmark via regression modeling and cluster
these architectures to identify design compromises. We quantify the power-
performance benefits from varying degrees of core heterogeneity, quantify-
ing a theoretical upper bound on bips3/w efficiency gains. We find modest
heterogeneity may provide substantial efficiency benefits relative to homo-
geneity (Section 6).

For each case study, we provide an assessment of predictive error and sensi-
tivity of observed trends to such error. Collectively these studies demonstrate
the applicability of regression models for performance and power prediction in
practical design space optimization.

2. EXPERIMENTAL METHODOLOGY

We use Turandot, a generic and parameterized, out-of-order, superscalar pro-
cessor simulator [Moudgill et al. 1999]. Turandot is enhanced with PowerTimer

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:4 • B. C. Lee and D. Brooks

to obtain power estimates based on circuit-level power analyses and resource
utilization statistics [Brooks et al. 2003]. The modeled baseline architecture is
similar to the POWER4/POWER5. The simulator has been validated against
both a POWER4 RTL model and a hardware implementation. pipeline width
increases, using scaling factors derived for an architecture with clustered func-
tional units [Zyuban and Kogge 2001]. Cache power and latencies scale with
array size according to CACTI [Tarjan et al. 2006]. We do not leverage any par-
ticular feature of the simulator and our framework may be generally applied to
other simulation frameworks. We measure billions of instructions per second
(bips) and watts (w).

We use R, an open-source software environment for statistical computing, to
script and automate statistical analyses. Within this environment, we use the
Hmisc and Design packages [Harrell 2001].

2.1 Benchmark Suite

We consider SPEC JBB, a Java server benchmark, and eight compute intensive
benchmarks from SPEC CPU 2000 (ammp, applu, equake, gcc, gzip, mcf, mesa,
twolf). We report experimental results based on PowerPC traces of these bench-
marks. Traces used in this study were sampled from the full reference input
set to obtain 100 million instructions per benchmark program using graph-
based heuristics to identify representative basic blocks [Iyengar et al. 1996].
Systematic validation was performed to compare the sampled traces against
the full traces to ensure accurate representation. Our benchmark suite is rep-
resentative of larger suites frequently used in the microarchitectural research
community [Phansalkar et al. 2005]. Although specific conclusions of our de-
sign space studies may differ with different benchmarks, we do not leverage
any particular benchmark feature in model formulation and our framework
may be generally applied to other workloads.

2.2 Simulation Paradigm

Challenges in microarchitectural design motivate a new simulation paradigm
that (i) specifies a large, comprehensive design space, (ii) selectively simu-
lates a modest number of designs sampled from that space, and (iii) more
efficiently leverages that simulation data using techniques in statistical infer-
ence to identify trends and optima. This paradigm begins with a comprehensive
design space definition that considers many high-resolution parameters simul-
taneously. Given this design space, we apply techniques in spatial sampling
to obtain a small fraction of design points for simulation. Spatial sampling
allows us to decouple the high resolution of the design space from the number
of simulations required to identify a trend within it. Last, we construct re-
gression models using simulations of these sparsely sampled designs to enable
predictions for metrics of interest. The predictive ability and computational ef-
ficiency of these models enables new capabilities in microarchitectural design
optimization.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:5

Table I. Design Space :: range i:: j::k Denotes Values from i to k in Steps of j

Set Parameters Measure Range |Si |
S1 Depth depth FO4 9::3::36 10
S2 Width width decode b/w 2,4,8 3

L/S queue entries 15::15::45
store queue entries 14::14::42
functional units count 1,2,4

S3 Physical general purpose count 40::10::130 10
Registers floating-point count 40::8::112

special purpose count 42::6::96
S4 Reservation branch entries 6::1::15 10

Stations fixed-point entries 10::2::28
floating-point entries 5::1::14

S5 I-L1 Cache i-L1 cache size KB 16::2×::256 5
S6 D-L1 Cache d-L1 sache size KB 8::2×::128 5
S7 L2 Cache L2 cache size MB 0.25::2×::4 5

The first part of this paradigm is implemented with the design specifi-
cation of Table I.1 This table identifies seven groups of parameters varied
simultaneously. The range of values considered are specified by sets, S1, . . . , S7.
The Cartesian product of these sets, S = ∏7

i=1 Si, defines the design space that
contains |S| = ∏7

i=1 |Si| = 375, 000 points.
The second part of the paradigm requires sampling design points for simula-

tion. Spatial sampling provides observations from the full range of parameter
values and enables identification of trade-offs between parameter sets. An
arbitrarily large number of values may be included in each set Si, thereby in-
creasing design space resolution, since the number of simulations is decoupled
from set cardinality via random sampling. We sample uniformly at random
(UAR) from the design space S to obtain unbiased observations and to control
the exponentially increasing number of design points as parameter count and
resolution increases [Lee and Brooks 2006]. Spatial sampling complements ex-
isting techniques in trace sampling [Sherwood et al. 2002; Wunderlich et al.
2003]. Figure 1 illustrates a combination of trace and spatial sampling to reduce
the costs per simulation and the number of required simulations, respectively.

2.3 Alternative Sampling Strategies

For comparison, other sampling strategies have been proposed to increase the
predictive accuracy of machine learning models for the microarchitectural de-
sign space. These techniques generally increase sample coverage of the design
space or emphasize samples considered more important to model accuracy.

—Weighted sampling is a strategy for emphasizing samples in particular de-
sign regions given samples from the broader space. Emphasized samples
are weighted to increase their influence during model training. Weighted
sampling may improve model accuracy for design regions known to exhibit
greater error.

1FO4 delay is defined as the delay of one inverter driving four copies of an equally sized inverter.
When logic and latch overhead per pipeline stage is measured in terms of FO4 delay, deeper
pipelines have smaller FO4 delays.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:6 • B. C. Lee and D. Brooks

Fig. 1. Simulation Paradigm :: temporal and spatial sampling.

—Regional sampling also emphasizes samples from particular design regions
given samples from the broader space. Instead of using a continuous range
of weights, this approach specifies a region of interest and excludes unde-
sired samples during model training (effectively binary weights). Regional
sampling might be used to construct localized models from samples collected
uniformly at random from the entire space. This approach may be necessary
if regions of interest are unknown prior to sampling but become known after
exploratory data analysis [Lee and Brooks 2006].

—Adaptive sampling estimate model error variances for each sampled design.
Samples with larger variances are likely poorly predicted and including
such samples for model training may improve accuracy. These error-prone
samples are iteratively added to the training set, with each iteration choosing
a sample with large error variance and most different from those already
added [Ipek et al. 2006].

—Latin hypercube sampling and space-filling seek to maximize design space
coverage. Hypercube sampling guarantees each parameter value is repre-
sented in the sampled designs. Space-filling metrics are used to select the
most uniformly distributed sample from the large number of hypercube sam-
ples that exist for any given design space [Joseph et al. 2006b].

While these techniques seek to maximize design space coverage and improve
the accuracy of models constructed from the resulting samples, they are also
more complex and computationally expensive. Determining inclusion in re-
gional sampling requires distances computed between all collected samples,
an expensive operation in high dimensions that must be performed for each
region of interest. UAR sampling is parallel, but adaptive sampling introduces

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:7

a feedback loop that limits this parallelism. Hypercube sampling and space-
filling techniques guarantee sample properties that are only approximated by
uniform at random sampling, but such a guarantee increases sampling com-
plexity. Collectively, these sampling strategies provide options for improving
model accuracy.

3. REGRESSION MODELING

Regression modeling is the third part of the simulation paradigm. We apply
regression modeling to efficiently obtain estimates of microarchitectural design
metrics, such as performance and power. We apply a general class of models
in which a response is modeled as a weighted sum of predictor variables plus
random noise. Since basic linear estimates may not adequately capture nu-
ances in the response-predictor relationship, we also consider more advanced
techniques to account for potential predictor interactions and nonlinear re-
lationships. A statistically robust derivation applies hierarchical clustering,
association and correlation analysis, and residual analysis. Lastly, we assess
model effectiveness and predictive ability. This article surveys the derivation
with further detail available in prior work [Lee and Brooks 2006].

3.1 Model Formulation

For a large universe of interest, suppose we have a subset of n observations
for which values of the response and predictor variables are known. Let �y =
y1, . . . , yn denote observed responses. For a particular point i in this universe,
let yi denote its response and �xi = xi,1, . . . , xi,p denote its p predictors. Let
�β = β0, . . . , βp denote regression coefficients used in describing the response as
a linear function of predictors plus a random error ei, as shown in Equation (1).
The ei are assumed independent random variables with zero mean and constant
variance; E(ei) = 0 and V ar(ei) = σ 2. Transformations f and �g = g1, . . . , gp may
be applied to the response and predictors, respectively, to improve model fit by
stabilizing a nonconstant error variance or accounting for nonlinear predictor-
response relationships.

f (ŷi) = β0 +
p∑

j=1

β j gj(xij) + ei (1)

Fitting a regression model to observations, by determining the p + 1 co-
efficients in �β, enables response prediction. The method of least squares is
commonly used to identify the best-fitting model by minimizing S(�β), the sum
of squared deviations of predicted responses given by the model from actual
observed responses. S(�β) may be minimized by solving a system of p+1 partial
derivatives of S with respect to β j , j ∈ [0, p]. The solutions to this system are
estimates of the coefficients.

