
PoisonIvy: Safe Speculation for Secure Memory
Tamara Silbergleit Lehman, Andrew D. Hilton, Benjamin C. Lee

Electrical and Computer Engineering
Duke University

{tamara.silbergleit, andrew.hilton, benjamin.c.lee}@duke.edu

Abstract—Encryption and integrity trees guard against phys-
ical attacks, but harm performance. Prior academic work has
speculated around the latency of integrity verification, but has
done so in an insecure manner. No industrial implementations of
secure processors have included speculation. This work presents
PoisonIvy, a mechanism which speculatively uses data before
its integrity has been verified while preserving security and
closing address-based side-channels. PoisonIvy reduces per-
formance overheads from 40% to 20% for memory intensive
workloads and down to 1.8%, on average.

I. INTRODUCTION

Modern computing models provide physical access to un-
trusted entities, such as datacenter operators, who might exam-
ine sensitive code or data. Hardware mechanisms that guard
against physical attacks must ensure confidentiality and in-
tegrity as data leaves the secure processor. For confidentiality,
the memory controller encrypts and decrypts data to and from
memory. Best practices combine one-time pads and counter-
mode encryption [12], [48].

For integrity, the memory controller hashes data [9], [18],
[19], [37], [49], [50] and then hashes the hashes to construct
a tree [11], [20], which can determine whether data has been
altered since it was last written into memory. Trees use keyed
Hash Message Authentication Codes (HMACs). Best practice
builds the integrity tree over counters used to encrypt data,
instead of the data itself, which ensures integrity with reduced
space requirements [12], [25].

Despite recent advances, security mechanisms are expensive
and harm performance as they manipulate several types of
metadata, which are stored in memory along with data. When
requesting data, the memory controller must also request
counters for decryption and hashes for verification. In the
worst case, a last-level cache miss could trigger up to ten
memory transfers—counters for decryption and hashes from
the tree, up to the root, for integrity verification—significantly
increasing request latency and bandwidth demand.

Metadata caches mitigate performance overheads. Academic
designs place metadata in the L2 cache along with the
data [11], [25], [48], [49], while industry designs use a
dedicated cache in the memory encryption engine [12]. Caches
mitigate, but do not eliminate, overheads. With a 32KB cache
dedicated to metadata, we find that security harms performance
by 4% on average and 98% in the worst case.

Speculation further reduces performance overheads by sup-
plying data to the core for computation before retrieving

its metadata and verifying its integrity. Some academic
mechanisms speculate quite eagerly, using data immedi-
ately and assuming integrity violations are detected before
they produce any ill effects [25], [38]. Others, such as
authen-then-write, speculate more carefully for smaller
yet still significant performance benefits [32].

However, speculation has a number of limitations despite
academic progress and demonstrated potential. To date, none
of the proposed mechanisms are completely safe and all of
them open an avenue of attack that breaches chip security.
Even the conservative authen-then-write mechanism is
vulnerable to side-channel attacks, which are identified in the
same study [32]. Industrial designs, such as Intel’s Software
Guard eXtensions (SGX) [4], rely primarily on caches, not
speculation, to balance security and performance. To encour-
age the adoption of speculative mechanisms, we must close
its security vulnerabilities.

Contributions. We propose PoisonIvy, a means of safe
speculation. It guarantees that no information affected by un-
verified data escapes the chip. PoisonIvy restricts not only
data but also addresses sent to memory. The first restriction
ensures integrity as stores cannot write results from speculative
computation to memory. The second closes side-channels,
discovered in prior work [32], as requests with potentially
affected addresses cannot traverse the memory bus.
PoisonIvy uses poison bits to track parts of the processor

affected by unverified data. It draws inspiration from poison
in Continual Flow Pipelines (CFP) [35], but differs in several
ways. Unlike CFP, PoisonIvy tracks poison not only for
registers, but also for instructions, control flow, and address
translation. Whereas CFP uses poison to track instructions
that cannot compute until an unknown value is supplied
by a long-latency load, PoisonIvy tracks computation on
known but unverified values. Because it permits computation
to progress as long as data and addresses are restricted to the
chip, PoisonIvy can track and clear poison at a coarser
granularity than CFP—in epochs rather than per load.

We begin by surveying the state of the art in memory se-
curity, detailing mechanisms for confidentiality, integrity, and
performance (Section II). We then present the PoisonIvy
mechanism for safe speculation, describing poison propagation
and epoch-based poison management (Section III). We find
that PoisonIvy reduces overheads from memory security
and performs as well as unsafe speculation, in which unverified
data is used without regard for safety (Section IV).978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

II. BACKGROUND

We consider a well studied threat model in which an attacker
has physical access to the machine [6], [15], [47]. When the
processor is the trusted computing base, it must safeguard its
interactions with off-chip memory. It ensures confidentiality
with encryption and ensures integrity with Merkle trees [4],
[6], [10], [38]. Security adds overheads, motivating perfor-
mance optimizations that cache metadata and speculate around
safeguards [11], [26], [27], [33], [34], [37], [49]. We survey
recent progress to motivate our solution, PoisonIvy, which
builds atop best practices to address remaining performance
challenges.

System Model. An application’s owner uses a tool chain
to protect her binary before sending it to a vulnerable system.
While industry-strength tools, such as those of Intel’s SGX,
are complex, they can be broken down into a simplified model
that has three steps [4], [7]. First, the tool creates a random
Advanced Encryption Standard (AES) key and encrypts the
binary image, which includes both code and data. Second,
the tool encrypts the AES key with the RSA public key of
the target system. Finally, the AES-encrypted image and the
RSA-encrypted key are paired and sent to the system for
computation.

The secure processor runs the application by unpacking the
image in two steps. First, the processor uses its matching RSA
private key to decrypt the AES key. With the AES key, the
processor decrypts code and data as they are read from disk,
and re-encrypts them with its own key, then writes them to
memory. A separate AES key, known and used only by the
processor, is used to read data from memory into caches and
vice-versa. When code and data are swapped out, the processor
decrypts it with its own key, re-encrypts it with the application
AES key, and writes it to disk

When combined with an integrity tree, encryption guards
against a number of attacks. Examples include (i) replay,
in which old data is injected to manipulate the system; (ii)
snooping, in which off-chip communication is observed; (iii)
tampering, in which data into or out of the processor is
modified.

A. Confidentiality: Counter-Mode Encryption

Keyed encryption is required for confidentiality, which pre-
vents adversaries from observing data. The processor could use
XTS-mode,1 which combines data with portions of its memory
address before encrypting with AES. However, XTS serializes
data access and decryption, lengthening the critical path by
the AES latency, which ranges from 70 to 100 processor
cycles. Haswell’s AESDEC performs one round in 7 processor
cycles and performs the 10-14 required rounds in 70-98 cycles,
depending on key length [13]. Prior work assumes 80 cycles
for decryption [48].

Counter-Mode Encryption. Alternatively, counter-mode
encryption XORes plaintext with a one-time pad (OTP) to
produce the ciphertext. The OTP is generated by encrypting a

1Xor Encrypt Xor (XEX) Tweakable Block Cipher with Ciphertext Stealing

combination of a counter and the memory address with AES
[37], [49], [48]. During decryption, the ciphertext is XORed
with the same OTP to produce the plaintext. If counters are
cached, the processor can generate the OTP for decryption
and retrieve the ciphertext from memory in parallel. In this
situation, the decryption latency overhead is only the XOR
latency, which is less than one cycle.

