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Abstract—Secure memory increases both the latency and
energy required for memory accesses. To reduce these over-
heads, computer architects have sought to cache metadata on
the processor chip, but placing metadata in a simple cache has
not been as effective as expected. With a detailed analysis of
metadata access patterns, we clarify myths in metadata caching
and provide insight into more efficient caching strategies. We
provide three observations that can help architects design
future metadata caches. First, caching all metadata types
improves efficiency. Second, the size of the metadata cache
should match the reuse distance of the metadata. Third, when
designing a better eviction policy, the traditional Belady’s MIN
algorithm cannot be used as the optimal replacement policy.
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I. INTRODUCTION

Several new computing models—cloud, gaming, and mo-
bile systems—force users to relinquish physical control over
the hardware. Losing physical control introduces a new
threat model. An attacker can probe the memory channel
to steal secrets traversing the memory bus. Protecting the
user against these attacks requires a memory controller that
ensures confidentiality and integrity.

Confidentiality prevents an attacker from stealing secrets
when they leave the chip, which defines the boundary of
the trusted computing base. The memory controller achieves
confidentiality by encrypting data when it is stored off-chip.
Recent industry implementations, such as Intel’s Software
Guard eXtensions (SGX) [1], use counter-mode encryption,
which uses a counter to generate a one-time-pad and encrypt
data [6], [30]. However, confidentiality on data alone is
insufficient to prevent physical attacks.

Integrity prevents an attacker from modifying data coming
into the processor. A secure processor must verify the
integrity of data stored off-chip. Intel SGX uses a small
hash for each data block and an integrity tree over the
counters used by the encryption mechanism; this structure
is also known as a Bonsai Merkle Tree [15], [20]. To
verify data integrity, the memory controller checks the data
hash and traverses the integrity tree up to the root, which
resides securely on chip, and checks the hashes at each level.
Complementing hashes for the data, the hash tree for the
counters used during encryption protect the system from
replay attacks.

Secure memory adds large overheads on both latency and
energy. For every memory access, the memory controller
must decrypt data and verify the integrity of both the data
and the counters. To decrypt data, the memory controller
fetches the corresponding counter from memory. To verify
the counter’s integrity, the controller traverses the integrity
tree up to the root by fetching one hash from memory at
each level. Finally, to verify the data’s integrity, the memory
controller fetches the data hash from memory.

Prior studies cache metadata to reduce overheads. Caching
metadata in the processor’s last-level cache (LLC) reduces
overheads but introduces competition between metadata and
data for space [5]. Caching only the counters used for de-
cryption can shorten the critical path when speculation hides
the latency of integrity verification [12], [20], but neglecting
the data hashes required for every memory request increases
dynamic energy costs to at least twice that of a system
without secure memory.

Metadata caches complement another strategy to reduce
overheads—speculatively using unverified data. Prior studies
safely speculate around integrity verification latency by
supplying data immediately for computation and restricting
the effects of that computation until verification completes
[12]. This mechanism is effective only if the verification
latency is not too long. Verification may become a bottleneck
if neither hashes nor tree nodes are cached.

Despite the importance of metadata caching, there is
no prior work on understanding metadata access patterns.
Architects have either adopted prior cache designs [5],
[21], [22], [24], [25], [27] or cached only one type of
metadata [20], [31]. We are the first to perform a detailed
analysis of metadata access patterns. We make the following
observations:

• Caching all metadata types increases cache efficiency
• Reuse distances are bimodal (i.e., short or long)
• Request type is a strong indicator of reuse patterns.
• Belady’s MIN [3] is not optimal for metadata caches.
• Traditional eviction policies do not work well when the

metadata cache services all metadata types.

II. BACKGROUND AND MOTIVATION

A secure memory system protects the user from physical
attacks. A physical attack can involve snooping off-chip con-
nections to steal secrets. It can also involve tampering with



the values returned from or stored in memory. To prevent
and detect physical attacks, secure memory uses encryption
for confidentiality and hashing for integrity verification.

A. Security Mechanisms

Confidentiality. To prevent an attacker from stealing
secrets through the off-chip connections, secure memory
provides confidentiality by encrypting all off-chip data.
State-of-the-art secure memory uses counter-mode encryp-
tion. Counter-mode encryption allows the slow part of the
encryption process to happen in the background while the
encrypted data is fetched from memory.

Counter-mode encryption parallelizes the encryption and
the memory access. While the counter is encrypted to
produce a one-time-pad (OTP), the data is fetched from
memory. When data is brought on-chip, the memory con-
troller XORs the data with the OTP in one cycle. The XOR
operation produces both the data’s ciphertext and plaintext.
The counter used to produce the OTP is used only once in
the system’s lifetime.