S(β0, . . . , βp) =
n∑

i=1

(yi − ŷi)2 (2)

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:8 • B. C. Lee and D. Brooks

In the context of microprocessor design, the response y represents a metric
of interest (e.g., performance or power) and the predictors x represent design
parameter values (e.g., pipeline depth or L2 cache size).

3.2 Predictor Interaction

In some cases, the effect of two predictors x1 and x2 on the response cannot be
separated; the effect of x1 on y depends on the value of x2 and vice versa. The
interaction between two predictors may be modeled by constructing a third
predictor x3 = x1x2 to obtain yi = β0 + β1x1 + β2x2 + β3x1x2 + ei. Modeling
predictor interactions in this manner makes it difficult to interpret β1 and β2

in isolation. After simple algebraic manipulation to account for interactions,
we find β1 + β3x2 is the expected change in y per unit change in x1 for a
fixed x2. The difficulties of these explicit interpretations of �β for more complex
models lead us to prefer more indirect interpretations of the model via its
predictions.

We draw on domain-specific knowledge to specify predictor interactions. For
example, domain knowledge provides Equation (3), which states the speed-up
from pipelining increases with pipeline depth and decreases with the number
of stalls per cycle [Hennessy and Patterson 2003]. Such insight leads to a
relationship between depth and cache structure, which in turn leads to the
interaction specified by Equation (3). Suppose x1 is pipeline depth and x2 is L2
cache size. As the L2 cache size decreases, memory stalls per instruction will
increase and instruction throughput gains from pipelining will be impacted.

Speeduppipe = Depthpipe

Stallspipe
∝ DepthpipeCache ∝ x1x2 (3)

Similarly, we might expect pipeline width to interact with register file and
queue sizes. We also specify interactions between sizes of adjacent cache levels
in the memory hierarchy (e.g., L1 and L2 cache size interaction). Appendix A
illustrates the specification of these interactions in the R scripting language.
We do not attempt to capture all possible interactions, but seek to character-
ize the most significant effects through domain knowledge. While automated
approaches to parameter selection (e.g., step-wise regression [Harrell 2001])
might be used, the accuracy of our models suggest our high-level representa-
tion of interactions is sufficient for effective performance and power modeling
[Lee and Brooks 2006].

3.3 Nonlinearity

Basic linear regression models assume the response behaves linearly in all
predictors. This assumption is often too restrictive (e.g., power increases su-
perlinearly with pipeline depth) and several techniques for capturing nonlin-
earity may be applied. The most simple of these techniques is a polynomial
transformation on predictors suspected of having a nonlinear correlation with
the response. However, polynomials have undesirable peaks and valleys that
are determined by the degree of the polynomial and are difficult to manipu-
late. Furthermore, a good fit in one region of the predictor’s values may unduly

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:9

Fig. 2. Restricted Cubic Spline :: 5 knots with linear tails.

impact the fit in another region of values. For these reasons, we consider splines
a more effective technique for modeling nonlinearity.

Spline functions are piecewise polynomials used in curve fitting [Harrell
2001]. The function is divided into intervals defining multiple different contin-
uous polynomials with endpoints called knots. The number of knots can vary
depending on the amount of available data for fitting the function, but more
knots generally leads to better fits. Relatively simple linear splines may be
inadequate for complex, highly curved relationships. Splines of higher order
polynomials may offer better fits and cubic splines have been found particu-
larly effective [Stone and Koo 1986]. Unlike linear splines, cubic splines may
be made smooth at the knots by forcing the first and second derivatives of the
function to agree at the knots. However, cubic splines may have poor behavior
in the tails before the first knot and after the last knot. Restricted cubic splines
that constrain the function to be linear in the tails are often better behaved
(Figure 2).

The choice and position of knots are variable parameters when specifying
nonlinearity with splines. Stone and Koo [1986] found the location of knots in
a restricted cubic spline to be much less significant than the number of knots.
Placing knots at fixed quantiles of a predictor’s distribution is a good approach
in most datasets, ensuring a sufficient number of points in each interval. As
the number of knots increases, flexibility improves at the risk of overfitting the
data. In many cases, four knots offer an adequate fit of the model and is a good
compromise between flexibility and loss of precision from overfitting [Harrell
2001]. We vary the number of knots to explore the trade-offs between flexibility
and fit, finding rapidly diminishing marginal returns in fit from more than five
knots that do not justify the larger number of terms in the model.

The strength of a predictor’s correlation with the response will determine
the number of knots in the transformation. A lack of fit for predictors highly
correlated with the response will have a greater negative impact on accuracy
and we assign more knots to such predictors. As shown in Appendix A, pre-
dictors with stronger performance relationships will use 4 knots (e.g., pipeline
depth and register file size) and those with weaker relationships will use 3
knots (e.g., latencies, cache sizes) [Lee and Brooks 2006].

Splines are nonlinear transformations on predictors, but transformations
may also be needed for the response. A square-root transformation on the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:10 • B. C. Lee and D. Brooks

response (f (y) = √
y) is particularly effective for reducing error variance in

our performance models. Similarly, a log transformation (f (y) = log(y)) more
effectively captures superlinear trends in our power model. The

√
y and log(y)

transformations are standard from the statistics literature and were empiri-
cally shown effective for reducing error and bias in our analyses [Harrell 2001].
We fit a transformed response f (y) but quantify accuracy for the original re-
sponse y (Section 3.5).

3.4 Model Derivation

The statistically rigorous derivation of performance and power models empha-
sizes the role of domain knowledge in computer engineering when specifying
the model’s functional form. This approach leads to models consistent with
prior intuition about the design space. Furthermore, association and correla-
tion analyses before model specification prune unnecessary, ineffective predic-
tors to improve model efficiency. Specifically, we consider the following design
process for regression modeling.

(1) Hierarchical Clustering. Clustering examines correlations between poten-
tial predictors and enables elimination of redundant predictors. Predictor
pruning controls model size, thereby reducing risk of overfitting and im-
proving model efficiency during formulation and prediction.

(2) Association Analysis. Scatterplots qualitatively capture approximate
trends of predictor-response relationships, revealing the degree of non-
monotonicity or nonlinearity. Scatterplots with low response variation as
predictor values change may suggest predictor insignificance, enabling fur-
ther pruning.

(3) Correlation Analysis. Correlation coefficients quantify the relative strength
of predictor-response relationships observed in the scatterplots of associ-
ation analysis. These coefficients impact our choice in nonlinear transfor-
mations for each predictor.

(4) Model Specification. Domain-specific knowledge is used to specify predic-
tor interaction. The correlation analysis is used to specify the degree of
flexibility in nonlinear transformations. Predictors more highly correlated
with the response will require more flexibility, since any lack of fit for these
predictors will impact overall model accuracy more. Given the model’s func-
tional form, least squares determines regression coefficients.

(5) Assessing Fit. The R2 statistic quantifies the fraction of response variance
captured by the model’s predictors. Larger R2 suggests a better fit to train-
ing data. Normality and randomness assumptions for model residuals are
validated using quantile-quantile plots and scatterplots. Residual normal-
ity and randomness are prerequisites to any further significance testing.
Lastly, predictive ability is assessed by performance and power predictions
on a set of randomly selected validation points.

This process leads to a model specification, illustrated by example in Appendix
A.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:11

Fig. 3. Model Accuracy :: error distribution for 100 random validation designs.

3.5 Prediction

Once �β is determined, evaluating Equation (1) for a given xi will give the
expectation of ŷi = E[yi] in Equation (4). This result follows from observing the
additive property of expectations, the expectation of a constant is the constant,
and the random errors are assumed to have zero mean.

f (ŷi) = E[f (yi)] = E
[
β0 +

p∑
j=1

β j gj(xij)
]

+ E[ei] = β0 +
p∑

j=1

β j gj(xij) (4)

Figure 3 presents boxplots of the error distributions from performance and
power predictions of 100 validation points sampled UAR from the design space.
Note that these 100 validation points are collected separately and indepen-
dently from training points. The error is computed as |obs − pred|/pred. Box-
plots are graphical displays of data that measure location (median) and disper-
sion (interquartile range), identify possible outliers, and indicate the symmetry
or skewness of the distribution. Boxplots are constructed by

—horizontal lines at median and upper, lower quartiles;
—vertical lines drawn up/down from upper/lower quartile to most extreme

data point within a factor of 1.5 of the IQR (interquartile range—the differ-
ence between first and third quartile) of the upper/lower quartile with short
horizontal lines to mark the end of the vertical lines;

—circles to denote outliers.

Boxplots highlight quartiles, which are more representative of accuracy than an
average error; averages can be biased by outliers. Medians are less susceptible
to bias and can provide a better picture of error distributions.

Figure 3 indicates the performance model achieves median errors ranging
from 3.7% (ammp) to 11.0% (mesa) with an overall median error across all
benchmarks of 7.2%. Power models are slightly more accurate with median
errors ranging from 3.5% (mcf) to 7% (gcc) and an overall median of 5.4%.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:12 • B. C. Lee and D. Brooks

Fig. 4. Bias Analysis :: ammp model error for varying depths.

Fig. 5. Bias Analysis :: ammp model error for varying register counts.