The OTP, and by extension the counter, is used only
once. The counter corresponding to a memory address is
incremented after every write. If a counter were to overflow,
the AES key used to encrypt counters and produce OTPs must
be regenerated. Then, counters must be reset and memory
contents must be re-encrypted. Because counter overflow is
expensive, best practice increments counters at multiple data
granularities.

Block and Page Counters. Large counters avoid overflow
and expensive re-encryption, but small counters fit in cache
more easily. Researchers resolve this tension with separate
counters for memory blocks and pages [25], [48]. Every block
write increments the per-block counter. Overflow in the per-
block counter increments the per-page counter corresponding
to the block’s page. Finally, each block’s input to OTP gener-
ation is the concatenation of per-block and per-page counters.

Block and page counters reduce the frequency and cost
of re-encryption. When the per-page counter increments, the
memory controller loads each block from the page, decrypts it,
and re-encrypts it with a new counter that concatenates the in-
cremented per-page counter and a reset per-block counter. Al-
though page re-encryption is moderately expensive, it happens
infrequently and is much less expensive than re-encrypting all
memory contents. The combined counter (7-bit per-block and
64-bit per-page counters) never overflows in practice. It would
overflow in 75,000 years if the same block were written once
per nanosecond.

B. Integrity: Bonsai Merkle Trees

Integrity mechanisms prevent adversaries from modifying
data without a user’s knowledge. One approach uses hashes
to verify memory integrity. For every write, the memory
controller computes and stores a keyed hash of the data. For
every read, it loads and compares the previously computed
hash against the current one. When hashes are equal, integrity
is verified. When hashes differ, the system detects tampering
and halts.

Integrity Trees. Hashes alone do not guard against replay
attacks in which adversaries inject previously observed data
and hashes onto the memory channel. As illustrated in Fig-
ure 1, Merkle Trees guard against replay attacks by building
a hash tree over memory contents [20]. Leaves of the tree
contain one hash per data block. Further up, each tree node
hashes its children’s hashes. The tree’s root holds a hash that
encompasses the whole memory space. The tree’s root is held
on chip, where it cannot be attacked, and is always trusted. A
data write propagates hash writes up the tree to the root.

Bonsai Merkle Trees (BMTs) guard against replay attacks
at lower cost than Merkle Trees. BMTs construct a hash tree to

Fig. 1: Trees ensure integrity by hashing data and then hashing
the hashes. Merkle Trees (MT) protect data whereas Bonsai
Merkle Trees (BMT) protect counters.

protect only the counters used to generate OTPs instead of the
entire memory space. This approach reduces space overheads
from 50% to 14–34% [25]. Moreover, BMTs perform better
because counters are often cached on chip and need not be
verified by the tree. Suppose the processor requests data and
its corresponding counter is cached, the counter’s integrity
was verified when it was first loaded from memory and BMT
(re-)traversal is unnecessary. Given BMTs to protect counters,
simple keyed hashes are sufficient to protect the integrity of
the data.

C. Performance: Unsafe Speculation

Security increases average memory access time. Data en
route from memory to the last-level cache must wait for
decryption plus integrity verification, which may need data
hashes and tree nodes from memory. Speculating on integrity
removes the second set of overheads from the critical path.
The memory controller supplies data to the processor before
verifying integrity, permitting computation on decrypted but
unverified data.

Performance versus Security. Speculation exposes ten-
sions between performance and security. For performance,
speculation requires a permissive mechanism that computes
far ahead of verification to hide its latency, which is tens of
cycles when counters are cached but hundreds (to thousands)
of cycles when counters and tree nodes are in memory.
Unfortunately, instructions will compute on unverified data,
posing risks to confidentiality and integrity.

For security, speculation must restrict the visibility of
computation on unverified data. A conservative mechanism
for speculation does not modify architected state [32], but
it performs poorly as the instruction window fills quickly
and exposes long verification latencies. Furthermore, guard-
ing architected state alone is insufficient because speculative
computation may issue loads and stores that send unencrypted
addresses across the memory channel.

Prior work delivers performance or security but rarely both.
A less conservative approach allows the memory controller to

return unverified data to the core, assuming that the window
of vulnerability between data use and verification is too short
for attackers to exploit [6], [25], [27], [38], [47]. Shi et.al.,
close this vulnerability by stalling stores until all outstand-
ing verifications complete (“authen-then-write”) [32].
This approach prevents an application from being “tricked”
into writing data to memory, but puts pressure on the store
buffer, constrains speculation, and exposes verification latency.
Although researchers have sought to scale store buffer capac-
ity [29], [30], [31], [36], no modern processor has a large
enough store buffer to tolerate thousands of cycles of latency.

Side-Channel Attacks. Shi et.al. present a series of side-
channel attacks, in a system that speculates, that leak secrets
via the memory address bus before verification fails [32].
These attacks exploit the fact that, when using OTP encryption,
each bit of ciphertext corresponds to exactly one bit of
plaintext. If an attacker wishes to flip a specific bit of plaintext,
she can flip the corresponding ciphertext bit without breaking
any cryptographic system.

In one attack, Shi et.al., assumes that the attacker knows
the contents of instruction memory (e.g., has a copy of the
program). First, the attacker alters bits in instruction words to
cause secret data to be used in a load’s address, taking care
to place the secret into bits unaffected by address translation
but not within the block offset. Then, the attacker observes
addresses on the memory bus to learn the secret. Other attacks
include manipulating pointers in linked data structures, and
searching for a secret value by repeatedly altering constants
that are compared to the secret. These attacks show that safe
speculation must safeguard both data and instructions.

Some might argue that changes to the encryption algorithm
could close these side-channels and permit safe speculation.
Although XTS-mode encryption avoids vulnerabilities from
OTPs, it penalizes performance by serializing data access and
decryption. Diffusive ciphers avoid the one-to-one mapping of
ciphertext and plaintext bits, ensuring a bit flip in ciphertext
changes multiple bits in plaintext. However, diffusion only
reduces odds of a successful attack. If an attacker targets N
bits—and does not care about the remaining (512−N) bits—
in a cache block, diffusion reduces the odds of success to 1
in 2N . For example, 1 in 256 attacks are successful when 8
bits are targeted, which is far from secure.

D. Architectures for Secure Memory

Table I summarizes several representative architectures
that combine the building blocks for secure memory—
confidentiality, integrity, and performance. SGX is Intel’s
industrial design whereas AEGIS and AISE are academic
designs. PoisonIvy provides safe speculation that could be
used with any of these schemes. Being built atop state-of-the-
art design decisions makes PoisonIvy immediately relevant.