The memory controller guarantees unique one-time-pads
for counter-mode encryption by maintaining one counter for
each 64B-block. The counter is incremented every time it is
used to encrypt data, ensuring its value is only used once.
Keeping the per-block counters on-chip is too expensive—
4GB of secure memory with 8B per-block counters would
require 512MB of counters. Instead, current implementations
of secure memory store counters in main memory [1].

To reduce the space overhead of counters, prior work
uses two counters: one per-page counter and a smaller per-
block counter [20], [30]. Per-block and per-page counters
increment when the corresponding blocks are written and
when per-block counters overflow, respectively. When the
per-page counter is incremented, all blocks in the page are
loaded on-chip and re-encrypted with the new page counter.
Re-encrypting a whole page is expensive, but it happens
infrequently and can be done off the critical path. Using per-
page and per-block counters significantly reduces overheads.
An 8B counter for every 4KB-page combined with a 7b
counter for every 64B-block reduces space requirements
from 512MB down to 64MB.

Integrity. Secure memory detects data tampering by ver-
ifying data integrity with Bonsai Merkle trees (BMTs) [20].
A BMT consists of a hash tree over the counters used in
counter-mode encryption. The root of the tree is stored on-
chip to establish an origin of trust. The tree is composed of
keyed Hash Message Authentication Codes (HMACs) for
each child block; an 8B-HMAC is sufficient to track block
integrity. When a counter is fetched from off-chip memory,
the memory controller traverses the BMT, comparing hashes
along the way, to verify that the counter’s value is the same
as when it was last written out to memory. The BMT is
stored in main memory with the exception of the root, which
is stored within the chip.

The BMT enables verification of counter integrity but not
of the data itself. An HMAC for each data block is also
required; an 8B-HMAC is sufficient to track data integrity.
The memory controller compares these hashes when fetching
data from off-chip memory.

Overheads. Every miss in the last-level cache (LLC)
requires several memory requests to transfer metadata in
addition to data. The number of additional requests depends
on the amount of memory protected and the length of the
counters. For example, Intel SGX protects up to 128MB of
memory with a single 8B counter per 64B-block. It stores
three levels of the BMT in main memory in addition to the
counters and the data HMACs. For each LLC miss, the SGX
memory encryption engine (MEE) fetches five additional
blocks from memory—one block for the counter, one block
for the data hash, and three blocks for the tree.

Metadata blocks can be cached to alleviate the overheads
from additional memory requests. If a counter block is found
in the metadata cache, the memory controller does not need
to traverse the BMT because the counter was verified when
it was brought into the cache. For Intel SGX, the metadata
cache reduces the number of additional memory accesses
from five to one, if the counter is cached, or to zero if both
the hash and counter are cached. Although metadata caches
promise efficiency, metadata access patterns are diverse and
present new challenges for cache design.

B. Case for Caching All Metadata Types

Including all metadata types within the cache is important
for reducing overheads from secure memory. First, hashes
are required to verify data integrity for every memory access.
If the cache excludes hashes, every data access triggers at
least one metadata access from memory. Second, counters
are required to decrypt data for every memory access. If the
cache excludes counters, every data access triggers another
memory request for the corresponding counter and even
more memory accesses for integrity verification.

Third, tree nodes are required to verify counter integrity. If
the cache excludes the tree, a request for a counter requires
many metadata accesses to memory to traverse the whole
integrity tree. Caching the integrity tree provides a safety
net for performance when counters cannot be contained in
the cache due to long reuse distances or capacity constraints.
Tree nodes have shorter reuse distances because of the tree’s
shape (i.e. fewer blocks higher in the tree).

The metadata cache reduces delay overheads for both
decryption and verification. It also reduces energy costs,
primarily by avoiding expensive memory transfers. DRAM
and SRAM accesses require 150pJ [14] and 0.3 pJ [26] per
bit, respectively. Energy overhead falls when the metadata
cache services more metadata requests.

Figure 1 suggests that caching all metadata types has
significant benefits. Measurements for canneal (left) show
that the cache size needed for a given miss rate is smaller
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Figure 1: Metadata MPKI when caching (i) only counters, (ii) counters and hashes, and (iii) all metadata types.

when including all metadata types. Achieving 73 metadata
misses per thousand instructions (MPKI) requires a 2MB
cache that holds only counters or a much smaller 128KB
cache that holds any metadata type.