3.6 Bias Analysis

The boxplots assess the high-level accuracy of the models across randomly
chosen design points. However, we should also assess model bias for particular
parameters or regions of the design space. We graphically check for biases by
ensuring prediction error is random around zero for various parameter values.
Figures 4 and 5 are representative of the trends across the benchmark suite and
various design parameters. Each figure considers predicted validation points
with various parameter values. For example, Figure 4 takes all validated points
at a depth d and plots the error quartiles for each d from 9 to 36 fan-out-of-
four (FO4) delays per stage. These particular figures suggest the models are
generally unbiased with median performance and power errors distributed
between ±6% for various pipeline depths and register file sizes. An indication
of possible bias is the tail of positive performance errors for 40-entry register
files. In general, however, there are no obvious deviations from randomness
to suggest obvious biases and bias might be re-examined if the user observes
suspicious trends when applying the model. Similar results are obtained for
other benchmarks and parameters.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:13

Fig. 6. Performance error correlation across benchmarks, parameters.

Fig. 7. Power error correlation across benchmarks, parameters.

Figures 6 and 7 summarize the measured model bias by reporting correla-
tions between model error, benchmarks and parameters. Given that correlation
coefficients range from −1 to 1, errors from ideally unbiased models will have
a correlation of zero. The figures on the left illustrate correlations between er-
ror and benchmarks summarized across all parameters. For example, Figure 6
illustrates a median error correlation of −0.011 for ammp. This value com-
putes the correlation between ammp model error and parameter value for each
of the seven parameters. The median of these seven correlation coefficients is
reported as −0.011. Thus, the figures on the left summarize error correlations
across the full range of parameters for each benchmark. Similarly, the figures
on the right summarize error correlations across the full range of benchmarks
for each parameter.

The performance correlations of Figure 6 are distributed around zero with
very small correlations (less than 0.05), suggesting an unbiased performance
model with errors correlated with neither benchmark nor parameter. The power
analyses of Figure 7 indicate a small positive bias, suggesting errors tend to
increase with larger parameter values. However, this correlation is less than
0.05 in most cases and is unlikely to cause any significant problems when
applying the model.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:14 • B. C. Lee and D. Brooks

The current bias study examines global biases at coarse granularity only.
Such a study indicates the models are unbiased for predictions randomly chosen
across the entire design space. However, we may observe nontrivial biases
at fine granularity in which all predictions within a region of interest are
biased either positive or negative. These regional biases arise from a mismatch
between global samples used in model formulation and local model usage. Such
biases may be mitigated by reformulating models solely with samples from
the region of interest. Since this article’s studies evaluate models for points
throughout the design space, a lack of global bias is sufficient.

3.7 Design Space Studies

Given the accuracy of regression models, we present applications of perfor-
mance and power regression modeling to three representative design space
studies.

—Pareto frontier analysis. Comprehensively characterize the design space, con-
structing a regression predicted Pareto frontier in the power-delay space.

—Pipeline depth analysis. Combine regression and the framework of prior
pipeline depth studies to identify bips3/w maximizing depths. Enhance prior
studies by varying all design parameters simultaneously instead of fixing
most nondepth parameters.

—Multiprocessor heterogeneity analysis. Identify bips3/w maximizing archi-
tectures for each benchmark via regression. Cluster these architectures to
identify compromise designs and power-performance benefits from varying
degrees of core heterogeneity.

We formulate models using samples from the training space of 375,000 points
(Table I). We explore a design space of 262,500 points ranging that includes
depths from 12FO4 to 30FO4, which is smaller than the original sample space of
375,000 points that include 9FO4, 33FO4, and 36FO4 depths. The sample space
should be larger than the design space for exploration to mitigate errors from
extrapolation. We exclude 9FO4, 33FO4, and 36FO4 from exploration, since
performance and power trends do not change dramatically in these extreme
design regions [Zyuban et al. 2004].

4. PARETO FRONTIER ANALYSIS

Pareto optimality is an economic concept with broad applications to engineer-
ing. Given a set of design parameters and a set of design metrics, a Pareto
optimization changes the parameters to improve at least one metric without
negatively impacting any other metric. A design is Pareto optimal when no
further Pareto optimizations can be implemented. For the microarchitectural
design space, Pareto optima are designs that minimize delay for a given power
budget or minimize power for a given delay target. A Pareto frontier is defined
by a set of Pareto optima.

Regression models enable a complete characterization of the microarchitec-
tural design space. We leverage the computational efficiency of regression to
perform an exhaustive evaluation of the design space containing more than

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:15

Fig. 8. Design Characterization :: predicted delay, power of all designs for representative bench-
marks; arrows indicate trends as parameter values change; colors map to L2 cache sizes.

260,000 points. Such a characterization reveals all trade-offs between a large
number of design parameters simultaneously compared to an approach that
relies on per parameter sensitivity analyses. Given this characterization, we
construct Pareto frontiers. While we cannot explicitly validate the regression
identified Pareto frontier against a hypothetical frontier found by exhaustive
simulation, the former is likely close to the latter given the accuracy observed
in validation.

4.1 Design Space Characterization

Figure 8 plots the predicted delay (inverse throughput) and power of the de-
sign space by exhaustively evaluating the regression models for representative
benchmarks. The design space is characterized by several overlapping clus-
ters of similar designs. Each cluster contains designs with a particular pipeline
depth-width combination. For example, the shaded mcf cluster with delay rang-
ing from 1.9 to 5.3 seconds and power ranging from 100 to 160 watts minimizes
delay at the greatest power cost with depth of 12FO4 and decode bandwidth of
8 instructions per cycle.

The arrows of Figure 8 identify power-delay trends as a particular resource
size increases. Consider the shaded 12FO4, 8-wide design clusters for ammp
and mcf. Mcf experiences substantial performance benefits from larger caches
with delay shifting from 5.3 to 1.9 seconds as L2 cache size shifts from
0.25MB to 4MB. In contrast, ammp sees increasing power costs with limited
performance benefits of 1.0 to 0.8 seconds as L2 cache size increases by
the same amount. Ammp also appears to exhibit greater instruction level
parallelism, effectively utilizing additional physical registers and reservation
stations to reduce delay from approximately 1.8 to 0.8 seconds compared to
mcf’s reduction of 2.5 to 2.0 seconds.

4.2 Pareto Frontier Identification

Given a design space characterization, Figure 9 plots regression predicted
Pareto optima. These optima minimize delay for a given power budget. Given

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:16 • B. C. Lee and D. Brooks

Fig. 9. Pareto Frontier :: Pareto optima for representative SPEC CPU benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:17

Table II. Efficient Designs :: bips3/w Maximizing Architectures Per Benchmark

Depth I-$ D-$ L2-$ Delay Err Power Err
(FO4) Width Reg Resv (KB) (KB) (MB) Model (%) Model (%)

ammp 27 8 130 12 32 128 2 1.0 0.2 35.9 −3.9
applu 27 8 130 15 16 8 0.25 0.8 −0.8 39.6 0.1
equake 27 8 130 15 64 8 0.25 1.2 −0.8 41.5 −3.0
gcc 15 2 70 9 16 8 1 1.2 5.2 44.1 −6.0
gzip 15 2 70 6 16 8 0.25 0.8 8.8 24.2 0.0
jbb 15 8 80 12 16 128 1 0.6 −4.7 80.9 1.6
mcf 30 2 70 6 256 8 4 3.5 2.4 12.9 −3.0
mesa 15 8 80 13 256 32 0.25 0.4 5.2 86.9 −7.1
twolf 27 8 130 15 128 128 2 1.1 −1.2 34.5 −3.6

regression models and exhaustively predicted power and delay characteristics,
the frontier is constructed by discretizing the range of delays and identifying
the design that minimizes power for each delay in a number of delay targets.
These designs are Pareto optimal with respect to the regression models but
may not be the same optima obtained via a hypothetical exhaustive simulation
of the space.

Although Pareto optima are useful for particular delay or power targets,
not all Pareto optima are power-performance efficient with respect to bips3/w,
the inverse energy delay-squared product.2 We compute the efficiency metric
for each design on the Pareto frontier and identify the most efficient designs
in Table II. The bips3/w optimal design for ammp is located at 1.0 seconds
and 35.9 watts in the delay-power space, the knee of the Pareto optimal curve.
Similarly, the mcf bips3/w optimal design is located at 3.5 seconds and 12.9
watts. Overall, these optima are drawn from diverse design regions motivating
comprehensive space exploration.

The boxes of Figure 9 identifies a region around the bips3/w optima for each
benchmark. Although Table II indicates these optima occupy very different
parts of the design space, they reside in very similar regions of the power-delay
space. Most of the optima are located between 0.5 and 1.5 seconds, 25 and 50
watts with obvious exceptions in mcf and mesa.

4.3 Pareto Frontier Validation

Figure 9 superimposes simulated and predicted Pareto frontiers, suggesting
good relative accuracy. Regression effectively captures the delay-power trends
of the Pareto frontier. As performance prediction is less accurate than power
prediction, however, differences are often characterized by horizontal shifts
in delay. Performance model accuracy is the limiting factor for more accurate
Pareto frontier prediction across all benchmarks in our suite.

Performance errors are particularly evident for benchmark mcf. This ap-
plication is relatively memory bound and many designs occupy the high-
delay region of the space. Thus, low-delay points are rare and tend to be

2bips3/w is a voltage invariant power-performance metric derived from the cubic relationship
between power and voltage [Brooks et al. 2000].

