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ABSTRACT

HHVM is commonly developed for large online web services, yet
there remains much room for optimizing HHVM performance. This
paper discusses challenges and techniques in optimizing HHVM
performance for Meta’s web service. We begin by evaluating the
effectiveness of semantic request routing, a request routing method
aimed at enhancing code cache performance in HHVM, and exam-
ine its implications for optimizing HHVM performance. Second, we
characterize HHVM performance for a large-scale datacenter and
identify the challenges brought by uncontrollable confounding fac-
tors. Finally, we present the performance management framework
for autotuning HHVM performance at scale.
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1 INTRODUCTION

HipHop Virtual Machine (HHVM) is a virtual machine designed
for executing PHP and Hack codes, which are often used in web
application development [43]. HHVM is widely used by large online
service providers such as Meta[3], Baidu[4], Slack[6], etc. HHVM
performance improvements are valuable and enhance the overall
cost-efficiency of large-scale web services that support billions of
users (e.g., the Facebook app). A production web service can be de-
ployed on hundreds of thousands of servers. On such a large scale,
even a small percentage increase in efficiency could contribute to a
significant reduction in capital and operational expenditures. This
paper presents our HHVM optimization practice for web services
at Meta. We discuss promising opportunities to optimize HHVM
performance for large-scale web services. Moreover, we discuss
unique challenges in measuring and optimizing HHVM perfor-
mance at scale and present optimization frameworks to resolve
these challenges.

First, opportunities exist in reducing the overheads of just-in-
time (JIT) compilation. HHVM caches translated native machine
codes in memory when compiling HipHop bytecode at runtime.
Cached translations are re-used when encountering the same byte-
codes in the future, avoiding dynamic compilation overheads [5].
On the other hand, we observe diverse PHP function calls in web
requests, and such diversity could cause high code cache miss rates.
Engineers and Researchers at Meta have designed a specialized
scheduler that utilizes semantic request routing to improve code
cache hit rates. Semantic request routing routes web requests from
the same cluster to the same HHVM servers, thereby increasing
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code cache hit rates and decreasing just-in-time compilation over-
heads. In this work, we conduct performance analysis to show that
this practice reduces response latency and improves both CPU and
memory utilization at scale.!

Second, opportunities arise in configuring the HHVM engine’s
thread groups. The HHVM engine deployed in Metais a complex
process, comprising more than 70 thread groups serving different
functionalities such as dynamic compilation, routing, and HTTP
communication [9, 10, 43]. Each thread group has independently
tunable properties such as thread pool size and affinity setting.
However, most of these properties are set manually with engineer-
ing expertise and are often sub-optimal. Given these parameters,
we propose an auto-tuning framework that configures threads to
improve performance and efficiency for large-scale web services.
We address these challenges with techniques in machine learning
and experiment design [2] to explore the HHVM configuration
space effectively.

Finally, we address difficulties in auotuning at scale due to noisy
datacenters. Autotuning at the datacenter scale is non-trivial as
numerous confounding factors across the system stack affect per-
formance measurements. For example, these factors include ran-
domness in the traffic load [38], variation in hardware manufactur-
ing [37], and power capping decisions [49]. These factors, which
impact performance differently across hosts and time, are impos-
sible to control precisely. Performance variations may distort the
auto-tuning framework’s performance estimates for a given thread
configuration, which in turn may lead to poor configuration de-
cisions.Although software autotuning has been a focus in both
industry and academia, how to autotune in a noisy execution envi-
ronment is rarely discussed. Correspondingly, We present a char-
acterization of the performance variation in the data center envi-
ronment and discuss its impact on performance measurement and
autotuning. Moreover,we address these challenges with A/B test-
ing, which uses the concept of Randomized Controlled Trials [14]
to control the effects of confounding factors and obtain a robust
statistical estimate of performance. To sum up, this paper presents
following contributions to HHVM optimization:

e Semantic Request Routing Performance Analysis We
give an overview of semantic request routing as the back-
ground information, and present performance analysis of
this technique and discuss its implication for HHVM perfor-
mance tuning. Our evaluation indicates that such routing
reduces request latency by 35% and reduces average CPU
usage by 30%.

e Understanding HHVM Performance Variation. We char-
acterize HHVM performance variations in a production dat-
acenter and identify significant confounding factors that
cause those variations.

e Autotuning HHVM at Scale. We present an HHVM auto-
tuning framework that controls the effect of confounding
factors while improving performance tuning speed and ac-
curacy. The framework improves HHVM efficiency by 1% -
8%.

!Brian Karrer and Mayank Pundir contributed to the early research and development
as well as initial performance tests of semantic routing. Joey Pinto contributed to the
performance analysis of the latest semantic routing solution.
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2 BACKGROUND
2.1 Web Services and HHVM

Meta deploys a large online service that receives millions of re-
quests per second on a daily basis. It has developed a modular,
service-based architecture to serve this large volume of user traffic
[39, 46, 47]. The architecture includes load balancing, protocol rout-
ing (Proxygen[10]), request processing (Web[43]), key-value stores
(TAO[18], memcached[41]), and database services.

In this paper, we focus on the Web service, which receives HTTP
requests from the load balancer and responds with the desired
content. This service is supported by hundreds of thousands of
machines distributed across multiple regional datacenters. We seek
to optimize service performance by targeting the HHVM engine at
its core.