Intel SGX. Software Guard eXtensions (SGX) provides
secure regions of memory (i.e. enclaves) for programmer
managed secrets. Instruction set extensions allow programmers
to create, load, and enter an enclave. The Memory Encryption
Engine (MEE), a microarchitectural extension to the memory

Confidentiality Integrity Performance

SGX [4] AES-Ctr-Mode; Modified 4-Level Bonsai Merkle Tree; Dedicated metadata cache;
56-bit counters per 512-bit blocks Carter-Wegman 56-bit MAC Cache size unknown

No speculation
AEGIS [38] AES-CBC; Merkle Tree Shared LLC for data, tree nodes

128-bit 128-bit MAC Unsafe speculation
AISE [25] AES-Ctr-Mode; Bonsai Merkle Tree; Shared LLC for data, counters

64-bit counter per 4KB page; 128-bit MAC tags; Unsafe speculation
7-bit counter per 512-bit block HMAC SHA-2

PoisonIvy AES-Ctr-Mode Bonsai Merkle Tree Dedicated 32KB metadata cache;
64-bit counter per 4KB page; 64-bit MAC tags; Safe speculation
7-bit counter per 512-bit block truncated 128-bit HMAC SHA-2

TABLE I: Comparison of Memory Security Mechanisms.

controller [12], encrypts and hashes enclave contents to ensure
confidentiality and integrity.

SGX and PoisonIvy share fundamental security mecha-
nisms with small implementation differences. For confidential-
ity, both SGX and PoisonIvy use counter-mode encryption,
in which OTPs are generated by AES-128. SGX uses 56-
bit per block counters whereas PoisonIvy uses 7-bit per
block counters and 64-bit per page counters to reduce overflow
costs and facilitate caching. For integrity, both SGX and
PoisonIvy use Bonsai Merkle Trees (BMTs). While the
length of the hashes—for both data and tree—used in SGX
and PoisonIvy are the same (64 bits), SGX uses the Carter-
Wegman algorithm, whereas PoisonIvy and other academic
works use SHA-2.

AEGIS. Suh et.al. propose new instructions to allow an
application to execute in a tamper resistant environment [38].
To protect the system against physical attacks, AEGIS uses
AES-Cipher Block Chaining (CBC) for encryption and a
Merkle tree with 128-bit MAC for integrity. AEGIS caches
tree nodes in the last-level cache (LLC) along with data. In
addition, it allows the processor to compute on unverified
data and assumes that, if integrity fails, the system will halt
before leaking information—an assumption we call unsafe
speculation.

AISE. Rogers et.al. protect a system from physical attacks
with a modified encryption and integrity mechanisms [25]. For
encryption, they use AES-counter mode with two counters: a
64-bit counter per 4KB page and a 7-bit counter per 512-
bit blocks. The counters are concatenated when producing
the one-time pad. For integrity, they modify the traditional
Merkle tree to produce the Bonsai Merkle Tree. BMTs protect
counters, instead of the data, thereby shortening the tree height
and decreasing its size. Counters are cached in the LLC along
with data. This scheme uses unsafe speculation as well.

III. POISONIVY: SAFE SPECULATION

PoisonIvy makes speculation safe with a few key prin-
ciples. First, unverified data may be used for any purpose
within the processor, but it cannot affect any information
leaving the processor before its integrity is verified. Second,
any instruction affected by computation on unverified data is
poisoned by the speculation. Instructions could be affected via
input register values, preceding instruction words, preceding

control flow, or values used in address translation. Speculation
built around these principles is not only safe but also efficient.
The only operations blocked by integrity verification are those
that require off-chip communication.
PoisonIvy’s fundamental mechanism is poison, which is

inspired by the key mechanism of Continual Flow Pipelines
(CFP) [35]. CFP poison bits indicate a load’s value is missing
due to a long-latency cache miss. In contrast, PoisonIvy’s
poison bits indicate an unverified value is being used specu-
latively. The microarchitecture uses poison to determine what
information must be restricted to the processor.

Whereas CFP requires a mechanism to recover from mis-
speculation, such as checkpoints, PoisonIvy does not ex-
pect to recover from misspeculation. Computing on data for
which integrity verification fails is a drastic problem, indi-
cating a physical attack against the system. The only safe
outcome is halting the system. Indeed, SGX halts the system
whenever verification fails even though it does not speculate.

A. Poison Propagation and Use

Whenever the memory controller has data to handle an LLC
miss but cannot verify it immediately, it returns the data to the
LLC and core speculatively. When a cache receives speculative
data, it marks the line as poisoned. When the core receives
speculative data, it poisons the output of the load that requested
it. This poison propagates, marking instructions and data that
are affected by the unverified value.

Registers. Poison bits propagate through registers as in CFP.
When an instruction reads its input registers (or bypasses), it
reads the corresponding poison bits. It then ORs these poison
bits with the instruction’s IW and CF poison bits, which are
discussed next, to determine whether its output register is
poisoned. Then, the poison information for its output register
is propagated on the bypass network and written into the
register file along with the instruction’s output value. In out-
of-order processors with register renaming, we require one
poison bit per physical register. The poison bits for all registers
are cleared once all outstanding verifications are completed
successfully.

Figure 2 shows an example in which i1 misses at the LLC
and memory returns data speculatively, setting the poison bit
on the output register r1. When i2 reads its input registers,
it finds that r1 is poisoned, so it poisons its output register,

i1: ld r1 <- 0(r2)
i2: add r3 <- r1 + r4
i3: ld r5 <- 0(r6)
i4: ld r2 <- 0(r3)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

1 1 1 0 0 0 0 0

0
1

0

Mem
Req

Data
From

L1
L1

M

Fig. 2: The output register poison bit is set when poison bits
for any of an instruction’s input registers are set. Memory
instructions send poison bits along with their request to the
memory hierarchy.

i1: ld r1 <- 0(r2)
i2: add r3 <- r1, 1
i3: add r4 <- r3, r5
i4: ld r5 <- 0(r6)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0
1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

0 0 0 0 1 0 0 01

0

Mem
Req

Data
From

M

M

Fig. 3: The instruction word poison bit is set when an in-
struction cache miss is filled with speculative data. Instruction
i2 misses at the instruction cache and all the way down to
memory. Instruction i4 waits at the memory controller to be
sent off-chip until all verifications are completed.

r3. i4’s input register r3 is poisoned, so i4’s request to the
memory hierarchy is also marked as poisoned. If the request
misses at the LLC, the memory controller stalls the request
until verification completes.

Instruction Words. Whereas CFP cannot speculate around
an instruction cache miss and has no notion of poisoning in-
struction words, PoisonIvy must track poisoned instructions
with an instruction word (IW) poison bit. If a fetch misses
all cache levels, memory speculatively supplies a poisoned
instruction word. An attacker may have tampered with the
memory blocks holding these words and computation with
these instructions cannot be trusted until verification com-
pletes. The IW poison bit is set at the processor front-end
and cleared only when outstanding speculations are verified.

Figure 3 shows an example in which the IW poison bit is set.
Instruction i2 is retrieved from memory and the instruction
cache miss is resolved with speculative data. This instruction
and all subsequent ones carry IW poison along with them
through the pipeline. When a memory request misses at the
LLC, like i4, the memory controller stalls the request until
verification completes. At this point all poison bits, including
IW, are cleared. Register r5 is now poisoned by the newly
speculative load returned from memory.