However, permitting the cache to hold hashes in addition
to counters leads to subtle interactions between metadata
types. Measurements for libquantum (right) indicate negli-
gible returns when caching counters with less than 128KB
of capacity and diminishing marginal returns when caching
them with more than 1MB of capacity. Including hashes with
counters harms performance because hashes compete with
counters for capacity and counter misses require expensive
traversals of the integrity tree. For a 1MB metadata cache,
the competition between hashes and counters increases
MPKI from six to ten.

Permitting the cache to hold tree nodes, along with hashes
and counters, reduces MPKI significantly when the cache
size is smaller than 512KB. Caching tree nodes has higher
per-block benefits as they provide larger data coverage per
64B-block. Moreover, there are fewer tree node blocks,
making it easier to cache them. Experiments with other
metadata cache configurations (hashes only, tree nodes only,
hashes and tree nodes, and counters and tree nodes) produce
trends similar to those in Figure 1.

C. Challenges of Caching All Metadata Types

Common caching strategies do not work well for metadata
access patterns, which are diverse for three reasons. First,
metadata consists of three different types: counters, hashes
and tree nodes. Each type has different behaviors due to
the varying amount of data each protects. When metadata
is organized into 64B blocks, a hash block protects only 8
data blocks whereas a counter block protects 64 data blocks.
Each leaf in the integrity tree protects eight counter blocks,
which amount to 64 ∗ 8 = 512 data blocks. Nodes higher in
the tree protect more data. The more data a block protects,
the more often the block will be reused and the fewer blocks
of that type are required, making it easier to cache them.

Second, metadata types exhibit different access patterns.
Requests for hashes and counters are driven by workload
behavior such as load misses in the LLC or dirty-line
evictions from the LLC. In contrast, requests for tree nodes

are driven by counter misses in the metadata cache. This
distinction causes significant differences in reuse distances.

Finally, metadata types have different miss costs. A miss
for a counter block might require traversing the integrity
tree, increasing the number of memory accesses by the
number of tree levels. In contrast, missing on a hash block
requires accessing memory only once for that same block.
Furthermore, the miss costs can vary not only between
metadata types but also within types.

Traditional cache design assumes misses are independent
and have a uniform miss cost. This assumption does not
apply to metadata. The miss cost for a block depends on
which other blocks and metadata types are cached. Suppose
that counter block A has all of its parent tree nodes in the
cache while counter block B has only its highest tree level
in the cache. If an eviction must decide between block A
and B, it might be better to evict A to avoid an expensive
miss for B, even if B is reused further into the future. The
precise performance outcome of this decision depends on
the cache contents when these blocks are reused.

III. SIMULATION METHODOLOGIES

We assume that all of memory is secure and that the
memory controller speculatively supplies data for computa-
tion before its integrity has been verified [12]. We evaluate
metadata cache designs using MARSSX86 for full system
simulation [16] and DRAMSim2 to model memory [23]. We
extend DRAMSim2 with timing models for Bonsai Merkle
Trees and counter-mode encryption. We also add a metadata
cache to the simulator. We use McPAT [13] to estimate
processor energy, CACTI [26] to estimate metadata cache

Processor out-of-order core
Clock Frequency 3GHz
L1 I & D Cache 32KB 8-way
L2 Cache 256KB 8-way
L3 Cache 2MB 8-way
Memory Size 4GB
Memory Latency from DRAMSim2
Hash Latency 40 processor cycles [7]
Hash Throughput 1 per DRAM cycle

Table I: Simulation Configuration
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Figure 2: Comparison of LLC and metadata cache sizes. Normalized to system with 2MB LLC and without secure memory.

energy, and DRAMSim2 to estimate memory energy. Table I
summarizes our experimental configuration.

We run three benchmarks suites: PARSEC [4],
SPLASH2 [29] and SPEC 2006 [8]. For PARSEC
and SPLASH2 benchmarks, we simulate 500 million
user instructions from the region of interest. For SPEC
benchmarks, we fast-forward by 1 billion user instructions
and simulate 500 million user instructions. Caches are
warmed up with 50 million instructions for all benchmarks.
We focus our attention on benchmarks that have LLC
MPKI greater than 10 because they are most affected by
the security mechanism. For completeness, we also present
geometric averages for all benchmarks.

IV. METADATA ACCESS PATTERNS

Mechanisms for confidentiality and integrity pose new
challenges in managing multiple types of metadata. When
requesting data, the memory controller must also request
(i) the corresponding counter to decrypt the data, (ii) tree
nodes to verify counter integrity, and (iii) simple hashes
to verify data integrity. Links between types of metadata
complicate locality analysis and caching policy. Should the
cache prioritize counters because a cached counter is secure
and avoids expensive tree traversal? Or should the cache
prioritize trees because a cached tree node is often reused,
especially when it is close to the root?

