
Applied Statistical Inference
for System Design and Management

Benjamin C. Lee
Electrical and Computer Engineering, Duke University

benjamin.c.lee@duke.edu

Abstract—We review strategies for applying statistical infer-
ence to system design and management. In design, inferred
models act as surrogates for expensive simulators and enable
qualitatively new studies. In management, inferred models pre-
dict outcomes from allocation and scheduling decisions, and
identify conditions that make performance stragglers more likely.

I. INTRODUCTION

In 1965, Gordon Moore applied statistical inference to
translate data into a decision [1]. The data included four
measurements—the number of integrated components per
chip—collected for several consecutive years. A linear fit on
the data in log scale produced a trend and motivated a decision.
Specifically, the number of integrated components should
double periodically to reduce cost and increase capability in
electronics design. Hence, the birth of Moore’s Law.

Today, statistical inference is even more important when
using data to meet computer architects’ dual mandates in
hardware design and management. Unfortunately, methods for
analysis and interpretation have lagged even as data sources
have become increasingly prolific. Design data flows from di-
verse frameworks such as RTL simulation, cycle-level models,
or full-system emulation. Management data flows from system
profilers and hardware counters. The data deluge requires
inference, and its cousins in machine learning and data mining,
to produce intelligent decisions and efficient outcomes.

Sophisticated decisions are needed for varied outcomes
in modern computer systems. In the future, the trade-off
space must accommodate nuanced measures of performance—
e.g., latency, throughput, percentiles—and the design space
must accommodate diverse approaches to power efficiency—
e.g., heterogeneity, customization, computational sprinting.
The trend towards complex systems and measures of their
performance requires corresponding advances in a broad array
of inferred models that drive design and management.

In this paper, we review strategies for applying statistical
inference to system design and management. We describe
when the strategies have proven effective and identify system
settings that motivate new ones. Much prior work has focused
on one setting, processor design [2]–[5], and we face many
challenges in less explored settings. New strategies are needed
when design is coordinated across multiple hardware compo-
nents or across the hardware-software interface. Furthermore,
new strategies are needed when using inferred models for run-
time management.

II. TRANSLATING DATA INTO DECISIONS

Computer architects suffer from the Goldilocks problem.
During design, architects rely on slow and unwieldy simulators
that produce too little data and preclude sophisticated design
space exploration. During management, architects instrument
running systems with pervasive profilers that provide too
much data without revealing key, domain-specific insights. The
problem of having too little or too much data will only grow.

Design and the Data Deficit. The quantitative approach
to computer architecture heralded an era of simulator-driven
design. Simulators estimate performance and other figures of
merit by tracking activity in a candidate design. However,
software runs three orders of magnitude more slowly in cycle-
level simulation. MARSSx86 and Gem5 commit 200-300K
instructions per second [6], [7]. Simulation costs are exacer-
bated by two trends. First, server designers target workloads
that require full-system simulation; e.g., a Spark simulation
must include the OS and run-time engine. Second, embedded
designers pursue efficiency with accelerators, which require
custom timing models or simulation with synthesized RTL.

Unwieldy simulators constrain design space exploration.
Enumerating and simulating a design space is prohibitively
expensive, especially as the number of hardware parame-
ters and software benchmarks increases. Fundamental design
methods, such as optimizing power efficiency with heuristic
search or constructing a Pareto frontier, are intractable when
the inner loop of an iterative heuristic invokes a simulator.
These challenges multiply when optimizing several hardware
components (e.g., processor and memory) in coordination.

Management and the Data Glut. At the other end of the
spectrum, deployed systems produce a glut of data. System
profilers report processor, memory, and network activity while
hardware counters report microarchitectural events. At data-
center scale, profiles for thousands of servers and millions
of tasks produce huge traces. For example, the Google-wide
Profiler produces a database of software task parameters, hard-
ware platform parameters, system utilization measurements,
and scheduling events [8]. A 180GB trace for 29 days of
datacenter activity covers 11K nodes, 925 users, 650K jobs
and 25M tasks [9].