After fetching an instruction speculatively, all subsequent
fetches (even those that hit in cache) must be poisoned, as the
instruction stream may be corrupted, changing data and control
dependences. This requirement, combined with the rarity of
instruction cache misses that are satisfied by memory, means

i1: ld r1 <- 0(r2)
i2: add r3 <- r1 + r4
i3: ld r5 <- 0(r6)
i4: breq r5, r3, target
i5: ld r2 <- 0(r4)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

1 0 1 0 0 0 0 1

0

0

Mem
Req

Data
From

L1

M

1 M 0 1 0 0 0 0 0 0

Fig. 4: The control flow poison bit is set when a branch is
executed and when a poison bit for any of its input registers
is set. The load on instruction i5 has to wait at the memory
controller to be fulfilled until all verifications complete.

there is little advantage to tracking poison bits for each line in
the instruction cache. Instead, PoisonIvy uses one poison
bit to track speculation on any instruction word.

Control Flow. Speculative data can affect the program’s
control flow by poisoning data values that dictate branches.
PoisonIvy tracks poisoned control flow (CF) with one
poison bit per thread. The CF poison bit is set in the register-
read stage of the pipeline when any poisoned instruction might
modify the program counter. A poisoned branch sets the bit
whether it was correctly predicted or not. The CF poison bit is
cleared when verification completes or instructions older than
CF-poisoned instructions are squashed.

This method of setting the CF poison bit produces correct
outcomes. First, any instruction that executes after a poisoned
branch observes poisoned control flow. Second, an older
instruction that executes after the branch, due to out-of-order
scheduling, may observe a set CF bit even though its control
flow was not actually poisoned. This is a safe and conservative
outcome. Third, a younger instruction that executes before the
branch observes a cleared CF bit. This is a correct outcome
as anything the attacker did, absent other poison reaching this
instruction, did not affect its computation. These rules greatly
simplify implementation, eliminating the need to propagate
poison through younger instructions that have already executed
out-of-order.

Figure 4 shows an example with poisoned control flow. Sup-
pose the value of r3 is affected by speculation and instruction
i4 compares r3 to r5. Unverified values could cause the
program to execute different instructions. This vulnerability
corresponds exactly to the binary search attack devised by Shi
et.al. For this reason, PoisonIvy must track when control
flow has been affected by poisoned values.

Although there is logically one CF poison bit per thread, an
implementation can safely have multiple physical copies (e.g.,
one per superscalar lane) if desired. These copies need not be
updated at exactly the same time. Rather, they can be updated
with the same latency that is required for branch misprediction
signals to propagate to that part of the execution core.

Address Translation. The processor may need to access
memory when translating a virtual address to a physical
address. For example, it may miss in the TLB and fail to
find the page table entry in cache. In such situations, the

translation itself may be returned speculatively from memory.
Whenever PoisonIvy has a speculative translation, any
memory request that uses the translation produces poisoned
values and, in the event that it misses at all cache levels, cannot
be allowed off the chip until speculation is verified.

When the DTLB receives a speculative translation, the
poison bit in the entry is set. Memory instructions OR the
poison bit of their translation with the poison bits of their other
inputs to determine whether the instructions are poisoned.
When the ITLB is filled with a speculative translation, the
IW poison bit is set, poisoning all instruction words.

Memory Hierarchy. In PoisonIvy, the memory hierar-
chy must propagate poison and enforce invariants that ensure
security. For poison propagation, every line in the L1 data
cache and in lower-level caches has a poison bit added to
the tags. When a line is filled speculatively, its poison bit
is set. Additionally, whenever a poisoned store writes to a
cache line, its poison bit is set. As previously mentioned, the
instruction cache does not have per line poison bits. Instead,
the IW poison bit is set whenever the instruction cache receives
a speculative fill, whether directly from the memory controller
or indirectly from a lower-level cache.
PoisonIvy’s memory hierarchy ensures that (i) no poi-

soned data is written off-chip and (ii) no memory requests are
made with poisoned addresses. The first of these is enforced
by the LLC, which may not evict a dirty and poisoned block.
When the LLC must evict a block, it treats dirty, poisoned
lines as locked and selects a non-poisoned victim. If no such
line exists—i.e., all lines in the set are poisoned and dirty—
then eviction must stall until speculation completes. Note that
such stalls are extremely rare.

Second, the memory controller ensures that no request
with a poisoned address escapes the chip. Memory requests
carry their poison information with them down the memory
hierarchy. If a poisoned request misses at the LLC and reaches
the memory controller, the request stalls until speculation
completes. Enforcing this rule at the memory controller, and
not higher in the cache hierarchy, delays only off-chip requests.
Those that hit in cache are satisfied with no performance
penalty. Note that non-cacheable memory and IO operations
must always stall until all poison bits are cleared.
PoisonIvy accounts for prefetchers, which are prevalent

in memory systems. Each prefetcher maintains a poison bit,
which is set whenever it is influenced by poisoned information.
The prefetcher then includes this poison in each request that
it generates. Poisoned prefetches may bring data through
the cache hierarchy but stall at the memory controller until
verification completes.

Timing Information. PoisonIvy accounts for one more
subtle piece of state in the processor—timing information.
Suppose a victim computes on speculative, unverified data and
modifies the processor’s shared resources such as the LLC. An
attacker on another core observes some timing effect due to the
victim’s speculative computation, like higher average memory
access time, as the attacker’s data is evicted by the victim’s
writes to the LLC. Thus, the attacker has timing information

derived from the victim’s speculative execution that could be
leaked from the processor. Closing this side-channel requires
poisoning timing information.
PoisonIvy protects against this new timing side-channel

attack with a Timing Poison (TP) bit. Whenever a program
executes an instruction that can observe time (e.g., rdtsc) or
performance counters, the TP bit is ORed with the instruction’s
poison information. A rdtsc instruction poisoned by TP
produces the correct time when executed, but its output register
is poisoned. Time measurements or values computed from
them cannot leave the chip until verification completes. Note
that the TP bit does not close any existing timing side-channels
that an application may be vulnerable to.

Setting TP chip-wide when any core speculates is simple
and conservative. Normal programs do not read time often, if
ever, so the performance impact is minimal. More fine-grained
management could set TP when (i) any thread on the same
core has poisoned data, (ii) the core issues request to shared
cache that holds poisoned data, or (iii) the core issues request
to memory controller when it is stalling another request with
a poisoned address.

Clearing Poison Bits. Once the memory controller has re-
ceived all outstanding verifications, it will notify the respective
structures—i.e. all levels of the cache hierarchy, the DTLB, the
register file, issue queue, memory controller queue—to clear
poison bits. In each cache, including the DTLB, the poison bits
are flash cleared. Clearing the poison bits in the LLC implicitly
unlocks the lines. The memory controller flash clears poison
bits from its request queue, allowing memory requests that
have been prevented from accessing memory to proceed.

While LLC cache misses do not happen frequently, waiting
for all outstanding verifications to complete might unneces-
sarily introduce additional delays. If a program has a large
memory footprint with many LLC misses, poison spreads and
eventually halts processing until verification catches up. To
reduce delays from verification, we clear poison bits in batches
with an epoch-based policy.

B. Epoch-Based Poison Management

Thus far, we have described PoisonIvy with one poison
bit per structure (e.g., one bit per register, one bit per cache
line, etc). In such a scheme, all outstanding verifications must
be completed before clearing the poison bit. This scheme
works well if the program has small, natural bursts of LLC
misses, followed by many cache hits—when the burst ends,
all requests are verified and speculation is cleared. However,
if the program accesses memory uniformly over a longer
period, it may provide no natural break for verification to
complete—more and more state is poisoned until structures
fill, the processor stalls, and verification catches up.

