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Abstract

Energy efficiency is the fundamental challenge in computing. Den-

nard scaling has stopped, which means that Moore’s Law provides more

transistors but power densities increase with integration. These power

densities, combined with Amdahl’s Law, will also limit the efficien-

cies and tractability of future multi-core integration. Without process

and parallelism to drive efficiency, we must rely on customization and

integrated design. However, customization has become prohibitively

expensive, primarily due to the challenge of integrated software and

hardware design. Customization is facilitated by recent advances in

software and hardware generators, which constrain a design space, pa-

rameterize the remaining degrees of freedom, and automatically pro-

duce functional implementations for any combination of parameter val-

ues.

To address these challenges, we propose using generators more effec-

tively by creating an integrated design framework that synthesizes key

interactions between hardware and software. We demonstrate a proof

of concept for sparse matrix-vector multiply (SpMV) on an embed-

ded processor hardware base, by using statistical regression modeling.

With models that capture the highly non-monotonic SpMV perfor-

mance topologies, we perform integrated optimization to demonstrate

a performance gain of 5.0x (Mflop/s) while reducing the energy costs

per operation by 10 percent (0.9x nJ/Flop).

1 Introduction

Energy efficiency is the defining challenge in modern computing. Mecha-
nisms that delivered efficiency in the past will face fundamental limitations
in the future. While Moore’s Law projected increasing transistor densities,
Dennard scaling provided guidelines for leveraging those densities at rea-
sonable power: as device feature size F scaled, voltage Vdd and current I
decreased linearly, power (IVdd) decreased quadratically, and power density
remained constant [5]. However, leakage current constrains threshold volt-
age scaling, which in turn constrains Vdd scaling. Although Vdd stopped
scaling at 130nm [12], Moore’s Law continued, leading to smaller devices
and increased power densities.

Increasing power densities imply fundamental limits to multi-core inte-
gration, which promises energy efficiency via a larger number of less powerful
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cores. Although Moore’s Law and smaller transistors may enable more cores
on a single chip, limits of Dennard scaling and increasing power densities
make supplying power to those cores difficult. Moreover, Amdahl’s Law and
the challenges of extracting parallelism constrain the number of small cores
useful in an application [11]. Thus, multi-core integration will experience
rapidly diminishing marginal returns in energy efficiency due to constraints
from both process technology and software parallelism.

Without technology and parallelism to drive efficiency, computing must
rely on a third mechanism: customization and integrated design. Appli-
cation specific integrated circuits (ASIC’s) are several orders of magnitude
more efficient than high-performance, general purpose architectures. How-
ever, customization has become prohibitively expensive, requiring long de-
sign times that incur high non-recurring engineering costs. These costs
arise, primarily, from the challenge of integrated software and hardware de-
sign. While application experts possess deep domain knowledge and hard-
ware engineers possess a broad array of design options, bridging the hard-
ware/software interface produces an intractable number of degrees of free-
dom in the design.

These costs motivate generators, which constrain a design space, param-
eterize the remaining degrees of freedom, and automatically produce func-
tional implementations with any combination of parameter values. Such
generators have proven effective for both application tuning [26] and pro-
cessor soft-cores [22]. However, these generators are restricted to one side
or the other of the hardware/software interface. To use these generators
most effectively, we must consider an integrated framework that synthesizes
the key interactions between hardware/software and uses them to perform
integrated optimization. Only with such an integrated framework can we
quantify efficiencies from software, hardware, and the synergies between the
two.

This paper outlines opportunities and challenges when integrating the
use of software/hardware generators (Section 2). We demonstrate a proof
of concept for sparse matrix-vector multiply SpMV, embedded processor
architectures, and statistical regression modeling (Section 3). Statistical
inference captures the highly non-monotonic SpMV performance topology
as a function of application structure and processor architecture with less
than 5 percent error (Section 4). Performance and energy models drive
optimization, which lead to the following contributions (Section 5):

• Application Efficiency: Mechanisms that improve application per-
formance are likely to improve energy efficiency. Better performance
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through locality reduces energy overheads from data movement and re-
duce energy per useful operation. For SpMV, better locality improves
Mflop/s by 1.6x while improving nJ/Flop by 0.6x through fewer ex-
pensive off-chip memory accesses.

• Architecture Efficiency: Architecture requires the traditional trade-
offs between performance and energy. Larger resources compensate
for poor application locality but incur a net increase in energy. For
SpMV, additional resources improve Mflop/s by 2.7x but also increases
nJ/Flop by 1.5x.

• Integrated Efficiency: Both application and architecture optimiza-
tion are required for efficiency. Application tuning maximizes the util-
ity of additional architectural resources, thereby amortizing their en-
ergy overheads over a larger number of useful operations. For SpMV,
simultaneous optimization enables a 5.0x increase in Mflop/s with net
reduction in energy of 0.9x nJ/Flop.

• Serialized Optimization: While simultaneous optimization across
application and architecture parameters is ideal, serialized optimiza-
tion incurs modest penalties for SpMV. These penalties are more likely
if the architecture is optimized before the application. Moreover, such
penalties may increase as parameter choice exerts greater impact on ef-
ficiency. In SpMV, the greatest penalties of approximately 20 percent
were observed for the most aggressively tuned matrices.

Collectively, these results motivate new thinking on computing efficiency
that spans the hardware/software interface. Architects cannot afford to
ignore application tuning, a part of the abstraction layer where perfor-
mance and energy efficiency are correlated. Application designers increas-
ingly rely on hardware knowledge to extract performance. Integrating hard-
ware/software design enables efficiency through customization.

2 Generators and Customization

Generators reduce the cost of customization, which include long design times
and incur high non-recurring engineering costs. They apply judicious con-
straints on the software and hardware design spaces to limit the degrees of
freedom and to reduce the scope of analysis. Today’s generators provide two
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parallel flows, one for software and one for hardware. We propose wrapping
these generators in a third flow to perform inference and optimization across
the hardware/software interface. Thus, automation and inferential modeling
enable tractable optimization over the remaining degrees of freedom.