Large, comprehensive system profiles supply so much data
that they obscure actionable insight. A database query for
a specific profile fails to yield broader insight for manage-
ment policies. Yet we need policies for diverse management



goals such as navigating machine heterogeneity, co-locating
software tasks on shared hardware platforms, and quantifying
hardware-software interactions during resource allocation and
task scheduling. In each of these settings, profiles can supply
data to support decisions.

III. APPLYING STATISTICAL INFERENCE

Statistical inference and its related methods in machine
learning and data mining provide a rich toolset for design and
management. We describe a few representative methods that
highlight relevant capabilities.

Regression. First, consider a simple regression model that
estimates response y from a linear combination of parameters
x with some random error ε [10]. For design, y might measure
instruction throughput and x1, x2, . . . might describe datapath
resources and cache geometries.

y = β0 + β1x1 + β2x2 + . . .+ ε

Although the regression model is linear with respect to its
fitted coefficients, non-linear transformations on x and y can
produce the flexible models. For example, splines partition the
parameter range and fit different coefficients to each range,
producing a piecewise polynomial model—see spline S(x)
on x. Non-linearity is helpful when modeling diminishing
returns such as Amdahl’s Law or cache performance when
data locality is limited.

S(x) = α1x+ α2x
2 + α3x

3 + α4(x− a)3+ + α5(x− b)3+

where(x− a)3+ = max{(x− a)3, 0}

Finally, regression captures scenarios in which two parameters
interact to affect the outcome. A product term in the model
ensures that the impact from one parameter depends on the
value of the other.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

Neural Networks. Neural networks are comprised of neu-
rons connected by weighted edges [11]. One neuron’s out-
puts feed another’s inputs to create a multi-layer network—
see Figure 1. A neuron consumes parameters x1, x2, . . . and
produces a value v, which is calculated by a dot product
of parameters x and weights w followed by an activation
function f such that v = f(

∑
xiwi). For example, input

neurons use identity f(x) = x and hidden neurons often use
sigmoid f(x) = (1 + e−x)−1. Deep neural networks extend
these concepts to many layers, composing features and model
outputs from earlier layers to capture their sophisticated, non-
linear impact on outcomes.

Recommenders and Classifiers. Finally, classifiers are
models that model and predict discrete outcomes. Suppose a
computer architect wishes to know whether a software task
will be a performance straggler given hardware conditions.
Logistic regression models the probability that an event occurs
as a linear combination of input parameters. By comparing the

Fig. 1. Neural network with one hidden layer.

modeled probability against a threshold, we can construct a
classifier that predicts whether an event will occur.

log
P[y = 1]

1− P[y = 1]
= β0 + β1x1 + β2x2 + . . .

Related techniques include collaborative filtering, which es-
timates each software task’s preference for hardware. Collab-
orative filtering employs a software-hardware matrix in which
Mi,j reflects task i’s preference for platform j. The matrix
is large and sparse with many unobserved values. To learn
missing values, collaborative filtering performs a regularized
least squares fit, estimating matrix values to minimize sum of
square errors while penalizing solutions that use many large
values, solutions that increase risk of over-fitting [12].

Limitations and Challenges. Inference faces challenges in
feature selection, the process of identifying inputs to model the
output. The architect must choose among candidate features, a
combinatorial number of interactions between them, and non-
linear transformations. Heuristics, such as stepwise regression,
help by searching for statistically significant predictors of the
response. Combined with domain-specific expertise, heuristics
can produce effective models. But more research in feature
selection and cost-effective training is needed.

IV. EXPLORING DESIGN SPACES

Architects have successfully applied inference to model
processor performance as a function of design parameters,
creating surrogates for expensive simulators. These surrogates
have enabled previously intractable design space studies. Yet,
open questions remain for other hardware components, more
complex systems, and interactions with tunable software.

Creating Surrogates for Simulation. Flexible, spline-
based regression models are capable of capturing sophisti-
cated, non-linear relationships in the processor design space.
Computer architects can define an ambitious design space with
15-20 parameters and tens of thousands of designs, sample and
simulate a few hundred points from the space, and fit accurate
regression models [2]. Input parameters describe the pipeline
depth, datapath width, and cache hierarchy. Model outputs
estimate performance (i.e., instruction throughput) and power.
In this setting, regression models are accurate and estimate
figures of merit with median errors between 5-10% when
validated against industrial strength simulators [2], [4].