Epochs. PoisonIvy resolves this difficulty by replacing
each poison bit with a pair of poison bits—one per verification
epoch. When the memory controller first returns speculative
data, it does so in epoch 0 and sets the first bit in the pair
for each affected structure. As more requests are returned

Fig. 5: At any point in time, two epochs are active—one in which data is supplied and another in which verifications are
completed. PoisonIvy verifications do not need to complete in the same order that memory requests were generated. They
may complete in any order before or after the epoch closes. E[x]n denotes the nth instance of epoch x. Only when all
verifications of epoch E[0]i have completed, can a new instance of epoch 0, E[0]i+1, begin.

speculatively in epoch 0, they set the first bit in each appro-
priate poison pair. After some time—measured in number of
cycles, speculative requests, or other conditions—the memory
controller transitions to verification epoch 1, in which new
speculative requests set the second poison bit for each affected
structure.

While new requests arrive in epoch 1, epoch 0’s requests
are verified as memory cycles become available for counters,
hashes, and tree nodes. No new requests are added to epoch
0 and its number of outstanding verifications decrease over
time. When all of epoch 0’s requests are verified, the memory
controller notifies the processor and clears epoch 0’s poison
bits in all structures. Note that epoch 1’s bits are unaffected.

After epoch 0 completes verification, the memory controller
closes epoch 1 to new requests and opens a new instance of
epoch 0. To ensure proper semantics, the memory controller
waits as long as needed to completely clear poison bits across
the processor before initiating the new instance of epoch
0. This small delay does not affect the latency of requests
to memory since the controller releases requests as soon as
their poison bits are cleared. New memory requests may be
performed speculatively in epoch 1 while the clear signals for
epoch 0 propagate.

Figure 5 shows how the speculation mechanism pipelines
data supply and verification across epochs. Our definition of
epochs permits variable durations and allows memory accesses
to dictate the cadence of data supply and verify. The first
instance of epoch 0, denoted E[0]1, begins when loads A
and B supply unverified data to the LLC. When E[0]1’s
length exceeds the minimum duration, the first instance of
epoch 1, denoted E[1]1, begins. Memory accesses C through
E are attributed to E[1]1 until its length exceeds the mini-
mum duration and E[0]1’s data is verified, which starts the
second instance of epoch 0, denoted E[0]2. Accesses F and
G are attributed to E[0]2. PoisonIvy could support more
epochs with correspondingly more poison bits, but we find no

significant advantage to having more than two epochs.
Loads can be verified out of order, which gives the memory

controller flexibility when scheduling metadata requests. Be-
cause PoisonIvy can tolerate very high verification latencies
without stalling the pipeline, the memory controller should
prioritize demand requests over verification requests. The
controller should schedule verification over demand requests
only when its verification queues fill. Verification requests
affect performance when metadata transfers saturate memory
bandwidth, which is rare, or when dependent requests have to
wait for verification to complete to go out to memory.

Poisoned Cache Lines. The memory controller supplies
unverified data to the cache hierarchy and performs two addi-
tional tasks. First, the controller increments a counter for the
number of pending verifications in the current epoch. Second,
the controller marks the outstanding requests as poisoned by
setting the bit corresponding to the current epoch number.

The LLC controller confines poisoned cache lines to the
chip. First, poisoned lines cannot be evicted since evictions
release unverified data to memory. The eviction policy accom-
modates this constraint with little performance impact. The
processor pipeline stalls only when an LLC set fills with dirty
lines during an epoch. In practice, epochs clear within a few
thousand cycles and such stalls never occur.

Second, poisoned lines cannot be shared by the cache or
inter-socket coherence protocol. Stalling coherence requests
typically risks deadlock, but our mechanism poses no such
risk—coherence and verification are independent. The memory
controller verifies integrity and clears poison bits even if the
rest of the system stalls.

Verifying a Load. When the memory controller verifies a
load’s data integrity, it also decrements the counter associated
with the load’s epoch. The memory controller consults the
outstanding queue entry to identify the epoch.

An epoch ends when its last pending verification is resolved
and its counter decrements to zero. The memory controller

Structure Size Poison (bits)

Registers 196 392
Issue queue 60 120
dTLB size 64 128
DL1 cache 32KB 1024
L2 cache 256KB 8192
L3 cache 2MB 65536
Mem controller queue 32 64
IW – 2
CF – 2
Pipeline latches, etc – ≤4096
Poison bits – 79556

≈ 9.5KB

TABLE II: Poison Storage

clears the poison bit for that epoch for all outstanding verifica-
tions in the queue. When a memory request’s poison bits have
been cleared, it is also released from the memory controller to
proceed off-chip. The memory controller also sends a message
up the memory hierarchy and to the core to clear their poison
bits. When all poison bits in a LLC line are clear, the controller
releases the cache line and permits eviction to memory.

Area Overhead. Adding poison bits for each epoch adds
a small amount of area overhead throughout the processor.
Table II shows the area breakdown of the different structures
that require poison bits. The total additional area is ≈9.5KB.

The logic and propagation overhead is very small. Nearly
all poison bits are added to regular, dense SRAM structures
(registers, caches) in which wire area is proportional to capac-
ity [45]. Poison bits follow instruction/data through existing
datapaths, avoiding irregular and area-intensive wires.

IV. EVALUATION

We evaluate PoisonIvy on a system with counter-mode
encryption and BMTs [25]. We use HMAC with SHA-2 for
all hashes and truncate the resulting hash to 8B. We use the
8B hash for both tree nodes, which ensure counter integrity,
and data hashes, which ensure data integrity. A larger hash
would only make speculation more important. The arity and
height of the hash tree are eight and nine. We use 7b per-block
counters and 64b per-page counters to cover 4KB of data in
one 64B block.

Simulators. We combine MARSSx86 and DRAMSim2 for
cycle-level, full-system simulation of the processor and mem-
ory [23], [28]. Table III summarizes simulation parameters. We
use a 2MB LLC to match the per-core LLC capacity seen in
commercial muti-core processors (e.g., 8MB for 4 cores). We
modify the memory controller model to implement metadata
caches. We also implement a timing model to estimate costs of
data en/decryption and integrity verification. All experiments
include stream prefetching.

Workloads. We evaluate all benchmarks in PARSEC [5],
SPLASH2 [46] and SPECCPU2006 [1]. We simulate regions
of interest for PARSEC and SPLASH. We fast-forward 1B user
instructions for SPEC. For all three suites, we run simulations

Pipeline width 4 (dispatch+commit), 8 (issue)
ROB size 192
Issue Queue size 60
Store buffer size 42
Load queue size 72
Clock Frequency 3GHz
L1 I & D Cache 32KB 8-way
L2 Cache 256KB 8-way
L3 Cache 2MB 8-way
Memory Size 4GB
Hash Latency 80 processor cycles
Hash Throughput 1 per DRAM cycle

TABLE III: Simulation Configuration

for 500M user instructions. We present results for memory-
intensive benchmarks that have more than 10 misses per
thousand of instructions (MPKI) in the LLC. Graphs show
results with a 32KB metadata cache unless otherwise specified.