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:18 • B. C. Lee and D. Brooks

Fig. 10. Pareto Frontier Accuracy :: complete error distribution for Pareto optima.

overestimated, as high-delay points exert greater influence during model fit-
ting. This bias might be addressed by customizing a sampling strategy for mcf,
which might assign greater weight to low-delay training samples. Benchmark
mcf performance errors are more an exception than a common case and ammp
is more representative of Pareto frontier accuracy.

Figure 10 presents the error distributions for the performance and power
prediction of points on the Pareto frontier. The median performance error
ranges from 4.3% (ammp) to 15.6% (mcf) with an overall median of 8.7%. Sim-
ilarly, the median power error ranges from 1.4% (mcf) to 9.5% (applu) with an
overall median of 5.5%. These error rates are consistent with the performance
and power median error rates of 7.2% and 5.4% observed in the validation of
random designs (Figure 3), suggesting predictions for Pareto optima are gen-
erally as accurate as those for the overall design space. As shown in Table II,
errors associated with bips3/w optimal predictions are also consistent with
those for the broader space. Delay errors range from 0.2% to 8.8% while power
errors range from 0.1% to 7.1%.

Note regression models are evaluated exhaustively for the design space to
perform Pareto frontier validation; performance and power is predicted for
every point in the space; the frontier is read off from these predictions. By
comparing simulated and predicted metrics for designs estimated to be Pareto
optimal, we find regression is accurate for designs in efficient regions of the
space. However, this validation does not indicate whether regression models
identify the same Pareto frontier that would have been identified by simulation
alone. Identifying a frontier through exhaustive simulation to perform this
comparison is prohibitively expensive.

In practice, not all Pareto optima are interesting and viable designs. The
high-power or high-delay designs located at the frontier extrema are not par-
ticularly interesting due to unfavorable power and delay trade-offs. For the
majority of benchmarks, we find our models may be more accurate for the more
interesting points near the bips3/w optimum of Table II. Figure 11 presents
restricted error distributions from considering only Pareto optima with de-
lay and power within 25% of the bips3/w optimal delay and power (boxes of
Figure 9).

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:19

Fig. 11. Pareto Frontier Accuracy :: restricted error distribution for Pareto optima.

Comparing complete and restricted error distributions, we find the median
and interquartile range decrease for a majority of benchmarks as we exam-
ine only the region around the bips3/w optimum. The restricted performance
and power error distributions are more favorable for five and six benchmarks,
respectively. Models are more effective for the interior of the design space as
interpolation is often more accurate than extrapolation. Since bips3/w optimal
designs often reside within the interior of the design space, moderating re-
source allocations to balance performance and power, models are likely more
accurate for bips3/w optimal designs.

The differing error distributions between Figures 10 and 11 motivate future
work on hierarchical modeling schemes in which high-level models are con-
structed for a comprehensive design space to identify regions of interest around
particular optima or bips3/w maximizing designs. Further detail and accuracy
may be achieved by performing constrained spatial sampling and constructing
localized regression models for this region of interest. Such a scheme overcomes
the models’ potential regional biases and may further reduce model error as
we shift emphases from the complete design space to particular subspaces.

5. PIPELINE DEPTH ANALYSIS

Prior pipeline studies considered various depths while holding most other de-
sign parameters at constant values, in part, to control the simulation costs
of varying multiple parameters simultaneously [Hartstein and Puzak 2002;
Hrishikesh et al. 2002; Zyuban and Strenski 2003]. Thus, constraining the
space may lead to narrowly defined studies with conclusions that may not gen-
eralize. Regression models enable a more complete characterization of pipeline
depth trends by allowing other design parameters to vary simultaneously. A
more comprehensive depth analysis ensures observed trends are not an artifact
of the constant baseline values to which other parameters are held.

Pipeline depth is specified by the number of FO4 inverter delays per pipeline
stage. When logic and latch overhead per pipeline stage is measured in terms
of FO4 delay, deeper pipelines have smaller FO4 delays. We consider pipeline
ranging from 12FO4 to 30FO4 to compare and contrast the following.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:20 • B. C. Lee and D. Brooks

Table III. Baseline Architecture

Processor Core

Decode Rate 4 nonbranch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat

Pipeline Dimensions

Pipeline Depth 19FO4 delays per stage
Pipeline Width 4-decode

Fig. 12. Comparative Efficiency :: original [line plot] and enhanced [boxplots] analyses relative to
original bips3/w optimum; bips3/w efficiency validation.

—Original analysis. Consider the POWER4-like baseline architecture of
Table III, predicting power-performance efficiency as depth varies and all
other design parameters are held constant at baseline values.

—Enhanced analysis. Consider the design space of Table I, predicting efficiency
as parameters vary simultaneously.

5.1 Pipeline Depth Trends

The line plot of Figure 12 presents predicted efficiency relative to the bips3/w

maximizing baseline design in the constrained original analysis. A total of
18FO4 delays per stage is optimal for an average of the benchmark suite.
Although choosing the deepest or shallowest pipeline will achieve only 85.9%
or 87.6% of the optimal efficiency, respectively, the models suggest a plateau
around the optimum and not a sharp peak. The superimposed boxplots of
Figure 12 show the efficiency distribution of the 37,500 designs for each pipeline

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:21

depth in the enhanced analysis.3 By graphically presenting efficiency quartiles,
the boxplot for 18FO4 designs indicate 75%, 50%, and 25% of these designs
achieve efficiency of at least 79%, 102%, and 131% of the original bips3/w

optimum.
The maxima of these boxplots constitute a potential bound on bips3/w effi-

ciency achievable in this design space with up to 2.1× improvements at the op-
timal 18FO4 pipeline depth.4 These bounding architectures are characterized
by wide pipelines as well as larger queue and register file sizes. The efficiency
of wide pipelines are likely a result of the energy-efficient functional unit clus-
tering modeled by the simulator, which enables near linear power increases
as width increases [Zyuban and Kogge 2001]. However, our power models also
account for superlinear width power scaling for structures such as the multi-
ported register file, memory units, rename table, and forwarding logic [Zyuban
and Kogge 2001]. Larger queue and reservation resources result from deeper
pipelines and more instructions in flight.

The points at which the line plot intersect the boxplots indicate unexploited
efficiency. Intersection at a lower point in the boxplot indicates a larger number
of configurations are predicted more efficient than baseline at a particular
depth. More than 58% of 12FO4 and 39% of 30FO4 designs are predicted
more efficient than baseline, corresponding to more than 21,000 and 14,000
designs, respectively. Such a large number of more efficient designs is not
surprising, however, since the baseline resembles designs for server workloads
with less emphasis on energy efficiency. Less-efficient designs may be pruned
from further study enabling more judicious use of detailed simulators should
additional simulation be necessary.

Predicted efficiency penalties for suboptimal depths are also more significant
for the bound architectures. The bips3/w maximizing depth is 15FO4 to 18FO4
and the suboptimal 30FO4 design achieves 88% of the optimal efficiency, in-
curring a 12% efficiency penalty. The numbers above each boxplot in Figure 12
quantify each bound architecture’s efficiency relative to that of the bips3/w

maximizing bounding architecture. While the bounding architectures are also
most efficient at 15FO4 to 18FO4, the suboptimal 30FO4 design achieves only
81% of the optimal efficiency and incurs a 19% penalty. This trend is observed
for all depths shallower than the optimal 18FO4. Since bound architectures are
characterized by wider pipelines, choice of depth becomes more significant. For
the average across our benchmark suite, wide pipelines with shallow depths
will result in greater design imbalances and power-performance inefficiencies.

Figure 14 presents the distribution of data cache sizes in the most efficient
designs at each depth. In particular, we take the 37,500 designs at each depth
and consider designs in the 95th percentile (i.e., 1,875 designs in the top 5%
of each depth’s boxplot). Small 8KB data caches are observed for 20.3% of top

3Given |S| = 272,500 points in the design space and seven possible depths (12FO4 to 30FO4 in
steps of 3FO4), there are 37,500 designs for each depth.
4The 2.1× improvement over the IBM Power4 18FO4 baseline likely arises from a difference in
target workloads. Customized architectures for nine specific workloads from Section 2.1 will be
more efficient than the baseline IBM Power4 18FO4 pipeline, which likely targeted a broader
range of applications.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:22 • B. C. Lee and D. Brooks

Fig. 13. Metric Validation :: performance, power validation for varying depths.

Fig. 14. Data Caches and Depth :: distribution of d-L1 cache sizes for designs in 95th percentile.

designs at 30FO4, while such caches are optimal for only 1.4% of top designs at
12FO4. The percentage of top designs with larger 64KB caches increases from
22.8% to 34.4% with deeper pipelines. Thus, smaller caches are increasingly
viable at shallow pipelines, while top designs often have larger caches at deep
pipelines. This frequency analysis confirms our intuition that deeper pipelines
favor larger caches to mitigate the increased costs of cache misses. This anal-
ysis also illustrates variability in the most efficient designs and the effect of
parameter interactions.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:23

5.2 Pipeline Depth Validation

Figure 12 validates the bips3/w predictions, suggesting regression captures
high-level trends in both analyses. The models correctly identify the most effi-
cient depths to within 3FO4 and capture the difference in efficiency penalties
from suboptimal depths between the two analyses. Whereas models predict
12% and 19% penalties, simulation identifies 52% and 67% penalties relative
to 15FO4 for the original and enhanced analyses, respectively. Thus, the sig-
nificance of the optimum and penalties for suboptima are more pronounced in
simulation. Suboptima are more likely located at the extreme regions of the
design space, resulting in greater extrapolation error.