Software Generators. A choice of algorithm and kernel constrains the
space of software implementations. Code parameterization takes the remain-
ing degrees of freedom and creates a design space such that an instantiation
of any point in the space can be automatically generated. For example, given
a sparse matrix kernel with a defined data structure (e.g., compressed sparse
row), a parameterized code generator automatically reorganizes that basic
data structure into blocks of various sizes with various locality benefits. In
addition to parameters that enhance performance and energy, codes might
also parameterize precision, using narrow width operands or fewer iterations
in an iterative heuristic, to reduce energy at the expense of accuracy.

With this parameterization, code generators automatically generate any
point in the parameterized space. Drawing from experiences in related work,
code generation will likely be domain-specific since domain expertise is re-
quired to construct a reference implementation. Furthermore, most of these
systems use a source-to-source compiler. For example, generators in numer-
ical linear algebra parameterize and extend a baseline code by generating C
code using C code (e.g., ATLAS [29], OSKI[26]) or generating C++ code
from a meta-language (e.g., PetaBricks [1]). Sketching compilers combine a
reference code and an incomplete sketch of a variant code to infer a complete
implementation of the variant code [21]. In future, any integrated hard-
ware/software framework should be extensible enough to leverage a mix of
these or other generator strategies.

Moreover, these generators should include profiling and verification col-
lateral. Profiling provides insight into the generated code, which will be
required for integrated inference and optimization. Code verification is in-
creasingly important as generators begin to explore trade-offs in precision
and energy efficiency. Verification collateral quantifies accuracy and assesses
its impact on, for example, numerical stability, which may affect convergence
properties of iterative solvers or heuristics.

Hardware Generators. Hardware generators implement a flow that
parallels the one for software. The generator defines a system, which con-
strains hardware components and their points of interaction. Like the soft-
ware generators, this system is likely to be effective for a particular applica-
tion domain, and will use architecture parameterization to define/enumerate
remaining degrees of freedom.

Execution model, instruction fetch, processor functional units, and mem-
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ory hierarchy could be parameterized, enabling customization for applica-
tions with varying degrees of parallelism and locality. For example, one can
exploit parallelism through superscalar units, speculative execution, SIMD,
and VLIW. The cache hierarchy could be parameterized using normal cache
parameters (line/fetch size, associativity, size, levels, etc) to optimize for
varying kinds of locality and bandwidth requirements.

The hardware generator should be capable of automatically generating
any point in the parameterized hardware space. How the system generates
each instance depends on how the generator is written. Just as software
leverages source-to-source compilers, hardware might leverage RTL-to-RTL
transformations. Alternatively, we might automatically generate code in a
high-level language (e.g., SystemC [9], BlueSpec [2]), which then maps to
RTL. Another option might be a parameter generator for soft system com-
ponents (e.g.,Tensilica [23, 8]) to generate the required RTL. Any of these
methods will work in our integrated hardware/software framework as long
as they provide RTL, performance and energy simulators, and validation
collateral.

Integrated Inference. Software and hardware generators provide per-
formance profilers and simulators, but relying solely on them for optimiza-
tion is prohibitively expensive. An integrated hardware/software space could
easily contain hundreds of thousands of designs. Simulation quickly becomes
intractable. Inference addresses these problems by constructing predictive
models. Inference sparsely samples designs from the joint software and hard-
ware space, measuring the performance and power of these samples using
automatically generated profilers or simulators. With these measurements,
models are constructed to predict design metrics as a function of the hard-
ware/software design parameters. While such strategies have been success-
fully applied to processor architecture [6, 13, 15], customization requires
broadening the scope of inference to include application design parameters.

Inferential models, constructed from the joint hardware/software space,
enable joint optimization. they can be used for exhaustive search in small
spaces or with global optimizers (e.g., hill-climbing, genetic search) in larger
spaces. By traversing the joint hardware/software space, the optimizer iden-
tifies particular application designs customized for particular architecture
designs and vice versa. Thus, software/hardware generators automate the
crank-tuning for software and hardware design, respectively, while inferen-
tial models from detailed simulation makes integrated optimization compu-
tationally tractable.
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3 Proof of Concept

We demonstrate a proof of the integrated generators concept for a particu-
lar application and architecture. A software generator produces code vari-
ants for sparse matrix-vector multiply (SpMV) while a hardware generator
produces variants for an embedded processor supported by a parameter-
ized memory hierarchy. Integrated statistical inference constructs regression
models to capture performance and energy relationships between the appli-
cation and architecture. While we leverage previously proposed components
for software/hardware generators to prove the concept, we are the first to
combine the application of hardware/software generators with inferential
models to create an end-to-end customization framework.

3.1 Sparse Matrix-Vector Multiply

Sparse matrix-vector multiply (SpMV) computes y = y + Ax when A is
a sparse matrix (i.e., most elements in A are zero). We refer to x and y
as the source and destination vectors, respectively. The central problem
in efficient performance tuning for sparse computational kernels, such as
SpMV, is the considerable irregularity and variation in the best of choice of
sparse matrix data structure and code transformations across machines and
matrices. Such variation produces a non-monotonic performance topology
in which naive optimization heuristics likely get caught in local optima.

Despite matrix sparsity, dense sub-structure may exist. Blocking is a
technique to improve reuse and locality over a conventional implementation
of SpMV by reorganizing the matrix data structure to exploit sequences of
naturally occurring dense blocks. Such blocking reduces loop overhead, re-
duces indexing overhead, reduces access irregularity, and increases temporal
locality to the source vector. As illustrated in Figure 1, a sparse matrix may
be reorganized into sub-blocks of size r×c; only those blocks which contain
at least one non-zero are stored. SpMV computation proceeds block-by-
block. Within each block, the code reuses the corresponding c elements of
the source vector and streams through the r elements of the destination
vector.