HHVM and Dynamic Compilation. HHVM is a virtual ma-
chine that efficiently executes PHP and Hack, the main program-
ming languages for developing the web service studied in this paper.
HHVM compiles PHP and Hack source codes into high-level byte-
codes and uses just-in-time (JIT) compilation to compile necessary
bytecodes into machine instructions for efficient execution dynam-
ically.

When a request arrives, HHVM first identifies the PHP source
files for the request and converts the PHP source into HipHop byte-
code in the ahead-of-time stage [43]. Next, the bytecode is converted
into native machine instructions for execution. HHVM first checks
the code cache, which contains compiled machine instructions for
previously executed bytecode. If the cache contains machine code
for the target bytecode, HHVM executes that machine code directly.
Otherwise, it uses the JIT compiler to generate the machine code.

Thread Composition in HHVM. HHVM comprises more than
70 thread groups. These thread groups have diverse functionalities
and together handle the large request load received by each server.
Furthermore, they can be categorized as foreground HHVM threads
and background threads. Foreground threads are HHVM worker
threads that receive HTTP requests, execute PHP functions, and
send HTTP responses.

Background threads are non-PHP threads that execute other
important tasks. Routing threads route requests to other threads
for data, authentication, indexing, and consistency management.
HTTP threads (i.e., proxygen workers) maintain active sessions
among services. Other thread groups route memory requests to in-
memory caching services—memcache, TAO and TACO—and retrieve
relevant data in response to user requests. The memcache service
provides a general-purpose cache for small data objects. The TAO
service is a high-performance service for caching and querying a
graph of related and associated objects. The TACO service supports
caching of ephemeral, local data.

Figure 1 breaks down CPU utilization into four major categories
of thread groups. PHP threads consume most CPU cycles due to
PHP’s much larger thread pool. Although non-PHP threads con-
sume 20% of CPU cycles, each non-PHP thread actually consumes
more cycles than a PHP thread.

Figure 2 shows average CPU utilization per thread for the most
compute-intensive thread groups. The mcrpxy-tao and mcrpxy-web
thread groups, which routes requests to the TAO and memcached
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Figure 1: HHVM Processor Utilization. Pie chart breaks down
processor cycles consumed by various thread groups.
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Figure 2: HHVM Processor Utilization. Bar chart indicates
average processor cycles consumed per thread across various
thread groups.

services, respectively, consume the most CPU cycles when mea-
sured on a per-thread basis. These compute-intensive threads are
more likely to be performance bottlenecks that extend the critical
path when handling a web request.

A number of configuration parameters can be used to adjust
thread group performance. Each group has at least one tunable con-
figuration parameter, the size of the thread pool. In addition, each
group may have specific tunable properties. For example, HHVM
router threads have an affinity option, which specifies whether a
thread is pinned to a specific set of client servers. Pinning reduces
the number of TCP connections a router needs to maintain and
may improve the thread’s memory efficiency.

Optimizing the thread configuration is challenging. Even if we
were to restrict the optimization to thread pool size, we would need
to consider that parameter for more than ten thread groups. Addi-
tional thread parameters would further increase the configuration
space. Moreover, thread groups interact with each other and tun-
ing each group independently is impossible. The large number of
parameters and their interactions define a configuration space that
cannot be optimized through exhaustive search.

2.2 Semantic Request Routing Design

HHVM caches machine instructions for future usage, but cache
capacity is limited. Semantic request routing is a strategy for better
using cache capacity, improving code cache performance, and im-
proving JIT compilation efficiency. With semantic request routing,
each web server specializes in handling a subset or partition of web
requests. Within a subset, requests trigger the same PHP functions
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Figure 3: Semantic Routing Overview

and execute the same Hack codes. By limiting the diversity of code
paths executed on each host server, semantic request routing im-
proves HHVM code cache performance since each host is more
likely to reuse already translated machine instructions.

Figure 3 outlines semantic request routing. A semantic partition
is a logical container that mediates between request types and their
assigned hosts. A request partitioner assigns each request type to
a single semantic partition, and a partition can include several re-
quest types. The request partitioner uses a graph-cluster algorithm
to partition requests. The algorithm starts by building a bipartite
graph that has URL endpoints on one side (e.g., /photos) and PHP
functions on the other (e.g., PhotoRender::getPhotoSize). A seman-
tic balancer maps partitions to a subset of web servers responsi-
ble for serving requests from the corresponding partition,thereby
mapping partitions to datacenter resources. The mapping seeks
to balance load across partitions. If a partition’s average load is
greater or lower than the pool’s average load, the balancer will add
or remove host servers from the partition’s allocation, respectively.
The balancer adjusts the sizes for each semantic partition once ev-
ery minute with a PID controller [24]. Currently, web requests are
divided into 10 semantic partitions for the Meta’s web service. This
number is chosen based on experiments measuring the average
working set size (number of function calls) among partitions: as
the partition number increases beyond 10, the average working set
size starts decreasing very slowly, and we receive a diminishing
return from further increasing the partition number. Finally, the
load balancer, given the request-to-partition mapping, identifies
an incoming request’s partition and then routes it to one of the
hosts that support the corresponding partition. Host selection uses
a "pick-2" algorithm [38]. This algorithm first selects two hosts
from the pool corresponding to the partition at random. It com-
pares loads on these two hosts and sends the request to the less
loaded host. Note that the HHVM server is unaware of semantic
request routing and can serve any request irrespective of the ideal
partition.