Although the models are accurate for capturing high-level trends, bips3/w

error rates are larger than those for performance and power. However, the
bips3/w validation obscures underlying performance and power accuracy. By
decomposing the validation of bips3/w in Figure 13, we find the underlying
models exhibit good relative accuracy, effectively capturing performance and
power trends. Since predictions from less accurate performance models must
be cubed to compute bips3/w, performance model errors are also cubed and neg-
atively impact bips3/w accuracy. Countering these effects is continuing work.

6. MULTIPROCESSOR HETEROGENEITY ANALYSIS

As shown in Table II, regression models may be used to identify the bips3/w

optimal architectures for each benchmark. In a uniprocessor or homogeneous
multiprocessor design, the core is designed as an approximate compromise
between these per benchmark optima to accommodate a range of workloads.
Heterogeneous multiprocessor core design mitigates the efficiency penalties
of this compromise [Kumar et al. 2004]. However, prior work considered lim-
ited design spaces due to simulation costs. We combine regression modeling
and clustering analyses to enable a more general exploration of core designs
in heterogeneous architectures. This study identifies design compromises for
the bips3/w design metric and quantifies a theoretical upper bound on the po-
tential efficiency gains from high-performance heterogeneity, neglecting any
associated multiprocessor overhead.

In particular, we combine our regression models with K-means clustering. A
K-clustering of a set S is a partition of the set into K subsets, which optimizes
some clustering criterion, usually a similarity metric. Well-defined clusters are
such that all objects in a cluster are very similar and any two objects from
distinct clusters are very dissimilar. General K-clustering is NP-hard and K-
means clustering is a heuristic approximation.

6.1 Clustering Methodology

We first completely characterize the design space via regression to iden-
tify the bips3/w maximizing architectures for each benchmark in our suite
(Table II). These designs constitute the set to be partitioned into K subsets
when clustering. The optimal design parameters exhibit significant diversity
across benchmarks with depth ranging from 15FO4 to 30FO4, width ranging
from two to eight instructions decoded per cycle, and L2 caches ranging from

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:24 • B. C. Lee and D. Brooks

Table IV. K = 4 Compromise Architectures :: Microarchitectural Designs

I-$ D-$ L2-$ Avg Delay Avg Power
Cluster Depth Width Reg Resv (KB) (KB) (MB) Model Model

1 15 8 80 12 64 64 0.5 2.26 82.17
2 27 8 130 14 32 32 0.5 1.05 32.53
3 15 2 70 8 16 8 0.5 0.93 37.55
4 30 2 70 6 256 8 4 0.29 12.91

0.25MB to 4MB. Each benchmark’s execution characteristics are reflected in
its optimal architecture. For example, compute-intensive gzip has the smallest
L2 cache, while memory-intensive mcf has the largest.

We perform K-means clustering for these nine benchmark architectures to
identify compromise architectures. The heuristic for K clusters consists of the
following.

(1) Define K centroids, one for each cluster, and place randomly at initial loca-
tions in space containing objects to be clustered.

(2) Assign each object to cluster with closest centroid.
(3) When all objects have been assigned, recompute placement of K centroids

such that its distance to objects in its cluster is minimized.
(4) Since centroids may have moved in Step 3, object assignment to clusters

may change. Thus, Steps 2 and 3 are repeated until centroid placement is
stable.

We use a normalized and weighted Euclidean distance as our measure of
similarity in Steps 2 and 3. For a particular design parameter, we normal-
ize its values by subtracting its mean and dividing by its standard deviation.
Furthermore, we weight these normalized values by the parameter’s correla-
tion coefficient with bips3/w, effectively giving greater emphasis to parameters
with a greater impact on bips3/w in the distance calculation. Thus, if correla-
tion coefficients ρ2

i > ρ2
j , an increase in parameter pi will change the distance

more than the same increase in parameter pj . The distance between two ar-
chitectures represented by vectors �a,�b of p parameter values is determined
by normalizing and weighting the values in �a,�b and computing the Euclidean
distance.

For example, pipeline depth values range from 12FO4 to 30FO4 in incre-
ments of 3 with a mean of 21 and standard deviation of 6.48. The normalized
depth values range from −1.39 to 1.39 with mean 0 and standard deviation of
1.0. We then utilize the 1,000 samples used in regression model formulation
to compute the correlation between depth and bips3/w and obtain a weighting
factor.

6.2 Heterogeneity Efficiency

Each cluster from K-means corresponds to a grouping of similar architectures
and each centroid represents its cluster’s compromise architecture. We take
the number of clusters as the number of distinct compromise designs and,
thus, a measure of heterogeneity. Table IV uses a K = 4 clustering to identify

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:25

Fig. 15. Optimization and Clustering :: delay, power for per benchmark optima of Table II (radial
points) and resulting compromises of Table IV (circles).

compromise architectures and their average power-delay characteristics when
executing their associated benchmarks. This analysis illustrates our models’
ability to identify optima and compromises occupying diverse parts of the de-
sign space. For example, the four compromise architectures capture all combi-
nations of pipeline depths and widths. Cluster 1 contains the aggressive deep,
wide pipeline for jbb and mesa. Cluster 4, containing the memory-intensive
mcf, is characterized by a large L2 cache and shallow, narrow pipeline. Clusters
2 and 3 trade-off pipeline depth and width depending on application-specific
opportunities for instruction level parallelism. The ability to identify diverse
optima is increasingly important, as we observe microarchitectural differenti-
ation for various market segments and applications.

Figure 15 plots the delay and power characteristics of the nine benchmark
architectures executing their corresponding benchmarks (radial points). Ag-
gressive architectures with deep, wide pipelines are located in the upper left
quadrant and the less aggressive cores with shallow, narrow pipelines are lo-
cated in the lower right quadrant. Deep, narrow and shallow, wide architectures
both occupy the moderate center. The four compromise architectures executing
their benchmark clusters are also plotted (circles) to demonstrate the delay
and power compromises with associated per benchmark optima. Although we
cluster in a p-dimensional microarchitectural space, the strong relationship
between an architecture and its delay and power characteristics means we
also observe clustering in the two-dimensional delay-power space. Spatial lo-
cality between a centroid and its cluster’s objects suggest modest delay and
power penalties from architectural compromises. Thus, the delay and power
characteristics of the benchmark suite executing on a heterogeneous multipro-
cessor with these four cores are similar to those when executing on the nine

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:26 • B. C. Lee and D. Brooks

Fig. 16. Heterogeneity Trends :: predicted efficiency gains; cluster 0 is baseline of Table III, cluster
1 is homogeneous multicore from K-means, cluster 9 is heterogeneous multicore of Table II.

benchmark architectures. As a corollary, the benchmarks could achieve close
to ideal bips3/w efficiency on this heterogeneous design.

Figure 15 also reveals new opportunities for workload similarity analysis
based on resource requirements at the microarchitectural level. For example,
ammp, applu, equake, and twolf may be similar workloads, since they are most
efficient at similar pipeline dimensions and cache sizes. Prior work in similarity
analysis has been used to reduce the fraction of benchmark suites for microar-
chitectural simulation [Eeckhout and H. Vandierendonck 2003; Phansalkar
et al. 2005; Yi et al. 2005]. However, similarity exposed by microarchitectural
clustering may be most useful for hardware accelerator design. In the ideal case,
accelerators would be designed for every kernel of interest. However, resource
constraints necessitate compromises and the penalties from such compromises
may be minimized by designing an accelerator to meet the needs of multiple
similar kernels.

Figure 16 plots predicted bips3/w efficiency gains for the nine bench-
marks and the benchmark average as the number of clusters increases in the
K-means algorithm. Recall cluster count quantifies the degree of heterogene-
ity. Efficiency is presented relative to the POWER4-like baseline (cluster count
0). The homogeneous architecture identified by K-means clustering (cluster
count 1) is predicted to improve average efficiency by 1.46× with the largest
gains for mesa (4.6×) at the expense of mcf (0.46×). For three cores, all bench-
marks see benefits from heterogeneity resulting in an average gain of 1.9×.
We observe diminishing marginal returns in heterogeneity beyond 4 cores. The
four cores in Table IV are predicted to benefit efficiency by 2.2×, 8% less than
the theoretical upper bound of 2.4× that is achievable only from the much
greater heterogeneity of 7 to 9 cores. The benefits for nine different cores is the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:27

Table V. K = 4 Compromise Architectures
:: Benchmark Mapping

Cluster Benchmarks

1 jbb, mesa
2 ammp, applu, equake, twolf
3 gcc, gzip
4 mcf

Fig. 17. Heterogeneity Validation :: average bips3/w average efficiency validation, x-axis inter-
preted as in Figure 16.

theoretical upper bound on heterogeneity benefits as each benchmark executes
on its bips3/w maximizing core.

6.3 Heterogeneity Validation

Figure 17 compares the simulator reported heterogeneity gains against those
of our regression models. The models are pessimistic for lower degrees of het-
erogeneity (i.e., cluster counts less than four). The gap between predicted and
simulated efficiency narrows from 37.9% at cluster count 0 to 14.4% at clus-
ter count 3. The simulated four core average benefit is 2.0× compared to the
modeled benefit of 2.2×. This point of diminishing marginal returns from ad-
ditional heterogeneity is predicted with a 7.8% error; the regression models
are relatively optimistic. At higher degrees of heterogeneity (i.e., cluster counts
greater than 6), we observe much greater accuracy with error rates of less than
3%. The predicted upper bound on heterogeneity benefits of 2.4× is accurate
with only 1.7% difference in simulation.