We consider a system with a per-page counter and a per-
block counter for encryption [20], [30]. Although Intel SGX
uses a single per-block counter, our per-page and per-block
counters approach reduces the memory space overhead and
makes caching counters easier. Our analysis applies to other
system organizations and we note where differences apply.

A. Metadata Cache Size

Although industry does not divulge specific sizes or
design decisions for their metadata caches, intuition says
that much more of the on-chip SRAM budget should be
dedicated to the LLC than to the metadata cache. To verify
this intuition, we simulate four LLC sizes (512KB, 1MB,
2MB, 4MB) and six metadata cache sizes (16KB, 64KB,
256KB, 512KB, 1MB, 2MB). We measure energy and delay
relative to a system with a 2MB LLC and without secure
memory.

Figure 2 plots efficiency for varied system configurations.
Each line color shows results with the same LLC size.
Each mark type shows results with the same metadata cache
size (i.e., squares indicate 256KB metadata caches). The
x-axis reports the total capacity budget for both LLC and
metadata caches. Results assume that the microarchitecture
can speculate and hide verification latency [12]. Experiments
without speculation produce the same general trend.

The results for the average (left) in Figure 2 align with our
intuition. However, memory-intensive benchmarks, such as



canneal (right), flip the trend and give us new insight. Given
a bit more than a 1MB budget, the average benchmark would
perform better with a 1MB LLC and a 16KB metadata cache
(i.e., gray x is lower than the black diamond). In contrast,
canneal would perform better with a 512KB LLC and a
512KB metadata cache (i.e., black diamond is lower than the
gray x). Canneal has little spatial locality and requires many
more metadata blocks than the average workload. With a
smaller LLC, canneal’s metadata has smaller reuse distances
and thus is able to cache them more efficiently.

The results for the average benchmark suggest that archi-
tects should design a cache hierarchy with a smaller meta-
data cache and a larger LLC for the common case. Results
for memory intensive benchmarks indicate that mechanisms
that adapt the system for different workload needs would
benefit cache efficiency.

B. Amount of Data Protected

Metadata access patterns can be explained, in part, by the
difference in the amount of data each block protects. All
metadata types are stored in memory. Metadata is grouped
into 64B blocks, which is the granularity of transfers to
the memory controller. A piece of metadata that protects
more data will be reused more often. Table II quantifies
the amount of data protected by each metadata type for
two secure memory organizations, PoisonIvy (PI) and Intel
Software Guard eXtensions (SGX).

A 64B block of counters includes sixty four 7b per-block
counters and one 8B per-page counter. The block’s sixty four
per-block counters protect 64× 64B = 4KB of data. Every
LLC miss that addresses the same page will require the same
counter block to decrypt the data fetched from memory. The
temporal locality of the counter blocks depends strictly on
the temporal locality of the 4KB page in an application. Note
that Intel SGX uses a larger 8B per-block counter, changing
the behavior of counter blocks to match that of the hash
blocks.

A 64B block of hashes from the integrity tree protects
counter integrity. The 64B block includes eight 8B hashes,
each of which protects a 64B block of counters or tree nodes.
Because 64B of counters covers 4KB of data (see above), the
eight hashes protect 8× 4KB = 32KB of data at the leaves
of the tree. The amount of protected data increases as the
node approaches the root. Each tree node covers 8× more
data than its child. Since blocks cover 32KB of data at the
leaves (or 4KB in the case of Intel SGX), its parent covers

Metadata Organization Data Protected
Type PI [12] SGX [1] PI [12] SGX [1]

Counters 1, 8B / page 8, 8B / blk 4KB 512B64, 7b / blk
Integrity 8, 8B hashes 4 ∗ 8lev KB 512 ∗ 8lev BTree

Hashes 8, 8B hashes 512B

Table II: Metadata organization

256KB (32KB), its grandparent covers 2MB (256KB), and
so on. The on-chip root covers all memory (or all of SGX’s
secure memory, which is up to 96MB when using SGX1
instructions [1]).

Finally, a 64B block of hashes protect data integrity.
The 64B block includes eight 8B hashes. Because each
hash protects a 64B block of data, the eight hashes protect
8× 64B = 0.5KB of data.

C. Reuse Distance

We reason about metadata and their access patterns by
looking at reuse distance. An effective cache holds blocks
that are reused frequently and evicts blocks that are not
reused or reused infrequently. Figure 3 presents the cumula-
tive distribution function (CDF) of metadata reuse distance
for 2MB-LLC with no metadata cache. Each CDF shows
that y% of metadata exhibit reuse distance ≤x bytes. CDFs
that rise sharply on the left illustrate short reuse distances,
which are easier to cache. Those that extend gradually to
the right illustrate poor locality. The reuse analysis provides
several insights that can guide metadata cache design.