3 SEMANTIC ROUTING PERFORMANCE AND
IMPLICATION

We conduct a performance test to evaluate the benefits of semantic
request routing. We select 1000 web servers in a regional datacenter
and split them into two halves, one half with semantic request
routing and the other half without. Finally, we direct the same
production traffic to both sets of web servers.
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We observe significant improvement in two key performance
metrics, HHVM memory usage and CPU utilization. First, seman-
tic routing reduces request latency by up to 35%, due to less JIT
compilation time in the request execution. Second, semantic rout-
ing reduces HHVM host memory usage by 5% on average. This
reduction is a direct result of fewer PHP functions that must be
translated and cached on the HHVM server. Finally, semantic rout-
ing improves processor utilization by 30%. HHVM spends less time
on CPU-intensive instruction interpretation and more time on in-
struction execution.

We conduct separate performance analyses for each request
partition, identifying diverse characteristics that motivate optimiza-
tion strategies tailored to each partition. First, to understand the
difference of requests across partitions, we profile request length
and request load for each partition in 10 regional datacenters. Fig-
ures 4a—4b, for each partition and datacenter, present metrics av-
eraged across host servers allocated for the partition. The data
suggests differ significantly in request length and load. For exam-
ple, requests in partition 0 require very little time to run those in
partition 7 take up to seconds to complete. In contrast, the load in
partition 0 is much higher than that in partition 7.

The diversity in request load motivates an HHVM engine with
a unique thread configuration for each partition. One intuitive
strategy configures a unique PHP thread pool size for each partition.
The number of PHP threads should increase with the request load
because it determines the maximum number of requests that the
HHVM engine can serve in parallel. We adopt this idea to tune the
number of PHP threads for each partition. But we leave the pool
sizes for other thread groups largely unchanged and constant, as
shown in Figure 5.

The performance characteristics of non-PHP threads (i.e., back-
ground threads responsible for other functionalities) vary across
partitions. We measure average CPU utilization per non-PHP thread
and calculate a ratio of per-thread utilizations measured for non-
PHP and PHP thread groups. The ratio characterizes each non-PHP
thread group’s load relative to the PHP thread group’s load. A thread
group that reports a higher ratio is more likely to be a bottleneck
and on the critical path of execution within the HHVM engine. Fig-
ure 6 indicates that this ratio varies across partitions. For example,
mcrpxy-tao’s ratio in partition 0 is 10 times that in partition 1. This
profiling suggests that it is also necessary to configure non-PHP
thread’s configuration to optimize HHVM performance for each
semantic partition.

Implications for AutoTuning. The complexity of tuning HHVM
scales with the number of partitions. Furthermore, the tuning pa-
rameters interact with hardware factors. At Meta, we deploy four
different server architectures to host web services [47]. Our ex-
ploration of the parameter space reveals that one particular set of
HHVM thread parameters may benefit a partition on one architec-
ture but harm the same partition on another. The ten partitions
and four architectures lead to at least forty tuning and optimization
problems. The scale of the problem motivates strategies that reduce
the search space or explore a space more efficiently.

Yuhao Li et al.
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4 PERFORMANCE VARIATIONS AND
CONFOUNDERS

One of the most significant challenges to autotuning HHVM is
variations in performance measurements. We observe consistent,
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non-negligible variations in HHVM host performance in our data-
centers. These variations introduce noise in performance profiles
and complicates our efforts to interpret and tune HHVM perfor-
mance. Therefore, we require strategies to distinguish between the
deterministic performance impact from the configuration choice
and random performance variations across host servers.

Profiling HHVM Performance. We characterize performance
variations in production web fleets, profiling HHVM foreground
performance (instructions per second, IPS) for each web host in a
regional datacenter for a seven-day period. Our focus on HHVM
foreground performance emphasizes a web host’s HHVM worker
threads and its ability to complete useful work in response to re-
quests. The datacenter deploys thousands of web hosts. The load
balancer allocates hosts to handle each web partition, assigning at
least 800 hosts for each partition. The profiler measures HHVM fore-
ground performance for each host every fifteen minutes, producing
more than 800 time series for each partition. Each time series may
have self-correlated variations due to diurnal web traffic patterns
[33]. We take averages for these time series as the summary statistic
for each host and then inspect the distribution of these averages
across the hundreds of hosts assigned to the semantic partition.

Figure 7 uses the boxplot to show the distribution of hosts’
HHVM foreground performance for ten semantic partitions. The
standard deviation, which characterizes the population’s variation
in performance, is 3% 6% of the mean performance across different
partitions; this statistic is often referred to as the coefficient of
variation. Furthermore, the difference between upper and lower
quantiles is significant; the differences between the third and first
quartiles are more than 10% of the mean.

Confounding Factors. We study the possible causes of perfor-
mance variations in the web fleet and identify web traffic volume
(i.e., request load directed to each web host) as a major confounder.
In our datacenter, there exist persistent and significant variations in
each host’s traffic volumes even when they process requests from
the same semantic partition. We observe a strong, linear correla-
tion between the host’s traffic volume and its HHVM foreground
performance. For example, Figure 8 associates average request load
with HHVM performance for hosts serving semantic partition 0.
Individual web hosts show a wide range of request loads, which are
associated with a wide range of HHVM foreground performance
measurements.