Fig. 2. Pareto frontier for design space that varies pipeline depth, issue width,
register file, reservation stations, and L2 cache [3]. Colors correspond to varied
L2 cache values. Power reported for 180nm process.

Fig. 3. Heterogeneous design clusters for nine applications [3]. Circles denote
designs identified by K-means clustering. Radial points, attached to circles,
denote most efficient designs for applications in cluster.

As surrogates for simulators, models can estimate perfor-
mance and power for thousands of designs in seconds, en-
abling previously intractable design studies [3]. First, consider
Pareto frontiers in performance-power coordinates. A Pareto
optimal design is such that an architect cannot improve per-
formance without increasing power or reduce power without
decreasing performance. In other words, the frontier reveals
the best design for a given power budget or the least expensive
design for a given performance target. Searching for Pareto
optima is intractable with design simulation, but is trivial with
statistically inferred models.

Second, models permit sophisticated design optimiza-
tion [3]. Suppose an architect wished to design multiple,
heterogeneous processor cores to maximize efficiency for an
application suite. With regression models, the architect can
identify the most efficient design for each application. Then,
she can use K-means to cluster applications with similar design

preferences. Each cluster produces a core type well suited to
applications in the cluster. By tuning the number of clusters,
the architect tunes the degree of heterogeneity in the system.
Thus, architects can optimize the number of core types and
organize those types in a system to maximize efficiency.

Finally, computer architects should look beyond hardware
design and consider software parameters. Software perfor-
mance varies with input data, compiler optimizations, and
data structure choices. An architect can characterize soft-
ware behavior with microarchitecture-independent measures
of performance that are portable across core designs (e.g.,
re-use distance, not cache miss rate). A performance model
z = β0 + β1x + β2y + β3xy can account for interactions
between hardware parameters (x) and software parameters (y).
Such models can predict performance for previously unseen
hardware-software pairs [5].

Looking Beyond the Processor. Statistical inference for
hardware components beyond the processor core is less com-
mon yet well motivated. For evolving memory technologies,
such as PCM and STT-MRAM, architects can use statistically
inferred models to parameterize their assumptions about tech-
nology trends and assess implications for system architecture.
Alternatively, architects could design a system with ideal
parameters and then determine the mix of memories that
produce the desired properties.

Domain-specific accelerators present even greater chal-
lenges for design space exploration. High-level synthesis can
translate an algorithmic description into RTL to support perfor-
mance and power simulation. Statistically inferred surrogates
for this accelerator design flow would permit qualitatively new
studies. However, identifying parameters that define the design
space may require domain-specific expertise.

As we apply statistical inference to progressively more sys-
tem components, architects could turn to composable models
with cleanly defined interfaces. For example, separate models
for the processor core and memory system could be linked by
a measure of memory access time. Composable models would
reduce the costs of data collection as each component model
would train on a modest number of data points from its design
space [4].

V. DRIVING MANAGEMENT DECISIONS

Architects have only recently turned to statistical inference
for difficult questions in systems management. Inferred models
can estimate software performance under operating conditions
that vary according to hardware heterogeneity and software
contention for shared resources. Beyond efforts in collabo-
rative filtering and straggler classification, however, further
research is needed in run-time models that drive allocation
and scheduling.

Collaborative filtering naturally fits the resource assignment
problem [13]. A system can profile performance for sparsely
sampled hardware-software pairs to construct a matrix of
software ratings for hardware — Mi,j describes task i’s
performance on platform j. The matrix M can be factored into
matrices P and Q, which describe the platform’s features and a



Fig. 4. Each threshold value, shown by data point, produces a TPR and FPR.
When threshold is 0.3, TPR is 0.81 and FPR is 0.35.

task’s preferences for each platform, respectively. Factorization
produces M ′ = PQ and provides a dense matrix that estimates
every task’s preferences for every platform.

Beyond predicting average performance, architects must
understand stragglers in distributed systems, which lengthen
the critical path and harm service quality. Yet, identifying
system conditions that make stragglers more likely is difficult
because they occur so rarely. Logistic regression can model the
probability of a straggler with task, system, and architecture
parameters. Such a model can help diagnose root causes.