As illustrated in Figure 2 for a 2×2 blocking, we consider a compressed
storage format for the blocked sparse matrix (BCSR). Within the array of
matrix elements, elements within the same block are stored consecutively
and blocks within the same block row are stored consecutively, in row-major
order. Moreover, blocked storage requires fewer row and column indices as
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Figure 1: Register Blocking: A sparse matrix with non-zero elements (blue-

x) is reorganized into 3×3 blocks. Matrix sparsity requires filling incomplete

3×3 blocks with explicit zero values (red-o), inducing dense sub-structure

but incurring storage and computational overheads for zero values. Blocking

improves access locality to source and destination vectors.

these indices point to the row and column location for each block of elements
instead of pointing the location for each individual element. Thus, blocking
reduces storage overheads associated with matrix sparsity.

However, blocking also incurs overheads as imposing a uniform matrix
block size may require the storage of explicit zeros. We define the fill ratio as
the number of stored values (original non-zeros plus explicit zeros) divided
by the original number of non-zeros. Filled zeros require storage overhead
in the array of matrix of values and also require explicit computation (i.e.,
unnecessary Flops). The benefit/cost analysis of a block size depends on the
locality and index storage benefits relative to filled Flops and value storage
benefits. These effects, in turn, are highly dependent on matrix structure.
Moreover, these effects interact with cache structure and memory bandwidth
to determine SpMV performance and energy efficiency.

Thus, we define a BCSR-based kernel for SpMV, which enables the pa-
rameterization of matrix block sizes (r and c). SpMV code for each block
size is generated automatically by OSKI, an optimized library generator for
sparse linear algebra [26]. In addition to generating code, OSKI provides
profiling collateral by computing matrix fill ratios under different block sizes
and provides verification collateral by ensuring each blocked variant of SpMV
computes the correct result. We evaluate generated code for the matrices of
Table 1 drawn from a variety of application domains.
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A =


a00 a01 0 0 0 0

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 0 a33 a34 a35


b row start = ( 0 2 4 )

b col idx = ( 0 4 2 4 )

b value = ( a00 a01 a10 a11 0 0 a14 a15 a22 0 0 a33 a24 a25 a34 a35 )

Figure 2: BCSR with 2×2 blocks. 2×2 blocks are stored contiguously in

b value. The first column index of entry (1,1) in each 2×2 block is stored

in b col idx. Pointers to block row starting positions in b col idx are

stored in b row start.

Matrix Dimension Non-Zeros Sparsity Application Domain

1 3dtube 45330 1629474 7.93E-04 3-D pressure tube simulation

2 bayer02 13935 63679 3.28E-04 chemical process simulation

3 bcsstk35 30237 740200 8.10E-04 stiff matrix automobile frame analysis

4 bmw7st 141347 3740507 1.87E-04 automobile body analysis

5 crystk02 13965 491274 2.52E-03 crystal free vibration, finite element method

6 memplus 17758 126150 4.00E-04 circuit simulation

7 nasasrb 54870 1366097 4.54E-04 shuttle rocket booster simulation

8 olafu 16146 515651 1.98E-03 numerical method accuracy improvement

9 pwtk 217918 5926171 1.25E-04 pressurized wind tunnel simulation

10 raefsky3 21200 1488768 3.31E-03 fluid structure interaction

11 venkat01 62424 1717792 4.41E-04 flow simulation

Table 1: Matrices: Dimension quantifies N in square matrix. Sparsity is

non-zeros divided by N2.

8



3.2 Tensilica and Smart Memories

Embedded processors for high-performance computing have attracted recent
interest for their energy efficiency [28]. Such processors are well-suited for
scientific applications and numerical methods where Flop to data bandwidth
ratios are low. Lower-power, embedded processors balance the system, re-
ducing the traditional gap between high processor Flop rates and restricted
memory bandwidth. This work considers the Tensilica Xtensa, which im-
plements a 32-bit RISC ISA with 24-bit instructions and windowed general-
purpose register file with 16 registers per window.

Custom functional units may be added to the Xtensa core using in-
struction set extensions defined by the user with the Tensilica Instruction
Extension (TIE) language [27]. The TIE compiler generates a customized
processor, simulator, and verification collateral for the modified processor.
This work uses several pre-defined Tensilica microarchitectural structures,
including a 32-bit integer multiplier and divider, 32-bit floating-point unit,
64-bit floating-point accelerator. Moreover, the core supports VLIW in-
struction formats that allow up to 3 instructions per cycle using the Ten-
silica Flexible Length Instruction eXtension (FLIX) framework [14]. The
format supports up to two slots for floating-point operations and one slot
for loads/stores.

Although Xtensa parameterizes the datapath, it implements constrained
cache and memory subsystems. Thus, we use an integrated simulator that
combines the Xtensa datapath with the more flexible Smart Memories sim-
ulator [23]. Within Smart Memories, we evaluate a system with separate
L1 data and instruction caches supported by a 3.2GB/s interface to main
memory. Combined, the two infrastructures provide a comprehensive archi-
tectural parameterization.

We derive energy models for this architectural space through a combi-
nation of sources for core, cache, and memory. Power for a 400MHz/45nm
Xtensa core is derived from Tensilica Xplorer Integrated Design Environ-
ment, extrapolated from a physical implementation of a 600MHz/90nm
Xtensa core, and scaled based on activity reported by the integrated Tensilica-
Smart Memories simulator. Cache power is reported from CACTI models
[19] based on miss rates reported in simulation. Lastly, we use Micron data
sheets to estimate the cost of accessing off-chip memory based on L1 cache
miss rates reported in simulation [17].