Variations in request load is pervasive, appearing across regions
and partitions. Table 1 reports the Coefficient of Variation (COV),
which is defined as the standard deviation divided by mean, for
hosts’ average request load in a seven-day period across three
datacenter regions. The coefficient of variation is 2% to 11% of the
mean measurement. These variations make request load a critical
confounding factor in configuration autotuning experiments.

Unfortunately, variation in request loads is hard to control and
minimize. The variation is primarily due to random procedures in
the web service load balancer. Web’s load balancing algorithm uses a
power-of-two-choices algorithm [38] for scalable, low-latency load
balancing. When a request arrives, the power-of-two-choices tech-
nique randomly samples two hosts and selects the less-loaded host
to handle the request. The randomness in the sampling procedures
causes variation in each host’s traffic.
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foreground performance (instructions per second) for hosts
serving semantic partition 0

Table 1: Coefficient of variation for host traffic, request load

Partition Datacenter 1 Datacenter 2 Datacenter 3

0 7.0% 3.0% 11.3%
1 4.0% 4.6% 6.9%
2 4.0% 2.5% 8.1%
3 3.3% 2.9% 9.3%
4 4.5% 3.0% 8.4%
5 4.0% 2.9% 2.7%
6 3.8% 2.2% 3.6%
7 4.8% 2.4% 5.0%
8 3.7% 8.0% 9.0%
9 5.7% 2.7% 5.9%

We observe other confounding factors across the system stack
that affect HHVM performance. These factors are hard to control
and could cause spurious profiles of a candidate configuration when
tuning performance. For example, we observe hardware variation
in the fleet. Variations in the chip manufacturing process such that
the same server architecture may operate at different processor
and uncore frequencies. In addition, the placement of servers in
datacenter aisles can affect cooling and lead to variations in server
temperature. Power capping may impose varied power budgets
across datacenter racks [29, 45, 49].

Implications for HHVM Thread Tuning. These variations
impose significant challenges for configuration tuning. We often
tune performance on small testbeds with a few HHVM hosts drawn
from the whole datacenter. Our profiles indicate that more than 36%
of machines report significant variations where performance is 1%
higher/lower than the population mean. Suppose we profile a new
configuration on the testbed and observe that its performance is 1%
better than average performance in the datacenter. There is a 36%
probability that this performance gain is due to inherent system
variations rather than the new configuration.

Confounding factors, which are difficult to control during perfor-
mance tuning, could produce imprecise or incorrect performance
profiles for a candidate thread configuration. The autotuning frame-
work must be aware of these confounding factors and design ex-
periments to minimize the impact of potential confounding effects.
Furthermore, the framework must provide meaningful confidence
intervals for performance estimates conducted on small testbeds.
The confidence interval represents the likely range of performance
values at scale. To achieve these goals, we design and implement
online, randomized controlled experiments.
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5 AUTOTUNING FRAMEWORK

Figure 9 describes our framework for configuring and tuning HHVM
thread groups for each semantic partition. The framework consists
of three major steps for performance tuning, regional datacenter
testing, and configuration deployment. Tuning refers to exploring
a configuration space and evaluating candidate configurations on
a testbed, defined by a subset of HHVM hosts in the datacenter.
Testing refers to deploying a promising configuration on a selected
regional datacenter to assess viability at scale. Finally, if no issues or
challenges arise, a new configuration is scheduled for deployment
across all datacenters.

In this section, we detail the performance tuning framework. It is
aware of the datacenters’ performance variation and efficiently iden-
tifies promising HHVM configurations while minimizing effects
from confounding factors. Online randomized controlled experi-
ments provide robust, unbiased performance estimates for candi-
date configurations by accounting for confounders. Using these
robust estimates, search algorithms and heuristics explore the con-
figuration space and identify promising configurations for deploy-
ment in datacenters.

5.1 Randomized Controlled Experiments

Online Randomized Controlled Experiment, also known as A/B test-
ing [25, 27, 28], is a variant of Randomized Controlled Trials [14]
used in clinical trials that study drug effectiveness. We use A/B test-
ing to minimize confounding effects and obtain unbiased estimates
of performance when profiling production systems. As shown in
Figure 10, A/B testing creates two "statistically equivalent" clusters
of web hosts,. One is the control cluster (A) and the other is the test
cluster (B). The test cluster is assigned a candidate configuration to
evaluate while the control cluster deploys the default, production
configuration. A/B testing directs the same production traffic to
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both clusters. It then measures and compares performance statistics
from the clusters. We estimate the performance difference between
the A and B clusters, along with a confidence interval, to evaluate
the candidate configuration.

Cluster Setup. First, we create A/B clusters with randomization,
seeking to minimize the impact of hidden, uncontrolled factors
or variables in the system. We select and specify the datacenter
region, server types (e.g., model, generation, kernel), and the num-
ber of servers (N) required for each cluster. We query the cluster
management system to identify available host servers and select
those matching the specified architecture. We select servers with
the most common hardware and software configurations, reducing
the potential bias from outlying platform characteristics. Specifi-
cally, we query and assess the host’s processor temperature, server
temperature, actual processor and uncore frequency, and actual
number of active HHVM worker threads.