First, the reuse distance of a metadata block is affected by
the last-level cache (LLC) organization. When a data block is
cached, its counter and hash blocks are unnecessary. Second,
the reuse distance of metadata blocks are affected by the
spatial locality of the application. Spatial locality for data
translates into temporal locality for metadata. This relation-
ship exists because one metadata block covers multiple data
blocks. If a data block is within 512B of another data block,
then the reuse distance of all metadata blocks (counter, hash
and tree nodes) protecting those two blocks will be equal to
that of the two blocks.

For every 4KB page of data, nine 64B-blocks of metadata
are needed in ideal conditions, excluding tree nodes. The
nine blocks include one block for the counters and eight
blocks for the data hashes. To cover a 2MB LLC, a minimum
of 9 ∗ 64B ∗ (2048KB/4KB) = 288KB are needed. Figure 3
highlights this value with a vertical line through it. If the
application has less than ideal spatial locality, even more
metadata is needed. Most benchmarks in Figure 3 often
show a slight increase for counters and hashes at 288KB
and sometimes show a sharp increase (e.g., fft).

Counters. Counter blocks depend on the page-level spa-
tial locality of an application. In some cases, such as
canneal, the reuse distance is large and almost 50% of
the blocks have reuse distance larger than 1MB. In others,
such as libquantum, smaller memory footprints produce
correspondingly smaller reuse distances for counter blocks.
More than 90% of libquantum’s counter blocks have reuse
distance of less than 4KB.

Tree Nodes. Tree nodes have the smallest reuse distance
because the tree blocks cover the most data (see Table II).
For most benchmarks, almost 90% of the tree blocks have
reuse distances smaller than 4KB. A small (e.g., 4KB)
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Figure 3: Cumulative distribution function (CDF) for reuse distance, split by metadata type for six representative benchmarks.

metadata cache could be sufficient to cache only the tree
nodes. Even for benchmarks where the counters have long
reuse distance, such as canneal, 80% of the tree blocks
exhibit a reuse distance smaller than 4KB.

Note that the reuse distance analysis focuses on workload-
driven accesses and assumes that no metadata cache is
present. Because of the interdependencies between counters
and tree nodes, reuse distances for tree nodes might increase
when a metadata cache is present.

Hashes. Hashes have the longest reuse distance, making
them the most difficult metadata to cache effectively. Hashes
typically experience a small burst of reuse as the eight blocks
they cover are often used soon due to spatial locality in the
data. However, once that data is held in the LLC, the hash is
not needed until the data is evicted, at which point the hash
must be updated immediately if the evicted block is dirty.

A good example of the small bursts with short reuse
distances is shown in Figure 3 . Libquantum’s reuse charac-
teristics for hash blocks come from the fact that it repeatedly
streams through a 4MB array. As the accesses are sequential,
the first access to a data block corresponding to a particular
hash is quickly followed by accesses to the other data blocks
in the same 64B-hash block. This means that 7 of 8 (87.5%)
blocks have short reuse distances. Once all hashes have been
used, the hash block is not touched again until the next
iteration through the array, producing a 4MB reuse distance
for the remaining 12.5% of hash accesses.

Caching hashes is just as important as caching the other
metadata types for two reasons. First hashes are needed to
verify the integrity of the data itself. Without a mechanism
for speculation—the case in all industry implementations—
the additional memory access for the hash makes the critical
path to read a piece of data from memory at least a factor of

two slower than a system without secure memory. Second,
the energy required for an additional access to memory is
several times larger than the energy required for an on-chip
cache [14]. Because the hash block is needed for every
memory access, energy costs are doubled when the hash
is not cached on chip.

D. Bimodal Reuse Distances

An interesting observation regarding metadata access pat-
terns is that reuse distance is bimodal for most benchmarks.
Not many benchmarks report moderate reuse distances.
Figure 4 shows reuse distance classified into four classes:
(i) ≤128 blocks (8KB), (ii) 128-256 blocks (8KB-16KB),
(iii) 256-512 blocks (16KB-32KB), and (iv) >512 blocks
(32KB). The figure shows that all benchmarks have at
least 50% of their accesses in the smallest class, except
for canneal and cactusADM, while most of the remaining
accesses reside in the largest class.

We often see a metadata block reused frequently over a
short period of time and then not for a long time due to the
application’s spatial locality. When an application misses at
the LLC, it is expected to miss for several blocks in the
LLC for the same page and thus share the same counter
block. When a counter block is brought into the metadata
cache, it is often reused frequently for a short period of time.
The same is true for hash blocks except that it happens less
often since data blocks share hash blocks as long as they
are within 512B.