A. Performance from Speculation
Figure 6—and all other figures—shows performance over-

heads normalized to that of an unsecure system (i.e., neither
integrity nor encryption). We compare four security mecha-
nisms:

• No Speculation. The memory controller waits for verifi-
cation before supplying data to the LLC. This inherently
safe mechanism is implemented in industrial designs (i.e.,
Intel’s SGX).

• Authen-then-write. Stores cannot write the L1
cache until all outstanding speculative loads are veri-
fied [32]. This mechanism guards against speculative data
escaping the core, but does not guard against address-
based side-channel attacks.

• Unsafe Speculation. The memory controller supplies
data to the LLC assuming verification will succeed. No
mechanism prevents results of unverified computation
from leaving the chip [25], [38].

• PoisonIvy. Data is supplied unverified and specula-
tive computation is enabled. Poison prevents results of
unverified computation from leaving the chip. It also
guards against address-based side-channel attacks.

In Figure 6, we show the average overhead for all bench-
marks in each suite (parsecAvg, specAvg, and splashAvg).
These averages are quite low as they include the many
benchmarks in each suite that exhibit few LLC misses. Such
benchmarks have inherently low overhead as schemes for
memory integrity only add latency to off-chip accesses. To
better show the overall trends, we also include the average
of 11 memory-intensive benchmarks from the three suites
(memAvg).

Comparison to No Speculation. PoisonIvy (and the
other schemes) significantly outperform No Speculation—
generally exhibiting about half as much overhead. Without
speculation, verification latencies are exposed on the critical
path when returning load data, which prevents dependent in-
structions from executing and filling the out-of-order window.

canneal

barnes
fft fmm ocean

milc
cactusADM

leslie3d

libquantum

lbm mcf
parsecAvg

specAvg

splashAvg

memAvg

0

10

20

30

40

50

60

70

80
%

 O
v
e
r
h

e
a
d

No Speculation

authen-then-write

Unsafe-Speculation

PoisonIvy

98

Fig. 6: PoisonIvy hides security overheads. For memory-intensive workloads, it performs as well as unsafe speculation,
outperforms no speculation by 20%, and outperforms authen-then-write by 5%. PoisonIvy also guards against
address-based side-channel attacks.

Comparison to Authen-then-write. Although
authen-then-write performs much better than No
Speculation, PoisonIvy outperforms or matches it.
Benefits are most notable for canneal and libquantum.
PoisonIvy’s performance advantage comes from the
fact that authen-then-write is constrained by the
store buffer capacity during speculation. After the memory
controller responds to an LLC miss with unverified data,
the core can execute and commit instructions. However, the
next store cannot complete and modify the L1 cache until
verification completes. Waiting stores quickly fill the store
buffer and stall instruction dispatch.

By the time metadata returns and integrity is verified, the
datapath has been waiting for hundreds of cycles and the out-
of-order window has filled. Because of the limited capacity of
the store buffer, the datapath has few opportunities to continue
computation when verification latencies are long. Latencies
are at least 80 processor cycles when hashing data to check
integrity, assuming hash and counter are cached, and are much
higher when loading metadata from main memory.

In contrast, PoisonIvy permits far more computation dur-
ing integrity verification by allowing stores to commit data to
the L1. Dirty blocks are poisoned and can escape to the L2 and
LLC but cannot leave the secure chip. The pipeline only stalls
when the LLC must stall eviction due to poisoned dirty lines.
PoisonIvy not only outperforms authen-then-write,
it also improves security by guarding against address-based
side-channel attacks, which were presented in that study [32].

Comparison to Unsafe Speculation. Unsafe Speculation,
which does nothing to restrict computation on unverified
data, performs best but is least secure. Figure 6 shows that
PoisonIvy generally matches this best-case performance. In
effect, our system has the performance of unsafe speculation
while guaranteeing security. A few benchmarks experience
trivially higher overheads (< 1%) than unsafe speculation.

Surprisingly, PoisonIvy performs as well as a system

NoSpeculation ATW Unsafe-Spec PoisonIvy
0

50

100

150

200

%
 O

v
e
r
h

e
a
d

with no cache

Fig. 7: Performance comparison for a pointer chasing
µbenchmark with and without a metadata cache.

with unsafe speculation for mcf, which is known for pointer
chasing. This result arises from the fact that many metadata re-
quests hit the cache, resulting in short verification latencies—
shorter than the time required for a load to return data to the
core, flow through dependent instructions to another dependent
load and for that dependent load’s miss to reach the memory
controller.

For further insight, we implement a pointer chasing
microbenchmark—which does no computation with the output
of a load beyond using it as the input to the next load—
and evaluate all three systems without metadata caching.
Figure 7 shows the result of this experiment with and without a
metadata cache. With a metadata cache, the results are similar
to what was observed for mcf. However, without a meta-
data cache, PoisonIvy performs 24% worse than unsafe
speculation and 10% worse than authen-then-write.
authen-then-write performs well because the mi-
crobenchmark is dominated by loads and has no stores,
thereby avoiding pressure on its bottleneck, the store buffer.
In contrast, PoisonIvy performs well for normal workloads
that mix loads and stores. Thus, PoisonIvy performs well
but pays the price for security when given challenging memory
accesses and no metadata cache.

0 100 200 300 400 500 600 700 800 900 1000

0

25

50

75

100

C
D

F

libquantum

0 100 200 300 400 500 600 700 800 900 1000

0

25

50

75

100 fft

0 100 200 300 400 500 600 700 800 900 1000

Latency (cycles)

0

25

50

75

100

C
D

F

mcf

0 100 200 300 400 500 600 700 800 900 1000

Latency (cycles)

0

25

50

75

100 canneal

Fig. 8: Cumulative distribution function (CDF) of verification latency from cache line fill to verification. Minimum and average
latencies are 80 and 273 cycles.

B. Verification Latency

To further understand the performance characteristics of
these schemes, Figure 8 shows the cumulative distribution
functions (CDFs) for verification latency when filling a cache
line from main memory. The minimum value is the hash
latency—80 processor cycles in our study. Many requests
are verified in this short latency, indicating that the required
metadata is in the memory controller’s dedicated cache. For
example, in mcf, 64% of requests require only this minimum
latency due to cache hits, leading to the behavior described
above.

These short latencies are quite easy to speculate around and
rarely impact dependent memory requests. When a memory
request hits in the metadata cache, its verification latency is
hidden by the time it takes to supply data to the core, execute
dependent instructions, and issue another memory request
through the cache hierarchy to the memory controller. By
the time a dependent request reaches the memory controller,
verification is almost finished and the dependent request stalls
for a very short time, if at all.

Although the minimum latency is modest, the CDFs reveal
large means and long tails. Average latency is approximately
273 cycles, much too long for a processor to cover in its store
buffer (e.g., with authen-then-write). Furthermore, the
distributions have long tails with verifications that require as
many as 3000 cycles, arising from multiple DRAM requests
to retrieve metadata that are delayed behind higher priority
data requests. These long tails motivate PoisonIvy’s epoch-
based speculation.