Figure 18 assesses benchmark level effects, illustrating efficiency trends at
varying degrees of heterogeneity. The regression models effectively capture
application-specific effects. For example, in both simulation and model, we

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:28 • B. C. Lee and D. Brooks

Fig. 18. Heterogeneity Validation :: bips3/w efficiency validation for representative SPEC CPU
benchmarks, x-axis interpreted as in Figure 16.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:29

observe significant efficiency benefits for gzip, mesa at the expense of mcf when
heterogeneity is limited (i.e., low cluster counts). In effect, fewer clusters lead
to design compromises that favor the majority (gzip,mesa) over the minority
(mcf).

Figure 18 illustrates particularly poor relative accuracy for gzip, which arises
from a combination of model errors and K-means clustering artifacts. With
the exception of cluster count 4, benchmark gzip is assigned to clusters with
8-way superscalar designs for cluster counts 0 to 5. At 4 clusters, however, K-
means mis-classifies gzip into a 2-way superscalar design. Refined clustering
or postprocessed K-means might identify and eliminate the discontinuity at
K = 4.

Clustering artifacts aside, fewer clusters lead gzip to 8-way superscalar de-
signs for which performance tends to be underestimated, and more clusters
lead gzip to 4-way superscalar designs for which performance tends to be over-
estimated. Given that we observe good relative accuracy within a particular
superscalar width, these effects might be mitigated by a gzip-specific derivation
that builds separate regression models for each superscalar width.

We observe similar heterogeneity trends for benchmarks within the same
cluster. For example, Table V identified a cluster with ammp, applu, equake,
and twolf. Since these benchmarks have similar resource requirements at the
microarchitectural level, their achieved efficiency gains in the range of 1.5× to
2.0× are also similar. Collectively, these figures illustrate our models’ abilities
to capture the relative benefits of heterogeneity across benchmarks.

7. RELATED WORK

Fast simulation and improved design space exploration have been targets of
many prior efforts. Sampling and modeling reduce costs of performance and
power estimation for a variety of microarchitectural optimization studies.

7.1 Sampling and Modeling

Sampling. In contrast to this work, which focuses on spatial sampling for de-
signs, much prior work reduces simulation costs through temporal sampling for
representative instructions. SimPoint identifies phases from a workload, clus-
ters these phases, and takes phases in cluster centroids as representative of the
original workload during microarchitectural simulation [Sherwood et al. 2002].
By reducing sizes of instruction traces, SimPoint reduces costs per simulation.
SMARTS identifies the number of instructions needed for a representative sub-
set of the original workload [Wunderlich et al. 2003]. The number of samples is
chosen to achieve user-specified confidence intervals when estimating design
metrics, such as performance. Both SimPoint and SMARTS extract instruction
segments from the original trace to capture broader application behavior.

Similarly, statistical profiling reduces the fraction of a workload that must
be simulated [Eeckhout et al. 2003; Nussbaum and Smith 2001; Oskin et al.
2000] Such efforts recognize detailed simulations for specific benchmarks
are not feasible early in the design process. Instead, profiling produces rel-
evant program characteristics, such as instruction mix and data dependencies

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:30 • B. C. Lee and D. Brooks

between instructions. A smaller synthetic benchmark then replicates these
characteristics.

Introducing sampling and statistics into simulation reduces accuracy in re-
turn for gains in speed and tractability. While researchers in instruction sam-
pling and synthetic benchmarks suggest this trade-off for simulator inputs (i.e.,
workloads), we propose this trade-off for simulator outputs (i.e., performance
and power results). Temporal and spatial sampling should be applied jointly to
reduce costs per simulation and number of simulations, respectively.

Significance testing. Plackett-Burman matrices identify critical, statistically
significant microarchitectural design parameters to design optimal multifacto-
rial experiments [Yi et al. 2005]. This method fixes all noncritical parameters
to reasonable constants and performing extensive simulations that sweep a
range of values for the critical parameters. By designing experiments more
intelligently, designers use simulations more effectively and reveal more about
the design space.

Stepwise regression provides an automatic and iterative approach to adding
and dropping terms from a model depending on measures of significance
[Joseph et al. 2006a]. However, prior applications of stepwise regression use
these models for significance testing only and do not actually predict perfor-
mance. Although commonly used, stepwise regression has several problems
cited by Harrell [Harrell 2001]: (i) R2 values are biased high, (ii) standard
errors of regression coefficients are biased low leading to falsely narrow confi-
dence intervals, (iii) p-values are too small, and (iv) regression coefficients are
biased high.

Empirical modeling. Like regression, artificial neural networks can predict
microarchitectural [Ipek et al. 2006; Joseph et al. 2006b]. ANN training costs
for new, untrained applications can be reduced by expressing their performance
as a linear combination of performance predictions for previously modeled ap-
plications [Dubach et al. 2008]. Training weights in this linear model is less
expensive than training completely new application-specific models.

Comparing neural networks and spline-based regression models, we find
similar accuracy but also find trade-offs in efficiency and automation [Lee
et al. 2007]. Regression requires more rigorous statistical analysis, while neural
network construction is automated; the network is often treated as a black
box. Regression models are likely more computationally efficient than neural
networks. Regression models are constructed by solving linear systems and
evaluated by multiplying matrices and vectors. In contrast, neural networks
are constructed with gradient ascent and evaluated with nested weighted sums
in multilayer networks.

Analytical modeling. In contrast to empirical models, analytical models cap-
ture first-order design trends by encapsulating designers’ prior intuition and
understanding of the design space. A first-order model for analyzing pipeline
depth illustrates opposing design trends: Greater instruction-level parallelism
decreases the optimal depth, while fewer pipeline stalls increases the optimal
depth [Hartstein and Puzak 2002]. While trace-driven simulation can provide
measures of application parallelism that combine with analytical expressions of
microarchitectural capabilities to estimate performance [Noonburg and Shen

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:31

1994]. Similarly, analytical models can estimate performance by penalizing
idealized steady-state performance with miss events from the branch predictor
or cache hierarchy measured with fast, functional simulation [Karkhanis and
Smith 2007].

7.2 Design Space Exploration

We compare our approach to related work in characterizing the sensitivity of
design parameters, such as pipeline depth. We also draw on related work in
statistics to characterize the roughness of microarchitectural performance and
power topologies.

Sensitivity. Metrics for hardware and voltage intensity quantify compro-
mises between energy and delay from circuit-level tuning and voltage scaling,
respectively [Zyuban and Strenski 2003]. Intensity is computed as D

δD
δE
E where

D is delay and E is energy. These intensity metrics produce conditions for op-
timal microarchitectural power-performance from mathematical relations, but
do not compute the needed gradients. Our proposed regression models provide
a mechanism for computing these gradients. Instead of implementing symbol-
ically derived optimality conditions, we would optimize with heuristics using
empirically derived regression models as objective functions.

Given sensitivity δE/δX
δD/δX for tunable circuit parameters X such as gate sizing,

supply voltage, and threshold voltage, optimal values for circuit parameters are
those that equalize sensitivity [Markovic et al. 2004]. Sensitivity is equalized
by jointly optimizing registers and logic within microarchitectural blocks (e.g.,
arithmetic-logic units). In contrast to this circuit-level emphasis, we consider
high-level interactions across a wide range of microarchitectural blocks and
cache structures. Furthermore, prior works calculate the needed gradients from
analytical circuit equations and simulations, while we illustrate the feasibility
of analogous studies at the microarchitectural and macro block level using
statistical inference.

Optimizing pipeline depth. Most prior work in optimizing pipeline depth
focuses exclusively on improving performance. Vector code performance is op-
timized on deeper pipelines, while scalar codes perform better on shallower
pipelines [Kunkel and Smith 1986]. A more general analytical pipeline model
shows the optimal pipeline depth decreases with increasing overhead from
partitioning logic between pipeline stages [Dubey and Flynn 1990].

Prior work also finds optimal pipeline depths from simulation. In particu-
lar, detailed simulations of a four-way superscalar, out-of-order microproces-
sor with a memory execute pipeline identify a 10.7FO4 performance optimal
pipeline design for the SPEC2000 benchmarks [Hartstein and Puzak 2002].
Similarly, simulations for an Alpha 21264-like machine identify 8FO4 as a
performance optimal design running the SPEC2000 benchmarks [Hrishikesh
et al. 2002]. A total of 18FO4 delays is estimated to be the power-performance
optimal pipeline design point for a single-threaded microprocessor [Zyuban
et al. 2004]. Analytical modeling suggests depth multiplied by the square-root
of width should be constant for optimality [Eyerman et al. 2009].

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:32 • B. C. Lee and D. Brooks

Optimizing heterogeneity. Heterogeneous cores constructed from existing
core designs or designed from scratch using a modestly sized design space
improve power efficiency [Kumar et al. 2004]. In this prior work, design al-
ternatives are evaluated with exhaustive simulation to illustrate the potential
energy efficiency of heterogeneity. In contrast, we implement a more thorough
analysis, considering heterogeneity trends as the number of design compro-
mises increases and heterogeneity limits as we explore the full continuum
between complete homogeneity and complete heterogeneity. Both analyses are
intractable in simulation for a diverse, broadly defined design space.