The fact that we have either short or long reuse distances
is important. A cache that holds blocks indiscriminately
might evict a block that will soon be used and replace it with
a block that will not be reused for a long time. Architects
could build on the body of work in reuse prediction for tra-
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Figure 4: Classification of metadata accesses according to reuse distances.

ditional caches [2], [9], [11], [17], [28], adding information
about the metadata type.

This bimodal behavior also impacts the cache size. The
cache efficiency can only be affected if the cache size is
large enough to capture the reuse distance of the blocks. In
this case, the metadata cache size should either be smaller
(less than 8KB) to capture the shorter reuse distances. Or
it should be larger (greater than 32KB) to capture some of
the blocks with larger reuse distances. Any cache size in the
middle, between these sizes, would not capture the blocks
with large reuse distances, regardless of any cache policy,
and would be big enough to capture the blocks with shorter
reuse distances, also regardless of any cache policy.

E. Request Types
The memory request type is a strong indicator of the

block’s reuse distance. Figure 5 shows reuse distance CDF
broken down by request and metadata type for the two
memory-intensive benchmarks with the most write requests:
fft with 20% writes and leslie3d with 5% writes. These
benchmarks are representative of the rest. Reuse distances
decrease when an access goes from one type of request
to the same type. This pattern follows from the fact that
metadata blocks experience the application’s spatial locality
as temporal locality. If an application reads block A, it is
likely that the next block will be spatially nearby and thus
share metadata blocks. With counters, this pattern is more
pronounced because counters protect a whole 4KB page.

The metadata cache can use partial writes for hash and
tree nodes to take advantage of the shorter reuse distance of
write-after-write requests [5]. Partial writes are implemented
by adding a valid bit per-hash and per-frame, a total of
eight bits for each frame in the cache. If a hash needs to be
updated and the block is not in the cache, an empty block
can be inserted in the cache as a placeholder for the whole
hash block and store only the one updated hash, while the
other hashes in the block are marked invalid.

Partial writes are helpful because two write requests that
share the metadata block are likely to be evicted around the
same time. Memory writes arise from evicting dirty lines
from the LLC. Spatially local blocks have similar behaviors

and tend to be replaced at approximately the same time
under many eviction policies. Since write-to-write requests
have shorter reuse distances, it is likely that the rest of the
hash block will be updated soon. When the block needs to be
evicted, any hash that has not been filled must be read from
memory. The partial write mechanism saves one access to
memory as long as the hash block is complete when evicted
from the metadata cache. The benefits are modest, but the
implementation is simple.

Note that the reuse CDFs assume that no metadata cache
is present so the tree node reuse distances can actually be
longer than shown. In the presence of a metadata cache,
a write to a tree node would occur only when a counter
block is evicted from the metadata cache. In the absence
of a metadata cache, the write to a tree node would occur
immediately following the write to a counter. Therefore,
we can safely assume that metadata caches extend the tree
nodes’ reuse distances.

V. METADATA INTERDEPENDENCE

Metadata accesses are highly correlated. Tree block ac-
cesses depend on the cacheability of the counters. Counter
blocks, in turn, can become more expensive to evict from the
cache if their associated ancestors in the tree are not present
in the cache. The relationship between counters and tree
nodes can complicate eviction choices. Instead of all blocks
having the same miss cost, as in a traditional cache, blocks
can have different miss costs depending on its metadata type
and which of its ancestors are already cached. Non-uniform
miss costs complicate eviction policies.

A. Eviction Policies

For decades, researchers have sought better eviction poli-
cies for caches. A common policy is pseudo-LRU, which
performs well generally but is far from the optimal Belady’s
MIN policy [3]. Pseudo-LRU also performs poorly for meta-
data caches because of metadata’s bimodal reuse distances.
To improve upon pseudo-LRU, we explore a recent policy
that classifies blocks based on the metadata type.

EVA uses the concept of economic value added to classify
blocks according to their “age” [2]. The “age” of a block is
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Figure 5: Cumulative distribution function (CDF) for reuse distance, split into request and metadata types.

dictated by the number of accesses to the cache since it was
inserted. The value added is determined by the following
formula:

EVA(age) = P (age)− C ∗ L(age)

where P is the hit probability as a function of the block’s
age, C is the average cache hit rate, and L is the expected
remaining lifetime as a function of the block’s age. The
hit probability, P , is computed based on the number of
hits at the block’s current age. The remaining lifetime, L,
is computed based on the expected number of hits and
evictions at ages greater than the block’s current age. The
block that has the smallest “value added” is evicted from
the cache.