SpMV characteristics guide our architectural parameterization and its
emphasis on the cache and memory subsystem. Despite using blocked matri-
ces, SpMV is memory bound as matrix elements stream through the system.
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Parameter Range Baseline

SpMV

x1 brow, block row 1 :: 1+ :: 8 1

x2 bcol, block column 1 :: 1+ :: 8 1

x3 fR, fill ratio function of brow,bcol,matrix 1.0

Cache Architecture

y4 lsize, line size 16B :: 2x :: 128B 32B

y5 dsize, data size 4KB :: 2x :: 256KB 32KB

y6 dways, data ways 1 :: 2x :: ::8 2

y7 drepl, data repl LRU, NMRU, RND LRU

y8 isize, inst size 2KB :: 2x :: 128KB 16K

y9 iways, inst ways 1 :: 2x :: ::8 2

y10 irepl, inst repl LRU, NMRU, RND LRU

Table 2: Joint Parameter Space. SpMV block sizes and cache architecture

parameters.

SpMV performance is determined primarily by data locality for elements in
the source and destination vector. While matrix blocking exposes locality,
the degree to which locality translates into performance depends on L1 cache
design. Because most memory traffic is attributed to SpMV streaming the
matrix from memory with no reuse on matrix elements, an L2 cache only
marginally benefits this application.

Thus, we consider a system comprised of a single Xtensa processor with
in-order execution and VLIW support. Within this system, we focus on the
parameterization of the L1 cache, which impacts the interface to memory
(Table 2). We consider line size, cache size, associativity, and replacement
policies. Tensilica generates processor RTL, simulators, and verification col-
lateral. Smart Memories generates RTL, simulators and verification collat-
eral for a reconfigurable cache hierarchy (i.e., post-fabrication programma-
bility). However, in this work, we parameterize and explore the space pre-
fabrication, expecting only a subset of Smart Memories functionality to be
fabricated in any final design.

3.3 Statistical Regression Modeling

Techniques in statistical inference and regression modeling reveal perfor-
mance and power trends from sparsely simulated samples, enabling tractable
optimization. In particular, we apply the approach proposed by Lee and
Brooks for spline-based regression models [15]. In contrast to prior work,
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which modeled only the microarchitectural space, we construct integrated
models with independent parameters from both the application and the
system architecture. With this integration, optimizers can explore the in-
teractions across the hardware/software interface.

Given observed samples from a space of interest, models infer broader
trends for unobserved points in the space. In the context of hardware/software
design, we refer to z as the design metric of interest (e.g., performance, en-
ergy). z = F (~x, ~y) predicts this metric as a function of application parame-
ters ~x = (x1, . . . , xp) and architecture parameters ~y = (yp+1, . . . , yq).

1

Evaluating F with profilers and simulators is a common approach, but
their computational costs often hinder the optimization process. These diffi-
culties motivate surrogates F̂ that predict the response z = F̂ (~x, ~y) + ε with
some approximation error ε. We construct the surrogate using regression
models.

Within a regression framework, the models gets the flexibility to model
non-linearities using splines. Splines transform the parameters to construct
a model z = F̂ (Sx(~x), Sy(~y))+ε. The transformation Sx(~x) apply splines to
each xi in ~x by dividing the domain of xi into intervals joined at intersections
called knots. Equation (1) illustrates a cubic spline on xi with three knots
at a, b, and c. Note (u)+ = u if u > 0 and (u)+ = 0 otherwise.

S(xi) = β0 + β1xi + β2x
2
i + β3x

3
i

+β4(xi − a)3
+ + β5(xi − b)3

+ + β6(xi − c)3
+ (1)

We account for interactions between parameters with product terms in
the model.2 For example, the performance impact of a block row size x1 de-
pends on the choice of block column size x2. This interaction would be cap-
tured by adding another parameter into the model x1,2 = x1x2. Moreover,
the locality benefits of a particular block size depend on how often a block is
split across cache lines, suggesting a third-order interaction x1,2,3 = x1x2y4

should also be specified. We perform significance testing to explore whether
a candidate interaction actually contributes to fit.

1 In this work, x1, x2, x3 are the matrix block sizes and y4, . . . , y10 are the cache pa-

rameters of Table 2.
2Interactions are illustrated in a model y = β0 + β1x1 + β2x2 + β3x1x2 by computing

partial derivatives; δy/δx1 is a function of x2 and vice versa.
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4 SpMV and Integrated Inference

We demonstrate integrated inference for SpMV, a sparse and irregular kernel
characterized by non-monotonic performance and energy topologies, which
has traditionally made predictive modeling very difficult. However, by using
statistically significant interactions of application and architecture parame-
ters, we can construct models that accurately estimate absolute and relative
metrics, as well as accurately capture metric non-monotonicity.

We construct a separate model for every matrix. For each matrix, we
perform inference to model performance, measured in true floating point op-
erations per second (Flop/s = 2 ∗ nnz/T ) This measure of Flop/s considers
the original number of Flops required for SpMV, which is the number of
non-zero matrix elements (excluding explicitly filled zeros) times two (each
element requires a multiply and add). Flop count is then divided by ex-
ecution time (including explicitly filled zeros). Thus, our metric counts
the amount of useful work divided by total execution time, which includes
blocking overheads. Otherwise, Flops for explicitly filled zeros would inflate
performance. We also perform inference to model average power, measured
in mW and computed by dividing consumed energy by execution time.

4.1 Exploratory Data Analysis

We sample, sparsely and uniformly at random, 400 designs from the joint
application and architecture space of 1.8M points defined in Table 2. With
these samples, we perform exploratory data analysis to identify relationship
between design metrics and parameters.

Figure 3 performs an association analysis, plotting parameter values
against observed performance (MFfop/s) for an illustrative matrix, raef-
sky3. An analogous analysis may be applied to power. For each parameter
value, the figure reports the average Mflop/s rate across all samples with
that parameter value. For example, 54 of 400 samples were measured with
a block row size (brow) of 8 and the average performance of these samples
is 74 Mflop/s. Note that, due to averaging, the range of performance values
on the x-axis do not illustrate the full range of sampled performance; the
worst and best sample produced 14 and 166 Mflop/s, respectively.