The cluster creation procedure identifies the servers whose key
characteristics are close to the average for the server population.
For each server, we calculate the difference between its measured
metrics and the population’s average metrics. We then determine
the maximum difference across all metrics. We sort servers by their
maximum difference and select the 2N that are closest to the mean.
Finally, the procedure randomly splits these servers into two sets
to form the test and control clusters.

Load Generation. The autotuning framework aims to drive
servers, in both test and control clusters, to the maximum sustain-
able load in the production tier subject to a quality-of-service target.
In our system, the load generator issues increases the number of
requests issued to servers as long as average latency remains toler-
able. A PID controller drives requests to machines and discovers
load at which average request latency equals 100ms. The controller
continuously monitors latency at each host and adjusts the con-
trol signal, which corresponds to the server’s weight in the load
balancer.

We stress the servers because HHVM instruction throughput at
maximum sustainable loads permits more accurate and meaningful
datacenter capacity planning. Datacenter operators seek cost effi-
ciency by reducing the number of host servers required to serve
a given number of web requests. The number of required servers
is based on balancing peak demand from web users, measured in
the number of HHVM instructions required to serve requests, and
the sustainable supply from web servers, measured in instruction
throughput at maximum sustainable load.

Cluster Comparison. Before we test two HHVM engine con-
figurations for differences, we must ensure the control and test
clusters that run those configurations are statistically indistinguis-
able and are not affected by confounders. In practice, we observe
non-negligible variation across servers as load drivers determine
maximum sustainable loads for each server. This variation is un-
avoidable due to inherent randomness in the load balancer, which
uses probabilistic algorithms. The question is whether these statis-
tical distribution of these variations suggest systemic differences
between the servers in the control and test clusters.

We conduct A/A tests for the control and test cluster, checking
whether the two clusters are statistically similar. The A/A test sets
both control and test cluster to the default HHVM configuration. It
performs load testing, collects performance metrics and compares
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those metrics from the control and test clusters. The cluster setup
is acceptable only if there is no significant difference between the
control and test cluster. A significant difference between the clusters
indicate confounders that impact performance and induce bias in
one of the clusters. If such a difference exists, we repeat the server
selection process to eliminate the difference. Otherwise, the server
selection is successful, the cluster is acceptable, and we can proceed
to A/B testing.

Statistically, A/A tests compare performance distributions from
control and test clusters. We use the Student’s t-test with a null
hypothesis Hy that states average performance from the test cluster
equals average performance from the control cluster.

Ho Prest = Perl
We use the T-statistic to compare the difference between p.
and P, accounting for variance in prest and peontrol:

Prest ~ Petrl
\/ oar(prest) | oar(pest)
Miest Retr]

The central limit theorem states that if Hy is true, then the T-
statistic should follow approximately a T distribution. Based on the
T distribution, we calculate the p-value to measure the probability
P(T|Hp) of seeing T given Hy. If the p-value is small, say less than
0.05, we reject Hy and conclude there is statistically significant
difference between the mean of metrics in two clusters. Otherwise,
we accept Hy and conclude there is no statistically significant dif-
ference. We seek to accept Hy for the test and control cluster before
deploying and evaluating a candidate HHVM configuration.

Configuration Comparison. After the control and test clusters
pass the A/A test, we compare a candidate HHVM configuration
B against a default configuration A with an A/B test. The com-
parison is based on performance metrics collected on production
traffic. Rather than compare pairwise performance for a request
that executes on both clusters, we compare statistical performance
distributions for the many requests that execute on both clusters.
When we characterize performance distributions, we account for
variations in measured system performance and ensure they do not
skew conclusions about the two configurations’ performance. For
example, when we observe the performance difference between
the test and control cluster is 1%, we must determine whether this
1% difference results from the candidate HHVM configuration or
results from randomness in the system (e.g., load balancing and the
assignment of requests to servers).

We use statistical methods to rigorously detect the probability

of a performance delta from a candidate, test configuration. We

Prest —Pctrl
Petrl

at datacenter scale from sample performance data. Moreover, we

obtain a confidence interval that might inform decision making
and capacity planning at scale. The 95% confindence interval for
A is estimated as follows where Tj 95 denotes the relevant statistic
from the T distribution.

estimate the expected relative performance gain A =

A- To.o5 - var(A), A+ To.o5 - var(A)

We estimate A with Ptesl;pml, which is a first-order Taylor series

ctrl

approximation of A. We can further improve the estimation by
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introducing higher-order terms[1]. Furthermore, we use the delta
method to estimate var(A) as follows [27].

=2

Dtest 1 Prest

uar( £ ) = —— -var(prest) + _4es ~var(pesrl)
Petrl Petrl Petrl

Determining Testbed Size. The statistical procedures in our
framework rely on Normality assumptions. When we compute p-
values during A/A testing, we assume the t-statistic T approximately
follows a Normal distribution. When we estimate the confidence
interval for performance gains, we assume A follows a Normal dis-
tribution. In theory, according to the Central Limit Theorem, when
we have enough data samples for the distributions we compare,
both T and A follow asymptotic normal distributions.

In practice, we must determine the number of servers required
for our testbed such that the Normality assumptions hold. We
use a rule of thumb [27] to determine the minimum sample size to
collect when conducting t-tests and calculating confidence intervals.
This rule states we need at least 355 * S? samples (i.e., servers) for
the Normality assumption to hold where S is the distribution’s
skewness coefficient.