We might expect pseudo-LRU to perform worse than EVA
because it is unable to recognize those blocks that have
longer reuse distances. Under pseudo-LRU, a block that is
about to be reused might be evicted while keeping a block
that was just added to the cache (most recently used) that
will not be reused for a long time. Our experiments show
that across benchmarks, there is no one eviction policy
that worked for all. Figure 6 shows misses per thousand
instructions (MPKI) in a 64KB metadata cache for different
eviction policies: pseudo-LRU, EVA, MIN and iterative MIN,
which we will discuss in the next section. We evaluate a
64KB metadata cache because it aligns with reuse distances
in Section IV-C. The results were surprising, so we investi-
gated further.

EVA does not perform as expected because metadata types
have bimodal reuse distances. EVA uses one histogram for
each type to predict reuse distance and hit probability. The
bimodal characteristic of metadata reuse distances makes the
one histogram approach ineffective for metadata caches.

B. The Optimal Eviction Policy

Belady’s MIN algorithm [3] is proven to be the optimal
eviction policy for traditional caches. This algorithm relies
on future knowledge of the cache accesses. The best eviction
candidate is the one that is reused furthest into the future.
For MIN to be optimal, the access trace must be independent
of the cache design and the miss cost must be uniform.

Metadata accesses do not conform to Belady’s assump-
tions. First, the access trace of metadata blocks depends on
the cache design and its eviction policy. A tree node is only
needed if the children it protects are not in the cache when
needed. The access trace changes depending on the cache
size and eviction decisions. For example, when a counter is
evicted, its parent will be needed the next time that counter
is requested. Second, the cost of missing different blocks in
the metadata cache depends on how many parent blocks are
in the cache. A miss for a counter that has its immediate
parent in the cache is much less expensive than one for a
counter that does not have any of its ancestors in the cache.

Ignoring these differences and naively applying MIN to
metadata gives results that are not only sub-optimal but
are generally worse than those from the other algorithms.
We simulate the benchmark once using true-LRU, gather
the cache access trace, and feed that trace back into the
simulator to provide future knowledge for MIN. However,
MIN not only fails to account for differences in miss costs, it
also starts using incorrect future knowledge once it makes a
replacement decision that deviates from true-LRU. In effect,
changing the contents of the cache changes future accesses
in ways that deviate from the trace.

Non-uniform Miss Cost. Prior work has examined non-
uniform miss costs in the context of NUMA systems. Jeong
et. al. propose CSOPT, an algorithm that considers all
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Figure 6: Metadata misses with varied eviction policies and 64KB metadata cache.

possible eviction candidates with breadth-first search [10].
To prune the search space, CSOPT tracks the cost of each
eviction candidate, eliminating the ones that have higher
costs to reach the same state. This algorithm assumes a fixed
trace and provides optimal replacements for a system with
non-uniform memory access latencies. CSOPT accommo-
dates only two costs (e.g., local or remote latency).

Metadata caches can have large number of miss costs,
from one additional memory access to accesses equal to
the number of levels in the tree. This difference in miss
costs increases analytical complexity. We find that running
CSOPT once on a program’s access trace is expensive. Costs
range from 32 minutes for applications with small memory
footprints, such as perl, to more than 6 days—the simulator
does not finish—for memory-intensive benchmarks such as
canneal. We run the algorithm for four-way associative
caches and costs increase with associativity.

Varying Access Stream. The problem is even more
complex when studying memory integrity. The decision to
keep or evict a counter or tree node inherently changes the
number and type of accesses required later in the stream.
A miss on some types of metadata will trigger requests for
other types of metadata. One way to address this problem is
to borrow an idea common to compiler analyses: start with a
solution that is “too good to be true” (in our case, a memory
access trace with no tree nodes) and iterate to a fixed point.
In particular, simulate the current trace making optimal
replacement decisions and adjusting tree node requests as
needed.

Iterating CSOPT to a fixed point for perl requires 32 min-
utes per iteration. Although the iterative procedure makes
progress as the number of misses reported in each iteration
decreases, it fails to complete after two days. We also iterate
Belady’s MIN, which we call iterMIN, to a fixed point. Even
though the iterative variant finishes quickly, its results could
be worse that those from pseudo-LRU. Figure 6 highlights
the importance of considering the different miss costs to
find an eviction policy. For most benchmarks, neither MIN
nor iterMin perform better than pseudo-LRU and indeed do
much worse.

Even though the trace used in iterMin is correct and makes
decisions that accurately reflect the most distant reuse, these
decisions do not incorporate the differences in cost. IterMin

frequently chooses to keep a near, low-cost miss at the
expense of a distant, high-cost miss. To find the optimal
eviction policy, the different miss costs have to be taken into
account. Designing a computationally tractable algorithm
that finds optimal eviction decisions is future work.