The association analysis illustrates broad relationships between parame-
ters and performance. Matrix blocking has a direct impact on performance
but the performance trend is discontinuous. While the best block row size
is 8, performance does not increase monotonically with block row size; 6
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Figure 3: Association analysis for SpMV (L) and cache parameters (R).

Parameter values plotted against sampled performance. Each performance

point is an average over all samples with a particular parameter value.

or 7 block rows are only as effective as 2 block rows. Similarly, 1, 4, and
8 block columns deliver comparable performance, reflecting a dense matrix
sub-structure that occur in multiples of 4. Performance increases with block
size as larger blocks achieve greater locality with small penalties arising from
filling explicit zeros. However, we observe diminishing marginal returns as
larger block sizes (brow×bcol) may require a greater number of explicitly
filled zeros, which require extra Flops and additional indexing overhead.

Cache structure also significantly impacts performance. We observe
strong monotonic relationships between line size and performance. A big-
ger line size amortizes off-chip latency over a larger number of bytes in the
cache line, which effectively increases streaming bandwidth for the matrix.
A larger data cache size improves performance to a lesser degree as only the
source and destination vectors exhibit re-use and locality.

Re-use distance and locality directly impact data cache associativity and
the amount of useful data in the cache. Ideally, matrix blocks would not
be cached since they are never re-used after making their contribution to
the destination vector.However, in a highly associative cache, matrix blocks
occupy cache lines longer as they must travel down the LRU stack before
becoming a candidate for replacement. While source vector elements are re-
used, the re-use distance across matrix blocks, not block elements, is high.
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Figure 4: Memory energy (L) and its relationship with execution time (R).

Source vector elements accessed for one matrix block will, at the earliest,
be accessed again for the next row’s block located at the same column.
However, a block may not exist at that location given matrix sparsity. Thus,
the re-use distance may be proportional to matrix dimension divided by
block size, subject to the distribution of non-zeros. This distance is likely
larger than the distance a fully associative cache could support and direct-
mapped caches are favored.

Data from training samples indicates total energy is dominated by mem-
ory accesses. Figure 4 considers memory energy as a percentage of total
energy across the 400 samples. At the median, memory energy accounts
for more than 95 percent of total energy. However, we observe a range of
outliers with memory accounting for as little as 80 percent of total energy.
These outlying designs reduce memory energy by improving performance,
improving locality, and reducing the number of memory accesses through
matrix blocking and cache structure. Thus, Figure 4R plots the designs in
memory energy and execution time coordinates, illustrating the connection
between energy and high-performance designs.

4.2 Model Specification

The model originally specifies a large number of terms and parameter in-
teractions. Significance testing then prunes these terms by determining the
likelihood a regression coefficient in a model should actually be zero. If a
coefficient is highly unlikely to be zero, the parameter associated with that
coefficient is significant. For example, consider a model y = β0 + β1x1 +
β2x2 + β3x1x2 + ε. Testing the significance of x1 requires testing the null
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Figure 5: Normality (L) and variance (R) checks. Normality is checked by

plotting residuals ε against samples from a Normal distribution. Constant

variance is checked by plotting residuals ε against fitted values.

hypothesis H0 : β1 = β3 = 0 with two degrees of freedom.
The F -statistic assumes an unbiased model. This means residuals ε ∼

N(0, σ2) follow a normal distribution with constant variance.3 Our mod-
els satisfy this criteria as shown by Figure 5, which plots residuals against
samples from a Normal distribution. Plotting residuals against fitted perfor-
mance (in this case, log(MFlop/s)) indicate that residuals vary around zero
independently of fitted performance. Collectively, this analysis indicates the
derivation process provides unbiased models.

Given unbiased models, we perform F -tests to determine interaction sig-
nificance. Table 3 first quantifies the significance of grouped application and
architecture parameters. The table then considers specific interactions be-
tween matrix block sizes and data cache parameters. Of these interactions,
block and line size interaction is most significant with a p-value of 1.5E-13.
In particular, the 5 degrees of freedom used to capture block and line size
interaction are as significant as the 54 degrees of freedom used to capture
all SpMV parameters. Also important are the 5 degrees of freedom used to
capture interactions between block size and data cache associativity. Thus,
significance testing indicates block and line size are the main point of inter-
action across the application/architecture interface.

We use the results of significance testing to construct the following model,
described in R syntax [10]. This model fits log-performance. A power model
is constructed by replacing the Mflops response with one for power.

3Residuals are the difference between true and fitted values from training data.
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Predictor k F-test P-value

Grouped App/Arch Parameters

1 SpMV -54 3.99 1.24E-14

2 Cache -46 45.34 2.20E-16

Grouped Cache Parameters

3 Data cache -37 19.18 2.20E-16

4 Inst cache -37 1.10 3.21E-01

Data Cache Interactions

5 bsize x lsize -5 15.56 1.50E-13

6 bsize x drepl -8 0.76 6.38E-01

7 bsize x dways -5 2.20 5.46E-02

8 bsize x dsize -6 1.55 1.61E-01

Table 3: Significance testing. k refers to the number of model terms used

by a set of parameters. P-value denotes the probability the parameters are

insignificant.

model.spmv = (log(Mflops) ~ (## first-order

rcs(brow,5) + rcs(bcol,5) + rcs(bsize,5) + rcs(fR,5)

+ rcs(lsize,3) + rcs(dsize,4) + rcs(dways,3) + drepl

+ rcs(isize,4) + rcs(iways,3) + irepl

## second-order: block effects

+ rcs(bsize,5) %ia% rcs(fR,5)