_E[X-EX))?
S0 = e

Intuitively, we require more data to get a reliable confidence in-
terval when the performance distribution is skewed. We determine
the empirical skewness coefficient from profiled performance in
production tiers.

5.2 Configuration Search

Around the A/B test framework, which statistically evaluates the
performance of a candidate configuration, we develop a search
procedure that determines the sequence of candidates to evaluate.
This procedure explores, potentially in parallel, new configurations
based on the results of previously evaluated configurations. The
autotuning procedure iteratively selects new configurations, eval-
uates them with A/B testing, and then selects the next set of new
configurations. Autotuning stops when a predetermined number
of iterations or trials is reached.

We consider various auto-tuning strategies that vary in algo-
rithmic complexity, tuning efficiency, and robustness to system
uncertainty. We compare and contrast Bayesian Optimization (BO),
Hill Climbing, Single Parameter Tuning, and Random Sampling.
These algorithms have two significant advantages for tuning sys-
tem performance. First, they permit black-box optimization and do
not require an knowledge of the structure of the objective function,
only that the objective can be evaluated. A black-box approach is
vital for tuning web services as it is difficult or even intractable to
model interactions between parameters and construct a useful ana-
lytic model. Second, these algorithms support parallel exploration
of the configuration space. Parallelism is imperative for reducing
experimental wall time because each A/B test requires hours of
online profiling.

Bayesian Optimization (BO) is a machine learning technique
particularly powerful for scenarios in which the evaluation of the
objective is expensive and/or time-consuming. BO is an obvious
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choice for HHVM tuning because A/B tests conduct long-running
experiments.

BO consists of a surrogate model and an acquisition function.
The surrogate model is a probabilistic model of the process to be
optimized that can be evaluated much more cheaply or quickly than
the true objective. A common choice for the surrogate model is a
Gaussian process (GP), a non-parametric model known for provid-
ing well-calibrated uncertainty estimates. For any configuration x,
it models expected performance p(x) and uncertainty o(x) based
on previously evaluated configurations and their A/B test data D =
{Geg, (1) £ 0 (1)), (2, p(x2) £ 0(x2)), (3, p(x3) £ 0(x3)), ...}

The acquisition function, which operates on the model poste-
rior, is optimized to suggest promising configurations for explo-
ration. It balances exploitation (focusing on regions where mean
performance is high) and exploration (focusing on regions where
predictive uncertainty is high). Expected Improvement (EI), a pop-
ular acquisition function, evaluates the expected improvement of
a configuration x over the best observed value so far, f*, and has
been shown to produce good, practical performance [15].

El(x) = E[max(f(x) - f*,0)]

The configurations with highest EI are selected (via numerical
optimization) and evaluated on the true function in the next iter-
ation. Initially, EI quickly explores the design space by collecting
data for parts of the configuration space with relatively few obser-
vations and, as a result, have much higher predictive uncertainty.
Once the configuration space is reasonably well-explored, EI natu-
rally focuses on exploiting those configurations could most likely
improve the current best configuration.

Note that, when using BO, we have the choice between sequen-
tial exploration, which only generates one new configuration to
evaluate at each step, and parallel exploration, which generates a
batch of new configurations to evaluate at each step. The sequen-
tial approach generally produces better optimization results as it
utilizes strictly more information to acquire the same number of
evaluations but is too time-consuming for the online A/B test.

We use open-source software Ax [2] to implement BO-based
tuning. Ax provides several features that make BO better suited
for our A/B tests at datacenter scale. It uses a variant of EI, Noisy
EI [31], to account for noise in the observations as measured by
the A/B testing setup. Moreover, it provides an efficient parallel BO
implementation that balances end-to-end optimization time and
quality of the optimized solution.

Hill Climbing (HC)[8] also performs search based optimization.
HC starts with an arbitrary configuration and then seeks a better
configuration by applying incremental changes to the configuration.
If any incremental change leads to a better configuration, HC applies
that change to the new configuration. HC continues this iterative
procedure until no better configuration is found. We customize
HC for our autotuning framework in several ways. First, we set
the initial configuration as the default configuration used in the
production tier. Second, we define the incremental change as the
change that only updates one parameter in the configuration either
upward or downward. For example, an incremental change for
configuration x = {aj, b, ¢j...} could be xper = {ai—1,bi,ci...}
and xpevw = {ait+1, b, ci...}. HC explores all possible incremental
changes and determines the best one with A/B testing. Third, when
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HC cannot find a better configuration through incremental updates,
it randomly initiates an unexplored configuration as the starting
point of a new search path.

Single Parameter tuning (SP) is another search-based tuning
technique. For each parameter in the configuration, it explores all
possible values of the parameter while fixing the other parameters
at the default value. For a configuration space of dimension D =
{N1, N2, N3...N;}, this method explores total X;N; configurations.
This method provides intuition for system architects as for each
parameter which value is the best. However, this method fails to
consider the interaction among parameters.

Random Sampling iteratively draws configurations, randomly
and without repetition, for evaluation.

6 EVALUATION

The evaluation presents autotuning case studies for HHVM thread
configuration. We evaluate appweight, a metric that evaluates web
host capacity during A/B load tests, and describe how tuned HHVM
configurations could lead to significant cost reductions at scale.