C. Hash Latency

Figure 9 evaluates sensitivity to hashing latency. Without
speculation, the hashing latency is on the critical path when
returning data to the core, even when metadata is in the
memory controller’s cache; a non-speculative design is quite
sensitive to hash latency. In contrast, PoisonIvy removes
the hashing latency from the critical path to service a memory
request. As hashing latency decreases, so do benefits from

0 25 50 75 100 125
0

25

50

75

100

%
 O

v
e
r
h

e
a
d

libquantum

PoisonIvy NoSpeculation

0 25 50 75 100 125

0

25

50

75

100

%
 O

v
e
r
h

e
a

d

mcf

0 25 50 75 100 125

Hash Latency

0

25

50

75

100

%
 O

v
er

h
ea

d

canneal

Fig. 9: Performance sensitivity to hash latency with and
without PoisonIvy. PoisonIvy removes hashing from
the critical path and its performance is insensitive to hashing
latency.

speculation. But even at the lowest latency that we examined,
10 processor cycles, speculation reduces performance over-
heads from security from 28% down to 20%, on average, for
the memory-intensive benchmarks.

D. Metadata Cache Size

Metadata caches matter for two reasons. First, with specu-
lation, verification latency determines for how long structures
are poisoned. Metadata caching reduces verification latency as
requests for counters, tree nodes, and hashes might avoid main

canneal
barnes

fft fmm ocean
milc cactusADM

leslie3d
quantum

lbm mcf

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

C
a
c
h

e
 S

iz
e
 (

K
B

)
NoSpeculation authen-then-write PoisonIvy (32KB cache + 9KB = 41KB Area Overhead)

>

Fig. 10: Cache sizes needed for NoSpeculation to match the performance of PoisonIvy with 32KB metadata cache. The
horizontal line shows storage for PoisonIvy (32KB cache + poison bits). Note the log-scale y-axis.

4 8 16 32 64 128 256 512 1024 2048 4096

0

25

50

75

100

125

150

%
 O

v
e
r
h

e
a

d

libquantum

CacheCounters
CacheCounters+PoisonIvy

NoSpeculation
PoisonIvy

4 8 16 32 64 128 256 512 1024 2048 4096

0

25

50

75

100

125

150

175

200

225

%
 O

v
e
r
h

e
a
d

mcf

4 8 16 32 64 128 256 512 1024 2048 4096

Cachesize (KB)

0

25

50

75

100

125

150

%
 O

v
e
r
h

e
a
d

canneal

Fig. 11: Comparison of PoisonIvy and NoSpeculation
when caching counters versus all metadata types. Specula-
tion’s advantage increases as metadata cache size decreases.
Regardless of cache size PoisonIvy outperforms all other
configurations by at least 15%. Note the log-scale x-axis.

memory. Second, metadata caching might be an alternative to
speculation if area overheads do not matter.

Exploring the effects of metadata cache size allows us to
consider an important question—how does metadata caching
alone compare to PoisonIvy when poison storage is included?
As poison bits are added to many large structures, they require
a noticeable amount of storage—about 9.5KB in the system

described by Table II.
Figure 10 shows the metadata cache size required

before NoSpeculation and authen-then-write match
PoisonIvys performance with a 32KB metadata cache.
The horizontal line shows PoisonIvys total storage
requirements—41.5KB of which 32KB is metadata cache and
9.5KB is poison information.

A system with no speculation always requires much more
storage to match PoisonIvy’s performance. For canneal,
a system without speculation requires 2048KB of metadata
caching for PoisonIvy’s performance. In the best case, for
lbm, twice as much storage is required. For more than six
benchmarks, more than 4MB of storage is required to perform
as well as PoisonIvy’s use of 41.5KB.
authen-then-write’s performance comes much

closer but still requires metadata caches that are much
larger than PoisonIvy total storage overheads. For
authen-then-write, three-quarters of the benchmarks
require at least twice the storage to match PoisonIvy’s
performance. The remaining benchmarks—fft, fmm, lbm
and mcf —can match PoisonIvy’s performance with a
32KB metadata cache. It is important to note that while
authen-then-write performs well for a few benchmarks,
it does not protect against address-based side-channel attacks.
PoisonIvy provides more complete security guarantees.

Figure 11 shows sensitivity to metadata cache design,
presenting performance overheads under No Speculation and
PoisonIvy while varying the metadata cache size and its con-
tents; caches may hold only counters or all metadata. Although
prior work caches only counters [25], we find caching all
metadata types is worthwhile. For an average of memory-
intensive benchmarks, holding all types of metadata in a 32KB
cache reduces PoisonIvy’s overheads from 64% down to
20%.

As would be expected, performance overheads decrease
with larger cache sizes. Overheads significantly and rapidly
drop off when the cache accommodates the metadata working
set. As the cache size increases and the latency of verifying
data integrity decreases, speculation becomes less important.
However, speculation with PoisonIvy provides significant

benefits even with a 4MB metadata cache.

V. RELATED WORK

System Software. When multiple users share resources,
one could exploit vulnerabilities in the hypervisor to uncover
secret data [24]. HyperWall controls the hypervisor’s memory
accesses [39]. NoHype removes the hypervisor from the soft-
ware stack and relies on existing processor features to perform
virtualization tasks [15]. HyperCoffer [47] introduces a virtual
machine shadow that implements encryption for privacy and
hash trees for integrity. In contrast to these system solutions,
SGX and ISO-x extend the instruction set to isolate an appli-
cation from others [3], [10]. These mechanisms are orthogonal
to PoisonIvy, which applies whenever encryption and trees
are used for privacy and integrity.

Taint Tracking. Information flow security—also known as
taint—tracks untrusted data whereas poison tracks microar-
chitectural effects of latency tolerance schemes (CFP, etc).
Information flow security has been studied extensively at all
levels of the abstraction stack: from applications [8], [2],
[16], [43], [44], to OS/privileged software [21], and even
to logic gates [40], [42], [22], [14], [41], [17]. Most of
these systems track information flow to prevent code execution
(e.g., branches) that could leak secret information. Gate Level
Information Flow Tracking (GLIFT) uses taint tags for each
bit at the gate level to track the information flow through the
system [14].

The main difference between taint and poison used in
PoisonIvy is that the latter hides verification latency
for memory integrity (e.g., SGX). This difference matters.
PoisonIvy (i) halts the system when verification fails and
cannot use software to handle security exceptions; (ii) guards
against physical attacks (e.g., memory tampering) instead of
unsafe application data (e.g., SQL injection); (iii) distrusts
memory and cannot write poison/taint tags to DRAM since
unprotected tags break security and protected tags negate
performance from speculation; (iv) uses poison only to restrict
unverified data to chip and cannot exploit programmable
propagation/checks.

VI. CONCLUSIONS

A trusted processor employs encryption and integrity trees
to guard against physical attacks. We propose a new security
architecture that ensures security yet significantly lowers per-
formance overheads. We architect a speculation mechanism
that uses poison to track speculative data and addresses
throughout the processor and memory hierarchy. An epoch-
based management policy allows the core to compute on
speculative data while clearing speculation in batches. The
last-level cache prevents data from leaving the processor
before it is verified. Poison tracks speculative dependencies
throughout the processor (i.e., core, register, IW, CF and
DTLB) and ensures that no memory operations are sent across
the memory’s command and address buses before speculative
data has been verified. PoisonIvy reduces performance
overheads of security to 1.8%, on average.

VII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
thoughtful comments and suggestions. We would also like to
extend a special thanks to Carlos Rozas, Siddhartha Chhabra,
Frank Mckeen, and other members of Intel Labs, and Brian
Rogers for their valuable discussions and insights.