+ rcs(bsize,5) %ia% rcs(lsize,3)

+ rcs(bsize,5) %ia% rcs(dways,3)

+ rcs(bsize,5) %ia% rcs(iways,3)

## second-order: cache effects

+ rcs(dsize,4) %ia% rcs(dways,3)

+ rcs(lsize,3) %ia% rcs(dsize,4)

+ rcs(isize,4) %ia% rcs(iways,3)

+ rcs(lsize,3) %ia% rcs(isize,4)));

The association analysis provided insight into significant parameters.
Splines can give these parameters, such as block sizes, line sizes, and cache
ways, greater flexibility by using a greater number of pieces when fitting the
piecewise polynomial. Restricted cubic spline transformations are denoted
by rcs(param,knots) and interactions are denoted by %ia%. Of particu-
lar note are interactions between the block size and the significant cache
parameters: line size, as well as data and instruction cache associativity.

4.3 Model Assessment

We assess performance and power models for absolute accuracy, relative ac-
curacy, and their ability to capture non-monotonicity in the response topol-
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Figure 6: Absolute accuracy for performance (L) and power (R) models.

Boxplots characterize the median error (red line), 1st and 3rd quartile (bot-

tom and top of the box), and outliers (red circles). Matrix numbers refer to

Table 1.

ogy. Absolute accuracy quantifies how closely models predict true metric val-
ues. Relative accuracy correlates predicted and true values to ensure larger
values are predicted larger and smaller values are predicted smaller, which
is important for optimization heuristics. Lastly, we compare predicted and
true performance topologies, showing the models capture non-monotonicity
and irregularity.

Figure 6 illustrates the error distribution for 100 validation samples col-
lected separately from the 400 training samples. Performance (Mflop/s) is
accurately predicted with median errors between 5 and 6 percent across 11
matrices. For most matrices, 75 percent of predictions have error rates less
than 10 percent. Outliers rarely exceed 20 percent. Power (mW) is also ac-
curately predicted with median errors between 4 and 5 percent. 75 percent of
predictions have error rates less than 7 percent and outliers never exceed 15
percent. Such accuracy is sufficient for early-stage design optimization and
these models could be supplemented with additional simulation if greater
accuracy is desired.

Figure 7 illustrate the correlation between predicted and true values,
plotting predicted values against observed true values for a representative
matrix, 3dtube. Other matrices exhibit similar trends. Strong correlations
manifest as strong linear trends, giving confidence that models will accu-
rately predict the relative performance of designs throughout the space.
Both performance and power models exhibit strong correlations. Perfor-
mance and power predictions track their true values with correlation of
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Figure 7: Relative accuracy for performance (L) and power (R) models: A

linear trend indicates a strong correlation and high relative accuracy.

coefficients greater than 0.98.
Figure 8 illustrates the ability to infer non-monotonic response topolo-

gies. Figure 8L uses simulated data to illustrate the classic example of spar-
sity and irregularity translating into performance non-monotonicity. The
grid’s colormap illustrates the performance (Mflop/s) of various block config-
urations for a baseline cache architecture (Table 2). Each grid cell indicates
the speedup relative to a non-blocked (1×1) implementation.

Figure 8R illustrates the model predicted performance topology. We
observe significant similarity, with the predicted topology exhibiting high-
performance at the same block sizes: 3×3, 3×6, 6×3, 6×6. Each of these
blocks are predicted to exhibit similar performance and more detailed sim-
ulation might be used to choose a final block size. The models also capture
performance discontinuities around optimal block sizes. For example, in
both figures, 6×6 is optimal but most adjacent block sizes are worse than a
non-blocked 1×1 implementation.

5 SpMV and Integrated Efficiency

Using models constructed by statistical inference across SpMV and architec-
ture parameters, we demonstrate energy efficient performance maximization
across the hardware/software interface. While simultaneous optimization of
hardware/software parameters is beneficial and tractable, serial optimiza-
tion incurs only modest penalties.
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Figure 8: Measured (L) and predicted (R) performance topologies. Col-

ormap illustrates Mflop/s and numbers within each cell indicate speedup

over non-blocked 1×1 code. Data shown for a representative matrix nasasrb.

Figure 9: Energy efficiency for representative matrices 3dtube (L) and raef-

sky3 (R). Designs from the joint application and architecture space in per-

formance and energy coordinates. Efficient frontier is lower right quadrant.
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5.1 Energy Efficiency

Figure 9 illustrates the trade-offs between performance and energy for vari-
ous points throughout the joint SpMV and architecture space. Figure 9L is
representative of SpMV for matrices where the optimal block size is small
(e.g., matrix 1, 3dtube, 3×3 blocks) while Figure 9R is representative of
those where the optimal block size is bigger (e.g., matrix 10, raefsky3, 8×8).
The effectiveness of SpMV application optimizations impacts the energy
efficiency of performance gains.

In particular, Figure 9L illustrates performance gains for 3dtube where
these gains come from the architecture space, primarily in the form of larger
cache lines. Thus, we see four distinct strata of designs, one for each cache
line size. Once a cache line size is chosen, however, the other parameters
interact to improve performance and reduce energy. The degree to which
these parameters interact determine the difference between the least effi-
cient frontier and the most efficient Pareto frontier along the bottom of the
strata. Simply increasing line size to 128B is insufficient, delivering 4.8x
in performance at the cost of 1.9x in energy per operation. This strategy
improves performance at a rate 2.5x faster than the rate of energy increases.
In contrast, increasing line size and optimizing other cache parameters with
optimal matrix block sizes is more efficient, delivering 5.1x in performance
at a cost of 1.5x in energy per operation. Thus, coordination improves
performance at a rate 3.1x faster than the rate of energy increases.