6.1 Experimental Methods

Semantic Partitions. We conduct HHVM autotune experiments
for six semantic partitions—0, 2, 4, 6, 7, 8—in a regional datacenter.
The partitions were selected for their diversity, request characteris-
tics, and the number of hosts allocated for them. Partitions 0 and 7
have the shortest and longest requests, respectively. Partitions 2, 4,
6, and 8 are allocated the most servers.

Autotuning Cluster. Each partition is allocated five test clusters,
each with 40 host, for a total of 200 servers to be used for autotuning
experiments and A/B tests. Hosts are characterized and clusters are
created to reduce systemic bias as discussed in the previous section.
Multiple test clusters permit parallel exploration for new, candidate
HHVM configurations. additional cluster is designated the control
cluster and runs the default HHVM configuration.

Tunable Parameters. We apply autotuning to two significant
and representative thread groups, mcrpxy-TAO and mcrpxy-web.
These thread groups are among the most processor intensive and
are most likely to benefit from HHVM performance gains. For
both thread groups, we tune the number of threads in the pool.
For mcrpxy-TAO we also tune thread affinity, a Boolean property
that determines whether a routing thread should be bound to a
subset of clients hosts. The binding could reduce the number of TCP
connections (and overheads from maintaining those connections)
between the web service and downstream cache services.

Table 2: Thread Configuration Parameters for Tuning

Parameter Range
mcrpxy-TAO thread number [2,11]
mcrpxy-web thread number [2,11]
mcrpxy-TAO thread affinity | {TrueFalse}

6.2 Appweight

Appweight is an internal metric that extends raw measures of
HHVM instruction throughput. One of the key motivations for
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improving HHVM performance is reducing the number of web
hosts for user services and improving cost efficiency. However, raw
HHVM instruction throughput is too granular a metric for capacity
planning and cannot measure a server’s capacity for serving web
requests. Appweight addresses this challenge by directly estimating
the number of web users that a given host can serve. This estimate
then translates into the number of host servers required and allows
datacenter operators to assess cost efficiency of the web tier.
Appweight = o< supply
PSuser demand

_ (HHVM foreground %) X IPSpcy/RCU
- Total HHVM IPS/ALM

Appweight is defined as the ratio between a web host’s computa-
tional supply and web users’ computational demands. The starting
point is the server’s maximum sustainable instruction throughput
(IPS) given a 100ms latency target for web requests. Relative Com-
pute Unit (RCU) is a normalized unit of server compute capacity. At
Meta, the performance of each server type or generation is normal-
ized to that of a baseline server architecture (e.g., Intel’s Nehalem).
Thus, IPSpcy/RCU is normalized compute capacity per RCU. And
(HHVM Foreground %) X IPSgcy/RCU is the RCU compute capac-
ity for HHVM foreground threads that compute for meaningful
user activities.

Active Last Minute (ALM) measures the number of unique users
in a given minute. This metric is computed by sampling 1% of
all hits to the production cluster. When planning server capacity,
datacenter operators use ALM measured at the peak load, which
is periodic and predictable. And Total HHVM IPS/ALM quantifies
the average HHVM compute capacity demanded by a user.

The ratio estimates the max number of average users that can
be supported by one RCU. As seen below, we can use this ratio to
estimate how an improvement in Appweight reduces the number
of RCUs required to serve user request. Supposing user demand
is constant (i.e., equation’s right-hand side), then a 1% increase in
Appweight permits a 1% reduction in the number of provisioned
RCUs.

(HHVM foreground %) X IPSrcys

Appweight * RCU =
ppweight x Total HHVM IPS/ALM

1)

6.3 Autotune Efficiency

We experiment with four autotune methods, each running for five
iterations. In each iteration, the algorithms generate four thread
configurations for simultaneous A/B testing. Each test requires four
hours to complete. In total, each method explores 20 configurations
in the tuning procedure.

Figure 11 shows the Appweight improvement (larger is better)
achieved by the configurations explored during autotuning. For
each of six partitions, we evaluate the efficiency of the autotuning
methods by comparing the best Appweight improvement across all
A/B tests.

Single Parameter Tuning and Hill-Climbing tend to be more
efficient given a smaller number of trials (e.g., fewer than five). Both
methods benefit from incrementally updating the configuration
parameters, although the improvement is often less than 1%. In
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Figure 11: Comparison between different autotune meth-
ods in tuning HHVM thread configurations for six semantic
partitions. Circles represent the mean estimation of the per-
formance difference between test and control clusters, and
intervals around circles represent the variance estimation.

contrast, BO and random sampling suffer from exploring unknown
regions in the configuration space.

Bayesian Optimization(BO) tends to find better configurations
given a larger number of trails (e.g., 15 to 20). The best configura-
tion identified by BO outperforms the best of other methods by
0.8% - 3.0% with 20 trials. For most of the partitions, BO achieves
better autotuning results after an adequate number of trials (e.g.,
15 trials). For these partitions, BO builds a good Gaussian Process
model after enough trials. Additionally, the acquisition function,
an enhanced version of Expected Improvement, effectively guides
the GP to exploit good configurations. One exception is at partition
7 (i.e.,Figure 12e), for which BO tends to degrade performance as
more trials are conducted. We examine the original trace for par-
tition 7 and look at configurations explored by BO autotuning in
each trial. We find that BO starts to explore a new configuration
region previously unexplored, after 15 trials. This new region con-
sists of new combinations of mcrpxy-TAO and mcrpxy-web thread
numbers which degrade HHVM performance. This happens when
the BO’s acquisition function suggests that such a new region is
more valuable for exploration.