This work is supported by the National Science Foundation
under grants CCF-1149252 (CAREER), CCF-1337215 (XPS-
CLCCA), SHF-1527610, and AF-1408784. This work is also
supported by STARnet, a Semiconductor Research Corpo-
ration program, sponsored by MARCO and DARPA. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of these sponsors.

REFERENCES

[1] Standard Performance Evaluation Corporation (SPEC) CPUTM 2006
https://www.spec.org/cpu2006/.

[2] “TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones, author=Enck, William and Gilbert, Peter
and Han, Seungyeop and Tendulkar, Vasant and Chun, Byung-Gon
and Cox, Landon P and Jung, Jaeyeon and McDaniel, Patrick and
Sheth, Anmol N, journal=Transactions on Computer Systems (TOCS),
pages=5, year=2014, publisher=ACM.”

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP),
2013, p. 10.

[4] I. Anati, F. Mckeen, S. Gueron, H. Haitao, S. Johnson, R. Leslie-
Hurd, H. Patil, C. Rozas, and H. Shafi, “Intel software guard extensions
(Intel SGX),” in Tutorial at International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, 2015.

[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[6] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “SecureME: a
hardware-software approach to full system security,” in International
Conference on Supercomputing. ACM, 2011, pp. 108–119.

[7] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016., Tech. Rep.

[8] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible informa-
tion flow architecture for software security,” in International Symposium
on Computer Architecture (ISCA). ACM, 2007, pp. 482–493.

[9] R. Elbaz, D. Champagne, R. Lee, L. Torres, G. Sassatelli, and
P. Guillemin, “TEC-Tree: A low cost, parallelizable tree for efficient
defense against memory replay attacks,” in International Workshop on
Cryptographic Hardware and Embedded Systems (CHES). Springer,
2007, pp. 289–302.

[10] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and
R. Riley, “Iso-x: A flexible architecture for hardware-managed isolated
execution,” in International Symposium on Microarchitecture (MICRO).
IEEE Computer Society, 2014, pp. 190–202.

[11] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas,
“Caches and hash trees for efficient memory integrity verification,” in
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2003, pp. 295–306.

[12] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” International Association for Cryptologic Research (IACR),
2016.

[13] S. Gulley and V. Gopal, “Haswell cryptographic performance,” Intel
Corporation, 2013.

[14] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, pp. 1128–1140, 2011.

[15] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: virtualized
cloud infrastructure without the virtualization,” in International Sympo-
sium on Computer Architecture (ISCA). ACM, 2010, pp. 350–361.

https://www.spec.org/cpu2006/

[16] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz,
“Crowdflow: Efficient information flow security,” in Information Secu-
rity. Springer, 2015, pp. 321–337.

[17] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in Conference on Programming Language Design and
Implementation (PLDI). ACM, 2011, pp. 109–120.

[18] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, pp. 168–177, 2000.

[19] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an untrusted
operating system on trusted hardware,” in Symposium on Operating
Systems Principles (SOSP). ACM, 2003, pp. 178–192.

[20] R. C. Merkle, “Protocols for public key cryptosystems.” in Symposium
on Security and Privacy (SP), 1980, pp. 122–134.

[21] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: from general purpose to a
proof of information flow enforcement,” in Symposium on Security and
Privacy (SP). IEEE Computer Society, 2013, pp. 415–429.

[22] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in I2C and USB,” in Design Automation
Conference (DAC). IEEE Computer Society, 2011, pp. 254–259.

[23] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in Design Automation Conference (DAC).
IEEE Computer Society, 2011, pp. 1050–1055.

[24] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in International Workshop
on Security in Cloud Computing (SCC). ACM, 2013, pp. 3–10.

[25] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2007, pp. 183–
196.

[26] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data protection for
distributed shared memory multiprocessors,” in International Conference
on Parallel Architectures and Compilation Techniques (PACT). ACM,
2006, pp. 84–94.

[27] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-
level integrity and confidentiality protection for distributed shared mem-
ory multiprocessors,” in International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, 2008, pp.
161–172.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters, pp.
16–19, 2011.

[29] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, and S. W. Keckler,
“Late-binding: enabling unordered load-store queues,” in International
Symposium on Computer Architecture (ISCA). ACM, 2007, pp. 347–
357.

[30] T. Sha, M. M. Martin, and A. Roth, “Scalable store-load forwarding via
store queue index prediction,” in International Symposium on Microar-
chitecture (MICRO). IEEE Computer Society, 2005, pp. 159–170.

[31] ——, “Nosq: Store-load communication without a store queue,” in Inter-
national Symposium on Microarchitecture (MICRO). IEEE Computer
Society, 2006, pp. 285–296.

[32] W. Shi and H.-H. S. Lee, “Authentication control point and its impli-
cations for secure processor design,” in International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2006, pp. 103–
112.

[33] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu, “Architectural support
for high speed protection of memory integrity and confidentiality in
multiprocessor systems,” in International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE Computer Society,
2004, pp. 123–134.

[34] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
efficiency counter mode security architecture via prediction and precom-
putation,” in International Symposium on Computer Architecture (ISCA).
IEEE Computer Society, 2005, pp. 14–24.

[35] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual flow pipelines,” International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pp. 107–119, 2004.

[36] S. Subramaniam and G. H. Loh, “Fire-and-forget: Load/store scheduling
with no store queue at all,” in International Symposium on Microarchi-
tecture (MICRO). IEEE Computer Society, 2006, pp. 273–284.

[37] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2003, p. 339.

[38] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“AEGIS: architecture for tamper-evident and tamper-resistant process-
ing,” in International Conference on Supercomputing (ICS). ACM,
2003, pp. 160–171.

[39] J. Szefer and R. B. Lee, “Architectural support for hypervisor-secure
virtualization,” International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 437–
450, 2012.

[40] M. Tiwari, X. Li, H. M. Wassel, F. T. Chong, and T. Sherwood, “Exe-
cution leases: A hardware-supported mechanism for enforcing strong
non-interference,” in International Symposium on Microarchitecture
(MICRO). ACM, 2009, pp. 493–504.

[41] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable microker-
nel, processor, and I/O system with strict and provable information flow
security,” in International Symposium on Computer Architecture (ISCA).
IEEE Computer Society, 2011, pp. 189–199.

[42] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2009, pp. 109–
120.

[43] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexi-
taint: A programmable accelerator for dynamic taint propagation,” in
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2008, pp. 173–184.

[44] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access monitor-
ing and debugging,” in International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, 2007, pp.
273–284.

[45] N. Weste, D. Harris, and A. Banerjee, “CMOS VLSI design,” A circuits
and systems perspective, pp. 59–60, 2005.

[46] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in International Symposium on Computer Architecture (ISCA).
ACM, 1995, pp. 24–36.

[47] Y. Xia, Y. Liu, and H. Chen, “Architecture support for guest-transparent
vm protection from untrusted hypervisor and physical attacks,” in
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2013, pp. 246–257.

[48] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” International Symposium on Computer Architecture
(ISCA), pp. 179–190, 2006.

[49] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in International Symposium on Microar-
chitecture (MICRO). IEEE Computer Society, 2003, pp. 351–360.

[50] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta, “SENSS: Security
enhancement to symmetric shared memory multiprocessors,” in Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE Computer Society, 2005, pp. 352–362.