To illustrate the sensitivity of these trends to the effectiveness of applica-
tion tuning, Figure 9R considers matrix 10, raefsky3, where blocking has a
much larger impact. Raefsky3 is a sparse matrix with a dense sub-structure
that enables 8×8 blocking with a fill ratio of 1.0x (i.e., no explicitly filled
zeros required). The effectiveness of large matrix blocks further improves
efficiency gains through coordination. We also observe greater stratification
of the design space where data cache size and associativity create their own
strata. Considering the first three strata from low to high performance,
initially line size falls (128B to 16B), data cache size increases (16KB to
256KB), and data cache associativity falls (8 to 1). The subsequent four
strata increase the cache line size up to 128B again. Overall, the trend
along the least efficient frontier produces a 16.0x performance gain for 2.0x
energy cost. This strategy improves performance at a rate 8.0x faster than
the rate of energy increases. The most efficient frontier, which optimizes
both matrix block size and cache structure, delivers 21.0x in performance
for a 1.5x increase in energy cost. Performance increases 14.0x faster than
energy.
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Matrix r c Fill Ratio

1 3dtube 3 3 1.02

2 bayer02 1 1 1.00

3 bcsstk35 3 6 1.12

4 bmw7st 3 2 1.32

5 crystk02 3 3 1.00

6 memplus 1 2 1.35

7 nasasrb 3 6 1.13

8 olafu 3 6 1.12

9 pwtk 3 3 1.22

10 raefsky3 8 8 1.00

11 venkat01 4 4 1.00

Table 4: Performance maximizing matrix block sizes.

These results suggest applications with more effective parameterization
can translate energy costs into performance more efficiently. A larger cache
line size alone is less efficient if the application is not structured to exploit
the extra spatial locality. In our representative examples, raefsky3 and its
8×8 blocks achieved a performance to energy cost ratio 4.5x greater than
that of 3dtube and its 3×3 blocks.

5.2 Simultaneous Optimization

The Pareto analysis indicates the need to optimize both application and
architecture. While they show efficient performance-energy trade-offs by
moving from one efficient point to another on the frontier, this section con-
siders the optimization of a baseline architecture with an unblocked matrix.
Thus, we can identify the relative application and architecture contribu-
tions to efficiency. We first consider an ideal scenario where all parameters
are optimized jointly by exhaustively evaluating inferential models for every
point in the space to identify the performance maximizing design. We then
consider the energy costs of performance maximization.

Figure 10L illustrates the performance (Mflop/s) for a range of opti-
mization scenarios. Note again, that we optimize true Flops and do not
count explicitly filled zeros that might arise from matrix blocking. The
baseline considers the base cache architecture with an unblocked matrix,
which achieves an average of 18 Mflop/s. Application optimization iden-
tifies the best block size for each matrix (Table 4). Blocking achieves 29
Mflop/s, on average, a 1.6x gain. Matrix 10 (raefsky3) and 11 (venkat01)
benefit more from blocking as dense sub-structures allow for larger block
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Figure 10: Performance (L) and efficiency (R) optimization. Matrix num-

bers refer to Table 1.

sizes with modest fill. These matrices can implement large 8×8 and 4×4
blocks requiring no explicitly filled zeros and producing speedups of 2.0x
and 1.8x, respectively.

Architecture optimization relies on larger line sizes to amortize off-chip
memory latencies over more data and lower cache associativities to reduce
the amount of cached streaming data. Architecture alone achieves up 49
Mflop/s, on average, a 2.7x performance gain. However, application and
architecture together achieve 88 Mflop/s, a 5.0x gain that is greater than
the 4.3x expected from independent effects (i.e., 1.6x from application and
2.7x from architecture).

Figure 10R illustrates the energy costs of these performance maximizing
designs. Energy is measured in nJ/Flop and computed by dividing power
and performance predictions. The baseline design consumes an average of
17.0 nJ/Flop. Matrix blocking reduces energy costs to 10.6 nJ/Flop by
improving locality and reducing the number of expensive, off-chip memory
accesses for the source vector. Thus, in an application-only strategy, greater
performance and lower energy costs are correlated. Better locality improves
performance by 1.6x through fewer memory stalls and reduces energy by
0.6x through fewer memory accesses, which dominate total energy.

An architecture only strategy is less efficient, increasing energy costs to
25.2 nJ/Flop. Such a strategy improves performance by increasing cache
line size to amortize memory access latencies across more bytes, but also in-
creases the energy cost of filling a cache line, which increases in proportion
to the line size. Secondary effects, such as larger data caches and less asso-
ciativity, have a smaller effect on both performance and energy. Instruction
and data cache structure comprise less than 3 percent of total energy. Thus,

22



architecture alone improves performance by 2.7x at a cost of 1.5x in energy
per operation.

Through coordinated optimization, however, one can enhance perfor-
mance while controlling energy costs per operation. Figure 10 indicates
energy per Flop decreases by 10 percent (0.9x) even as the Flop rate in-
creases by 5.0x. While larger cache line sizes increase energy per access,
they require roughly constant energy per byte since memory energy is domi-
nated by data transmission over the bus. At the same time, matrix blocking
increases, on average, the number of Flops performed per byte transferred
from memory. The net effect is performance (Mflop/s) increasing at a rate
faster than energy per operation (nJ/Flop).

5.3 Serial Optimization

Simultaneous optimization achieves synergies across the hardware/software
interface and serialized optimization might leave performance and energy
efficiency unexploited. Figure 11 quantifies these effects, illustrating the
penalties from a serial approach.

• Arch>App: For each matrix, optimize architecture then applica-
tion. First, identify architecture A1×1 that maximizes performance
for baseline matrix block size 1×1. Then, identify block size r×c that
maximizes performance given architecture A1×1.

• App>Arch: For each matrix, optimize application then architecture.
First identify matrix block size r×c that maximizes performance for
baseline architecture A0. Then, identify architecture Ar×c that per-
formance given architecture r×c.