In sum, local search methods are preferable if the system’s com-
putational budget permits only a limited number of trials. If the
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system’s computational budget is more generous and permits a
larger number of trials, BO likely discovers better configurations.

Preferred Thread Configurations. Our tuning experiments
suggest that we cannot find a single set of thread numbers preferable
to all six different semantic partitions. For example, we find that dif-
ferent partitions have distinct preferences for different mcrpxy-TAO
thread numbers. Notably, partitions 2, 6 and 8 prefer a medium num-
ber (5 to 6) of mcrpxy-TAQO threads; partitions 0 and 7 prefer the
maximum number of mcrpxy-TAO threads available in the configu-
ration space; and partition 4 prefers a relatively low mcrpxy-TAO
thread (2-3). We argue that the best number of target threads depend
not only on each partition’s workload characteristics but also on
each partition’s own PHP thread pool size, as discussed in section 3.
On the other hand, we discover that all semantic partitions prefer
to turn on mcrpxy-TAO affinity. Turning on mcrpxy-TAO affinity
can bind an mcrpxy-TAQ thread to a specific subset of client hosts.
It reduces the number of TCP connections between each web host
and downstream services and improves efficiency.

6.4 Cost Efficiency Improvement

In summary, our autotuning improves appweights by 1%-8% across
varied semantic partitions for the regional datacenter. In this subsec-
tion, we discuss the implications of the Appweight improvements
brought by autotuning results.

From equation 1, a 1% — 8% increase in Appweight corresponds to
a similar percentage of reduction in the computation units (i.e., web
servers) required for serving these semantic partitions, provided
that request loads from web users remain relatively constant. In
the datacenter we study, each semantic partition is served by up
to thousands of web servers. We estimate machines reduced for
each semantic partition by examining appweight improvements
in each individual semantic partition. Summing up the potential
machine reduction across all semantic partitions, if we could reduce
datacenter capacity by approximately five hundred machines, that
could significantly reduce capital and operational expenditures for
each regional datacenter, potentially saving millions of dollars if
applied across many data centers.

7 RELATED WORK

HHVM Optimization. HHVM has many configuration param-
eters [7, 51], but there are few investigations on properly tuning
these configuration parameters. Researchers have studied other as-
pects of HHVM performance including jump-start compilation[44]
and architectural optimization [21]. Our work differs in that we
optimize HHVM cache and thread group performance. Further-
more, we address challenges in noisy system measurements during
performance optimization.

Partitions for Cloud Services. Partitioning is important when
scaling out cloud services, dividing state or data into smaller seg-
ments to reduce per-machine data I/O and concurrent connections
[11, 13]. For Partitioning and distributing data across machines is
typical database services [12, 17, 40]. We introduce a new partition-
ing strategy that divides user requests instead of computational
state. This idea is particular suitable for stateless micro services.

Performance Tuning. There is significant research in perfor-
mance tuning for data center applications [34, 35, 53]. These works
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develop machine learning and search methods for tuning datacen-
ter applications. To highlight a few of these efforts, SmartConfig
applies control theory to performance-sensitive datacenter applica-
tions [48]. PARIS [50] and Selecta [23] use machine learning to tune
virtual machine configurations for OLDI services and data analytics
workloads, respectively. Sophia [35] and Optimus-Clouds [34] use
predictive performance models to tune databases. However, few of
these studies address issues in noisy performance measurement.
Metis[32] uses adaptive re-sampling to address noise, identifying
outlying performance measurements and re-sampling outliers to
calculate confidence intervals. However, re-sampling cannot ad-
dress confounding bias. We use randomized control experiments
to eliminate confounding effects and obtain unbiased performance
measurements.

Understanding and Mitigating Variance. Researchers have
proposed varied methods to mitigate the impact of noisy systems on
interactive datacenter applications. These methods include tuning
hardware configurations [19, 22, 30], architectural optimizations
[16, 36, 47] and resource contention management [20, 42, 52]. Sam-
pling techniques are proposed to obtain a confidence bound on
measurements for expected performance in a noisy system [32, 37].
These techniques calculate the number of repeated experiments
for a desired confidence interval [37] or adaptively re-samples to
remove performance outliers [32].

A/B Testing. A/B testing has been applied for online large scale
web services [25, 26, 28] to understand the performance impact
of new features. Metrics are collected from actions of web service
users, which naturally constitute a large population and provide
data samples. There is much less research describing A/B testing
for tuning datacenter workloads, which must limit the amount of
data to sample and collect because of constrained computational
time and resources.

8 CONCLUSION

We describe practical techniques implemented to optimize HHVM
performance for large-scale web services at Meta. First, the seman-
tic request routing technique improves HHVM JIT efficiency by
partitioning web requests by their PHP function calls and restrict-
ing each HHVM server to serve one request partition. Semantic
request routing reduces HHVM request latency by 35% and im-
proves HHVM CPU utilization by 30%. Second, we introduce our
performance management framework for autotuning per-partition
HHVM thread configuration. The framework utilizes A/B testing
to rigorously measure performance in the noisy system. Further-
more, it applies advanced black-box tuning algorithms to explore
configuration efficiently. Our result shows that our performance
management framework can consistently improve HHVM cost-
efficiency metric by 1% to 8% across different partitions.
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