C. Cache Partitioning

Partitioning the cache may help us manage multiple
metadata types. If the cache were partitioned to give more
capacity to metadata types that need it, cache efficiency
might improve. Tree nodes need not to be included in the
partitioning scheme because their reuse distances are either
too short to be evicted by most reasonable policies or too
long to be cached practically. Moreover, trees ensure counter
integrity and are needed only after counter cache misses.

Figure 7 shows ED2 overhead of four different cache
organizations: (i) no partition, (ii) partitioned with the best
split for the application, (iii) partitioned with the average
best split across all applications, and (iv) dynamically par-
titioned. Partitioning the cache with the best split for the
application only improves performance for a few bench-
marks (see barnes, canneal, libquantum and mcf) and harms
performance for others. Applications requirements evolve
throughout its execution and a static partition serves only
to limit the cache capacity for each type. The most effective
partition depends on the application’s spatial and temporal
locality. To mitigate the limitations of static partitions, the
partitioning scheme needs to adapt to application behavior
at run-time.

The dynamic partitioning scheme is inspired by set du-
eling [18], [19]. Leader sets assess cache effectiveness for
counters and hashes. Two small, randomly selected collec-
tions of sets serve as competing leaders and the remaining
sets as followers. Leaders define bit vectors that partition
counters and hashes differently. Followers use hit statistics
from leaders to guide run-time partitioning. To produce rep-
resentative leaders, selected sets are distributed uniformly.

Figure 7 compares MPKI with varied partitioning
schemes. Results were surprising as dynamically partitioning
the cache does not help. In some cases, having the dynamic
partition hurts the cache efficiency (see fft). Dynamic par-
titioning does not work well because sets are diverse and
sampling them effectively is hard.
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Figure 7: Cache partitioning schemes and overheads from secure memory. Best static partition shown below the x-axis.

Metadata cache designs cannot rely on basic set sampling
because sets in a metadata cache differ in three charac-
teristics. First, blocks in each set have different metadata
types and, as discussed in section IV-C, metadata types have
different reuse distances. Second, the number of blocks for
each type can also differ from set to set. This matters in
an eviction or a partition policy because the block to evict
depends on the content of the cache. Finally, the miss cost
of blocks are different within and between sets. A miss to
a hash block costs only one additional access, but a miss to
a counter that does not have any parents in the cache cause
as many accesses as levels in the tree.

VI. DESIGNING A METADATA CACHE

Prior studies make assumptions about metadata cache
design based on intuitions derived from traditional caches.
Some of these assumptions hold under experimental scrutiny.
For example, most of the on-chip budget for caches should
be spent on the last-level cache and not the metadata cache.
Other assumptions are shown to be false. For example,
caching only counters is insufficient to improve performance
and traditional caching strategies do not apply to metadata
caches.

We make several observations that highlight differences
between data and metadata. First, metadata accesses have
different types and exhibit different degrees of temporal
locality. Second, temporal locality is usually short or long
for hashes and counters. Even though tree nodes show short
reuse distances, these can change when caching counters.
Third, metadata read and write accesses exhibit different de-
grees of temporal locality. Finally, metadata reuse distances
are interdependent across types, resulting in non-uniform
miss cost.

Some differences between metadata and traditional caches
provide direct guidance to architects:

• Cache Contents: Metadata caches should include all
metadata types, enabling the cache to adapt dynam-
ically to changing access patterns within and across
benchmarks.

• Cache Size: The bimodal nature of metadata reuse dis-
tances indicate that the cache should be sized to match
it. Choosing a size in the middle of the distribution
wastes cache capacity.

• Eviction Policy: The metadata cache should have an
eviction policy that accounts for multiple miss costs.
The interdependent nature of the metadata structures
affect the optimality of eviction decisions.

Other differences between metadata and traditional caches
do not provide direct answers but instead seed questions
for future research. Traditional replacement policies, even
Belady’s MIN, are ill-suited to metadata caches, metadata
type and access type should figure into those replacement
policies, and cache partitioning shows potential but needs
new mechanisms to achieve that potential.

VII. CONCLUSIONS

Secure memory incurs large energy and latency overheads
due to the additional memory requests needed to verify
and en/decrypt data. Metadata blocks can be cached to
reduce overheads. Metadata access patterns vary according
to their type—counters, hashes, trees—and differ from data
access patterns. We perform a rigorous analysis of these
access patterns, motivating computer architects to seek better
solutions for caching metadata. Based on the analysis, we
provide concrete guidelines and define possible avenues of
research to design more holistic metadata caches.
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