Arch>App describes current hardware design practices in which archi-
tects design an processor to improve average performance over static im-
plementations for hundreds of applications. Application designers then
take their application and tune for that static hardware implementation.
App>Arch is a more application-centric strategy that might lead to signifi-
cant hardware design heterogeneity [16].

Figure 11L suggests performances penalties are modest with Arch>App
and App>Arch incurring an average penalty of 5.7 and 4.2 percent, respec-
tively, for matrices that implement matrix blocking. Note 1×1 is the optimal
block size for matrices 2 and 6, which leads to zero penalties. Figure 11R
indicates larger energy inefficiencies of 12.3 and 4.4 percent, respectively. In
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Figure 11: Serial optimization and its implications for performance (L) and

efficiency (R). Arch-App first optimizes architecture for an unblocked ma-

trix and then optimizes application for that architecture. App-Arch first

optimizes the matrix block size and then optimizes the architecture for that

blocked matrix.

both cases, penalties are more likely if the architecture is specified before an
application is tuned.

In Arch>App, the architecture over-provisions resources to compensate
for poor locality in an unblocked matrix. When the matrix is finally blocked,
the energy costs of an over-provisioned architecture remain. In App>Arch,
optimizing the application first maximizes re-use and locality. Subsequent
architectural optimizations, such as wider cache lines, increase performance
by amortizing off-chip latency over more bytes, but also increase power as
more bytes are transferred and more energy is consumed for every cache
miss. The net effect on energy per Flop is negligible.

Matrix 10, raefsky3, experiences the greatest serialization penalties for
both performance and energy, as well as both Arch>App and App>Arch.
This matrix also has the largest block size (8×8=64). Performance and
energy penalties range from 14 to 24 percent. Matrices 3, 7, and 8 also have
larger block sizes (3×6=18) and experience both Arch>App and App>Arch
penalties. These results might suggest a relationship between serialization
penalties and the extent to which matrix blocking is leveraged to deliver
performance and energy efficiency.
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6 Related Work

This work is very similar in spirit to prior work in coordinated design for
VLIW architectures, where compiler code transformations interact with ar-
chitecture design. The work by Fisher et al. on custom-fit processors is
representative of this era of VLIW compiler and architecture research [7].
In such spaces, back-end compiler optimizations play a critical role in ex-
tracting and scheduling parallelism. In more recent, separate efforts, Cooper
et al. and Dubach et al., explore back-end compiler optimizations and phases
using search heuristics [4, 6].

In contrast, our approach to software tuning focuses on source-to-source
transformations, which explore parameterizations of data structures and al-
gorithms. Compared to back-end compiler optimizations, source-level trans-
formations, when applicable, tend to have a larger effects on performance
and efficiency. The source code generators used in this work (OSKI) employ
compiler-sympathetic code constructs, such as unrolling matrix block loops.
The SPIRAL project implements both software and hardware generators
for digital signal processing algorithms [20]. Our approach to statistical
regression modeling might also be applied to combining these generators.

Past tuning for sparse linear algebra relies on a combination of models
and empirical measurements. These empirical measurements are collected
from code generators, beginning with PHiPAC for dense matrix multiply
[3], ATLAS for dense linear algebra in BLAS [29], and OSKI for sparse lin-
ear algebra [26]. The optimal library implementation is identified through
profiling and heuristic search on the target platform [24]. Vuduc et al.
construct statistical classifiers for dense matrix multiply [25]. In contrast,
we construct predictive models for the more irregular, sparse matrix multi-
ply. Moreover, prior work optimizes kernels for a fixed hardware platform
whereas we optimize kernels and hardware simultaneously.

Mohiyuddin et al. propose a hardware-software co-tuning methodol-
ogy that expands conventional software-only tuning for dense matrix-matrix
multiply, sparse matrix-vector multiply, and stencil computation [18]. This
prior work demonstrates the advantages of co-tuning over a hardware-only
or software-only approach. Mohiyuddin et al. observe the challenges of
simulation hundreds of kernel implementations on tens of hardware configu-
rations. Our effort addresses these co-tuning costs with statistical inference
and predictive modeling.

Lee and Brooks construct statistical regression models to predict per-
formance and power as a function of architectural parameters [15]. Ipek et
al. construct neural nets for the same purpose [13]. Separate models are
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constructed for each application. Dubach et al. construct similar models for
a set of applications and infer the performance of previously unseen applica-
tions as a linear combination of the original set [6]. All of these prior efforts
model and optimize the architecture for a fixed software implementation
whereas we consider software and architecture simultaneously.

7 Conclusion

Process technology and multi-core parallelism are no longer providing the
energy efficiencies required by modern computing. Specialization delivers
efficiency, but incurs significant engineering costs. We show the potential
to mitigate some of these costs by creating generator frameworks that can
optimize across the hardware/software interface. In our prototype system,
we leverage prior work on domain-specific application tuners and flexible
architecture generators. By connecting the OSKI code generator with the
Tensilica/Smart Memories hardware through an integrated inference model,
we improve the average performance of our sparse linear algebra kernel by
5.0x while decreasing the energy by 10 percent (0.9x).

These efficiencies arise from application tuning, which simultaneously
improves performance and lowers energy, and architecture design, which
trades-off performance and energy. These different trade-off dynamics across
abstraction layers motivate a more comprehensive view of energy efficiency
and computing that spans the hardware/software interface. Although we
span abstraction layers, we do not seek to break them. Instead, we favor
clean and minimal interfaces across abstraction layers to enable coordinated
design.

In future, we will examine generalizations of our framework to a broader
range of applications and architectures. These efforts will require continued
research in parameterized code generation, parameterized hardware design,
and optimization strategies. Moreover, we must better understand the pos-
sibilities of integrating disparate generators to construct a full system. As
application and architecture designers build a variety of generators, we need
frameworks that maintain the integrity of abstraction layers while building
new bridges across them.
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