We build a logistic regression model for stragglers in a
Google datacenter. The binary response y is false for nominal
tasks and true for outliers; tasks that report instruction through-
put within the worst 25% of all profiles are considered outliers.
Input parameters include the task’s requests for hardware, its
allocation of hardware, and system utilization. Regression co-
efficients are fit using 10K tasks from the datacenter trace [9].
The following model estimates the odds of an outlying tasks,
where xβ = log(P[y = 1]/P [y = 0]).

Xβ̂ =−0.63− 0.46 cpuMean− 0.04 cpuMax

+0.62 memSpace + 0.10 memMax− 0.70 memAssigned

+2.60 pgCacheUnmapped− 1.71 pgCacheTotal

+0.17 diskMean− 0.15 diskMax + 8.08 diskSpace

−0.02 cpuReq + 0.03 memReq + 1.11 diskReq

−0.30{1} − 0.23{2}+ 0.21{3}+ 0.12 priority

This regression model is a good fit and reports a Brier score of
0.15. Note that the Brier score uses N task profiles to compute
(1/N)

∑N
t=1(ft − ot)2 where 0 ≤ ft ≤ 1 is the forecasted

probability that task t is an outlier and ot ∈ {0, 1} is the
actual outcome.

Classifier and model inputs are known prior to computation
or soon after it begins. The classifier invokes the regression
model to predict outlier probability and compares this proba-
bility against a threshold. The true positive rate (TPR) is the

number of outliers classified as such and the false positive rate
(FPR) is the frequency of false alarms for nominal tasks.

Figure 4 plot TPR versus FPR as the threshold varies. A
good classifier that detects most outliers and rarely raises false
alarms occupies the upper-left corner of the figure. Classifying
a task an outlier when P[y = 1] > 0.3 strikes an attractive
balance — 81% of outliers are classified correctly and 35% of
positives are false alarms. For perspective, logistic regression
is far more accurate than random guesses, which produce true
and false positives in equal measure. Thus, we successfully
mine datacenter profiles for predictive relationships.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Methods in statistical inference can drive management deci-
sions. However, new strategies for training these models in dy-
namic systems will be required. When a system continuously
profiles system behavior, models should continuously train and
adapt to new data. Architects might turn to Bayesian methods,
which specify priors on the model based on existing data and
compute posteriors for the model based on new data. Dynamic
models blur boundaries between training and prediction.

Interpreting models and separating causal relationships from
correlation continue to be challenging. Although regression
model and neural networks predict outcomes accurately, di-
agnosing root causes is challenging. Yet causality analysis
would help architects design and manage the system for
better outcomes. Design for manageability means anticipating
management challenges during design and producing systems
that are more likely to meet quality-of-service targets.

ACKNOWLEDGMENTS

This work is supported by NSF grants CCF-1149252,
CCF-1337215, and AF-1408784, as well as by STARnet, a
Semiconductor Research Corporation Program, sponsored by
MARCO and DARPA. Any findings in this material are those
of the author(s) and do not reflect the views of these sponsors.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965.

[2] B. Lee and D. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in ASPLOS,
2006.

[3] ——, “Illustrative design space studies with microarchitectural regres-
sion models,” in HPCA, 2007.

[4] B. Lee et al., “CPR: Composable performance regression for scalable
multiprocessor models,” in MICRO, 2008.

[5] W. Wu and B. Lee, “Inferred models for dynamic and sparse hardware-
software spaces,” in MICRO, 2012.

[6] A. Patel et al., “MARSSx86: A full system simulator for x86 CPUs,”
in DAC, 2011.

[7] N. Binkert et al., “The gem5 simulator,” 2011.
[8] G. Ren et al., “Google-wide profiling,” IEEE Micro, 2010.
[9] C. Reiss et al., “Heterogeneity and dynamicity at scale: Google trace

analysis,” in SOCC, 2012.
[10] F. Harrell, Regression modeling strategies. Springer, 2001.
[11] T. Mitchell, Machine learning. McGraw Hill, 1997.
[12] Y. Koren et al., “Matrix factorization techniques for recommender

systems,” IEEE Computer, 2009.
[13] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for

heterogeneous datacenters,” in HPCA, 2013.