Heterogeneity might be viewed as per application customization. Fine-
grained customization within an application naturally leads to custom hard-
ware for different application phases. Such heterogeneity motivates microar-
chitectural adaptivity, which dynamically provisions hardware resources as
required by the application. Regression models facilitate new studies of archi-
tectural adaptivity [Lee and Brooks 2008a], building on a large body of prior
work [Albonesi et al. 2003].

Optimization heuristics. While this article exhaustively evaluates regression
models to assess trade-offs, iterative heuristics (e.g., gradient descent, genetic
algorithms) may be required for larger spaces. When using such heuristics, the
roughness or nonlinearity of the performance-power topology impacts heuris-
tic effectiveness [Eyerman et al. 2006]. Roughness metrics penalize the least
squares fit for spline-based regression [Green and Silverman 1994]. For exam-
ple, a roughness term may be added to the sum of square errors minimized
in least squares. Accounting for roughness when fitting regression coefficients,
this penalty approach favors smooth regression equations. Alternatively, we
might use roughness metrics to characterize the performance-power to imple-
ment more effective optimization heuristics [Lee and Brooks 2008b].

8. CONCLUSIONS AND FUTURE DIRECTIONS

This article presents the case for applied statistical inference in microarchitec-
tural design, proposing a simulation paradigm that (i) defines a comprehensive
design space, (ii) simulates sparse samples from that space, and (iii) derives
inferential regression models to reveal salient trends. These regression mod-
els accurately capture performance and power associations for comprehensive
multibillion point design spaces. As computationally efficient surrogates for
detailed simulation, regression models enable previously intractable analyses
of energy efficiency. This article demonstrates such capabilities for design char-
acterization and optimization.

Statistical inference enables further research in pressing microarchitectural
design questions. Statistical inference and the new capabilities demonstrated
by this article also establish a strong foundation for interdisciplinary research
across the hardware–software interface. Inferential models have the potential
to capture design trends and compromises at each abstraction layer. Clean
interfaces between models at each layer enable co-optimization across the
hardware–software interface.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:33

Future methodologies. Other techniques in statistical inference may be ap-
plicable. Quantifying and comparing the accuracy and computational efficiency
of these techniques is an avenue for future work. Machine learning techniques
seek to automate model construction, removing the user from the derivation
process. Heuristics and algorithms drive the derivation, eliminating the need
for user feedback. These automated approaches are easier to adopt and use,
but they tend to be less efficient. Comparing the effectiveness of statistical
inference and machine learning is an avenue for future work.

This article focuses primarily on predicting spatial characteristics, perform-
ing multivariate regression to model performance or power topology as a func-
tion of design parameters. In addition to this spatial dimension, computer
system design often includes a temporal dimension where past system behav-
ior may be indicative of future system behavior. Predicting events or behavior
in time may require time series regression which identifies correlations in time

Multiprocessor modeling. This article primarily considers microprocessor
cores without considering their interactions within multiprocessors. Interac-
tions might arise from communication through shared memory, contention for
shared resources, and synchronization for parallel workloads. Models for mi-
croprocessor cores and mechanisms to account for interactions would provide a
more thorough assessment of multiprocessor performance and power. Building
on uniprocessor core models, a potential multiprocessor framework might use a
combination of uniprocessor, contention, and penalty models [Lee et al. 2008].

A modular framework for homogeneous multiprocessors extends naturally to
the heterogeneous sort by generalizing the uniprocessor model with libraries of
inferential models containing one model for each core type; each model would
encapsulate the performance and power trends for each core’s design space.
The library would include models for both general-purpose and special-purpose
cores.

Hardware-software interface. Statistical inference and regression model-
ing establishes a strong foundation for interdisciplinary research across the
hardware-software interface. Inferential models may be constructed to encap-
sulate performance and power trends at each abstraction layer. Given such
models, clean interfaces between models are needed for optimization across
abstraction layers.

Application performance optimization is increasingly important as they are
ported to novel architectures. Effective performance tuning eases the transition
by parameterizing the application with knobs that impact performance. The
optimal knob configurations vary from platform to platform, requiring models
to explore this space. For example, parameterized numerical methods and sci-
entific computing applications will expose knobs for data decomposition (i.e.,
blocks of work), processor topology (i.e., processor assignments to those blocks),
and algorithms (i.e., numerical algorithms used for each block). Early results
in applying statistical machine learning to numerical methods are promising
[Lee et al. 2007].

Effective backend compiler optimizations are critical to delivering ap-
plication performance, but the effects and interactions between individual

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:34 • B. C. Lee and D. Brooks

optimizations are highly complex and nonintuitive. Identifying the best combi-
nation of optimization flags to activate is difficult. Iterative compilation tech-
niques search the space of optimizations to optimize metrics, such as perfor-
mance, energy, and code size [Cooper et al. 1999; Kulkarni et al. 2005; Tri-
antafyllis et al. 2005]. Statistical machine learning further improves search
efficiency [Cavazos and O’Boyle 2006]. These predictive models encapsulate
the performance trends in backend compiler optimizations.

Lastly, below the microarchitectural interface, transistor tuning becomes in-
creasingly important in nanoscale technologies. Not only must transistors be
sized correctly, circuit delay analyses must also account for process variations
and statistical deviations from nominal sizes. Statistical inference and ma-
chine learning may be applied to capture relationships between circuit delays
and device parameters (e.g., transistor length, width, threshold voltage). Such
predictive models might be trained with data from detailed circuit simulations
and used for circuit tuning, statistical timing analysis, and Monte Carlo ex-
periments to evaluate process variations. Early results in linking circuit and
architecture models are promising [Azizi et al. 2010; Liang et al. 2009; Lovin
et al. 2009].

Statistical inference and its capabilities in performance and power analysis
extend across the hardware–software interface. Inference is extensible and
might be applied at each abstraction layer, ranging from applications to devices.
Interfaces between adjacent layers might enable composable inference where
models combine to provide designers a holistic view of computing. Achieving
such a vision requires best-known practices in statistical inference, machine
learning, and optimization heuristics to deliver microarchitectural efficiency.

APPENDIX

A. MODEL SPECIFICATION

The R specification of a performance model. Note the square-root transforma-
tion on the bips response.

The rcs(p,k) command implements restricted cubic splines on parameter
p with k knots. Cubic splines fit piecewise cubic polynomials and restricted
splines constrain the end pieces to use linear fits, which improve model behavior
at the extreme regions of the space.

Interactions are specified by the %ia% operator. The %ia% operator specifies
product terms between splines stripping out doubly nonlinear terms that arise
when multiplying two cubic polynomials for pairwise interactions. Only terms
that contain a linear factor are included, which controls model size when mul-
tiplying polynomials.

The power model is specified by replacing the sqrt(bips) response with the
log(power) response.

m.app <- (sqrt(bips) ~(

first-order effects

rcs(depth,4) + width + rcs(phys_reg,4)

+ rcs(resv,3) + rcs(l2cache_size,3)

+ rcs(icache_size,3) + rcs(dcache_size,3)

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:35

second-order effects

interactions of pipe dimensions and in-flight queues

+ width %ia% rcs(depth,4)

+ rcs(depth,4) %ia% rcs(phys_reg,4)

+ width %ia% rcs(phys_reg,4)

interactions of depth and hazards

+ width %ia% rcs(icache_size,3)

+ rcs(depth,4) %ia% rcs(dcache_size,3)

+ rcs(depth,4) %ia% rcs(l2cache_size,3)

interactions in memory hierarchy

+ rcs(icache_size,3) %ia% rcs(l2cache_size,3)

+ rcs(dcache_size,3) %ia% rcs(l2cache_size,3)

));

REFERENCES

ALBONESI, D., BALASUBRAMONIAN, R., DROPSHO, S., DWARKADAS, S., FRIEDMAN, E., HUANG, M., KURSUN, V.,
MAGKLIS, G., ET AL. 2003. Dynamically tuning processor resources with adaptive processing.
IEEE Comput. 36, 12, 49–58.

AZIZI, O., STEVENSON, J., PATEL, S., AND HOROWITZ, M. 2010. An integrated framework for joint
design space exploration of microarchitecture and circuits. In Proceedings of the Conference on
Design, Automation and Test in Europe. ACM New York.

BROOKS, D., BOSE, P., SCHUSTER, S., JACOBSON, H., KUDVA, P., BUYUKTOSUNOGLU, A., WELLER, J.-D.,
ZYUBAN, V., GUPTA, M., AND COOK, P. 2000. Power-aware microarchitecture: Design and modeling
challenges for next-generation microprocessors. IEEE Micro 20, 6, 26–44.

BROOKS, D., BOSE, P., SRINIVASAN, V., GSCHWIND, M., EMMA, P., AND ROSENFIELD, M. 2003. New
methodology for early-stage, microarchitecture-level power-performance analysis of micropro-
cessors. IBM J. Res. Dev. 47, 5/6, 653–670.

CAVAZOS, J. AND O’BOYLE, M. 2006. Method-specific dynamic compilation using logistic regres-
sion. In Proceedings of the 21st Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications. IEEE, Los Alamitos, CA, 229–240.

COOPER, K., SCHIELKE, P., AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the Workshop on Languages, Compilers, and Tools for
Embedded Systems. ACM, New York, 1–9.

DUBACH, C., JONES, T., AND O’BOYLE, M. 2008. Microarchitectural design space exploration using
an architecture-centric approach. In Proceedings of the 40th Annual International Symposium
on Microarchitecture. IEEE, Los Alamitos, CA, 262–271.

DUBEY, P. AND FLYNN, M. 1990. Optimal pipelining. J. Parall. Distrib. Comput. 8, 1, 10–19.
EECKHOUT, L. AND H. VANDIERENDONCK, K. D. 2003. Quantifying the impact of input data sets on

program behavior and its applications. J. Instruction-Level Parall. 5.
EECKHOUT, L., NUSSBAUM, S., SMITH, J., AND DEBOSSCHERE, K. 2003. Statistical simulation: Adding

efficiency to the computer designer’s toolbox. IEEE Micro 23, 5, 26–38.
EYERMAN, S., EECKHOUT, L., AND DEBOSSCHERE, K. 2006. Efficient design space exploration of

high performance embedded out-of-order processors. In Proceedings of the Conference on Design,
Automation and Test in Europe. ACM, New York, 351–356.

EYERMAN, S., EECKHOUT, L., KARKHANIS, T., AND SMITH, J. 2009. A mechanistic performance mod-
eling for studying resource scaling in out-of-order processors. ACM Trans. Comput. Syst. 27, 2,
1–37.

GREEN, P. AND SILVERMAN, B. 1994. Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach. Chapman and Hall/CRC, Boca Raton, FL.

HARRELL, F. 2001. Regression modeling strategies. Springer-Verlag, New York, NY.
HARTSTEIN, A. AND PUZAK, T. 2002. The optimum pipeline depth for a microprocessor. In Proceed-

ings of the 29th Annual International Symposium on Computer Architecture. IEEE, Los Alamitos,
CA, 7–13.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

8:36 • B. C. Lee and D. Brooks

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, San Francisco, CA.

HRISHIKESH, M., FARKAS, K., JOUPPI, N., BURGER, D., KECKLER, S., AND SIVAKUMAR, P. 2002. The
optimal logic depth per pipeline stage is 6 to 8 for inverter delays. In Proceedings of the 29th
Annual Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 14–24.

INTEL CORPORATION. 2001. Desktop performance and optimization for Intel Pentium 4 processor.
Intel Corporation White Paper 249438-01.

IPEK, E., MCKEE, S., DE SUPINSKI, B., SCHULZ, M., AND CARUANA, R. 2006. Efficiently exploring
architectural design spaces via predictive modeling. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems. ACM,
New York, 195–206.

IYENGAR, V., TREVILLYAN, L., AND BOSE, P. 1996. Representative traces for processor models with
infinite cache. In Proceedings of the 2nd Symposium on High-Performance Computer Architecture.
IEEE, Los Alamitos, CA, 62–72.

JOSEPH, P., VASWANI, K., AND THAZHUTHAVEETIL, M. J. 2006a. Construction and use of linear re-
gression models for processor performance analysis. In Proceedings of the 12th Symposium on
High-Performance Computer Architecture. IEEE, Los Alamitos, CA, 99–108.

JOSEPH, P., VASWANI, K., AND THAZHUTHAVEETIL, M. J. 2006b. A predictive performance model for
superscalar processors. In Proceedings of the 39th Annual International Symposium on Microar-
chitecture. IEEE, Los Alamitos, CA, 161–170.

KARKHANIS, T. AND SMITH, J. 2007. Automated design of application specific superscalar pro-
cessors: An analytical approach. In Proceedings of the 34st Annual Symposium on Computer
Architecture. ACM, New York, 402–411.

KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: A 32-way multithreaded sparc
processor. IEEE Micro 25, 2, 21–29.

KULKARNI, P., HINES, S., WHALLEY, D., HISER, J., DAVIDSON, J., AND JONES, D. 2005. Fast and efficient
searches for effective optimization-phase sequences. ACM Trans. Archit. Code Optim. 2, 2, 165–
198.

KUMAR, R., TULLSEN, D., RANGANATHAN, P., JOUPPI, N., AND FARKAS, K. 2004. Single-ISA heteroge-
neous multicore architectures for multithreaded workload performance. In Proceedings of the
31st Annual International Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 64–
75.

KUNKEL, S. AND SMITH, J. 1986. Optimal pipelining in supercomputers. In Proceedings of the 13th
Annual International Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 404–411.

LEE, B. AND BROOKS, D. 2006. Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ACM, New York, 185–
194.

LEE, B. AND BROOKS, D. 2008a. Efficiency trends and limits from comprehensive microarchitec-
tural adaptivity. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, New York, 36–47.

LEE, B. AND BROOKS, D. 2008b. Roughness of microarchitectural design topologies and its impli-
cations for optimization. In Proceedings of the 14th Symposium on High-Performance Computer
Architecture. IEEE, Los Alamitos, CA, 240–251.

LEE, B., BROOKS, D., DE SUPINSKI, B., SCHULZ, M., SINGH, K., AND MCKEE, S. 2007. Methods of
inference and learning for performance modeling of parallel applications. In Proceedings of the
12th Symposium on Principles and Practice of Parallel Programming. ACM, New York, 249–258.

LEE, B., COLLINS, J., WANG, H., AND BROOKS, D. 2008. CPR: composable performance regression
for scalable multiprocessor models. In Proceedings of the 41st International Symposium on Mi-
croarchitecture. IEEE, Los Alamitos, CA, 270–281.

LIANG, X., LEE, B., WEI, G.-Y., AND BROOKS, D. 2009. Design and test strategies for microarchitec-
tural post-fabrication tuning. In Proceedings of the 27th International Conference on Computer
Design. IEEE, Los Alamitos, CA, 84–90.

LOVIN, K., LEE, B., LIANG, X., BROOKS, D., AND WEI, G.-Y. 2009. Empirical performance models for
3T1D memories. In Proceedings of the 27th International Conference on Computer Design. IEEE,
Los Alamitos, CA, 398–403.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

Case Studies in Microarchitectural Design • 8:37

MARKOVIC, D., STOJANOVIC, V., NIKOLIC, B., HOROWITZ, M., AND BRODERSON, R. 2004. Methods for
true energy-performance optimization. IEEE J. Solid-State Circuits 39, 8, 1282–1293.

MOUDGILL, M., WELLMAN, J., AND MORENO, J. 1999. Environment for PowerPC microarchitecture
exploration. IEEE Micro 19, 3, 9–14.

NOONBURG, D. AND SHEN, J. 1994. Theoretical modeling of superscalar processor performance. In
Proceedings of the 27th Annual International Symposium on Microarchitecture. ACM, New York,
52–62.

NUSSBAUM, S. AND SMITH, J. 2001. Modeling superscalar processors via statistical simulation.
In Proceedings of the International Conference on Parallel Architectures and Compilation Tech-
niques. IEEE, Los Alamitos, CA, 15–24.

OSKIN, M., CHONG, F., AND FARREN, M. 2000. HLS: Combining statistical and symbolic simulation
to guide microprocessor designs. In Proceedings of the 27th Annual International Symposium on
Computer Architecture. ACM, New York, 71–82.

PHANSALKAR, A., JOSHI, A., EECKHOUT, L., AND JOHN, L. 2005. Measuring program similarity: Ex-
periments with SPEC CPU benchmark suites. In Proceedings of the International Symposium
on Performance Analysis of Systems and Software. IEEE, Los Alamitos, CA, 10–20.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large
scale program behavior. In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, New York, 45–57.

SINHAROY, B., KALLA, R., TENDLER, J., EICKEMEYER, R., AND JOYNER, J. 2005. Power5 system microar-
chitecture. IBM J. Res. Dev. 49, 4/5, 505–521.

STONE, C. AND KOO, C. 1986. Additive splines in statistics. In Proceedings of the Statistical
Computer Section. ASA, Washington, DC, 45–48.

TARJAN, D., THOZIYOR, S., AND JOUPPI, N. 2006. CACTI 4.0. Tech. rep. HPL-2006-86.
TRIANTAFYLLIS, S., VACHARAJANI, M., AND AUGUST, D. 2005. Compiler optimization space exploration.

J. Instruction-Level Parall. 7.
WUNDERLICH, R., WENISCH, T., FALSAFI, B., AND HOE, J. 2003. SMARTS: Accelerating microarchitec-

ture simulation via rigorous statistical sampling. In Proceedings of the 30th Annual International
Symposium on Computer Architecture. ACM, New York, 84–97.

YI, J., LILJA, D., AND HAWKINS, D. 2005. Improving computer architecture simulation methodology
by adding statistical rigor. IEEE Comput. 54, 11, 1360–1373.

ZYUBAN, V., BROOKS, D., SRINIVASAN, V., GSCHWIND, M., BOSE, P., STRENSKI, P., AND EMMA, P. 2004.
Integrated analysis of power and performance for pipelined microprocessors. IEEE Trans. Com-
put. 53, 8, 1004–1016.

ZYUBAN, V. AND KOGGE, P. 2001. Inherently lower-power high-performance superscalar architec-
tures. IEEE Trans. Comput. 50, 3, 268–285.

ZYUBAN, V. AND STRENSKI, P. 2003. Balancing hardware intensity in microprocessor pipelines. IBM
J. Res. Dev. 47, 5/6, 585–598.

Received June 2009; revised February 2010; accepted February 2010

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 8, Pub. date: September 2010.

