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Abstract

Process variations are the major hurdle for continued technology scaling. Both systematic and random variations will

affect the critical delay of fabricated chips, causing a wide frequency and power distribution. Tuning techniques are capable

of adapting the microarchitecture to mitigate the impact of variations at post-fabrication testing time. Most of the existing

techniques ignore testing cost or simply assume a naive exhaustive testing scheme. But testing has associated costs, which

might be prohibitively expensive for a large space of post-fabrication tuning configurations. This paper proposes a new

post-fabrication testing framework that accounts for testing costs. This framework uses on-chip canary circuits to capture

systematic variation while using statistical analysis to estimate random variation. Regression model is applied to predict the

chip performance and power. These techniques comprise an integrated framework that identifies the most energy efficient

post-fabrication tuning configuration for each chip. The testing cost for the proposed framework is low, usually converging

with fewer than two rounds of tests. At low cost, the proposed test framework can achieve 93 to 96 percent ofBIPS3/W

optimal tuning results, even under very large variations. Furthermore, the test framework fits into existing test flows without

major changes to testing facilities.

1 Introduction

Moore’s Law has driven drastic and fundamental advances in computing. Enabled by regular and predictable transistor scal-

ing, computing capacities and capabilities have benefited from smaller devices. Process variations, a side-effect of Moore’s

Law scaling in nanoscale CMOS technologies, jeopardize the significant performance and power advances from scaling.

In modern, aggressively-scaled technologies of 45nm and beyond, the expected 30 percent performance improvement per

process generation is no longer certain [1]. Previously a problem only for analog circuits that require high precision, vari-

ations in nanoscale technologies now threaten the performance and power of digital systems implemented in static CMOS

logic with full swing signals. The scope and impact of process variations is significantly greater in the digital domain.

Digital designers strive to balance delays across paths through combinatorial logic blocks such that no single path defines
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the critical path delay. In the presence of process variations, digital designers are less certain of their delay balancing efforts

since one marginal set of transistors could potentially compromise performance for the entire system.

Although statistical timing analysis attempts to model process variations at design time, the true impact of process

variations is unknown until the chip returns from fabrication. Thus, strategies to mitigate process variations often include a

post-fabrication component. Post-fabrication tuning configures a chip to compensate for realized process variations. Back-

body bias might be used to alter the effective threshold voltage. Supply voltages might also be tuned using localized voltage

domains implemented with on-chip regulators or voltage interpolation. Latencies for microarchitectural blocks might be

tuned such that blocks with long delays use an extra pipeline stage instead of lengthening the critical path delay. Finally,

microarchitectural structures might be resized to exclude slower elements, thereby improving their maximum operating

frequency. Collectively, these tuning techniques mitigate variations at the microarchitectural level. Analysis at this level is

necessary to fully account for variations’ impact on microarchitectural performance (IPC) and power.

These variation mitigating techniques expose a large space of tunable parameters, presenting significant optimization

challenges. Tuning techniques are typically evaluated by exhaustively searching the space to identify optimal configurations.

However, the search space size grows combinatorially with the number of tuning techniques, the tunable parameters within

each technique, and the number of tuned microarchitectural structures. Thus, exhaustive search is naive and prohibitively

expensive in a post-fabrication tune and test framework. For high-volume parts, tune and test time must be minimized to

manage costs. Exhaustive search simply does not achieve economies of scale.

Addressing these fundamental challenges in post-fabrication tuning, we propose an enhanced testing framework. This

framework implements the standard test flow, which includes wafer-level test/repair, packaging, and chip-level test/bin. We

enhance the standard flow to characterize process variations, to estimate the impact of those variations, and to optimize

tunable parameters to best mitigate that impact. Such a framework addresses two fundamental challenges in mitigating

process variations. First, post-fabrication tuning is required since the true impact of variations are unknown pre-fabrication.

Secondly, intelligent modeling and optimization is required to tractably explore the space of tunable parameters.

The following summarizes the contributions of the proposed framework:

• Mitigates Process Variations:The framework implements the state-of-the-art in post-fabrication tuning (e.g., vari-

able latency, voltage interpolation, structure resizing) to mitigate both systematic and random process variations.

(Section 2)

• Fits in Standard Test Flow: The framework fits into existing test flows, including wafer-level test/repair, packaging,

chip-level test/repair. (Section 3)

• Enhances Standard Test Flow:The framework characterizes process variations from canary circuit measurements

to obtain avariation fingerprint. Regression on pre-characterized chips producespredictive models, which express the

optimization metric,BIPS3/W , as an empirically derived function of tunable parameters. Post-fabricationstatistical
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delay analysisuses the variation fingerprint to estimate the delay impact of measured variations. Lastly,constrained

optimizationuses the computationally efficient predictive models to explore a large multi-billion point tuning space,

identifying optimal per chip configurations subject to delay targets from statistical delay analyses. (Section 4)

• High Efficiency, Low Cost: In the presence of large systematic and moderate random variation, the framework

delivers 93-96 percent of idealBIPS3/W efficiency while controlling testing costs by using fewer than two rounds

of tests. Furthermore, we examine a variety of trade-offs between performance objectives and testing cost. (Section 5)

Collectively, the proposed testing framework effectively mitigates process variations, delivering high performance and

power efficiency at low testing cost.

2 Motivation and Background

The techniques described in this paper are at the intersection of microarchitectural design and test. As such, this section

provides the necessary background in these subareas. We first briefly describe challenges related to variations and several

post-fabrication tuning techniques proposed to overcome these challenges.

2.1 Process Variations

While process variation exists at several scales (wafer to wafer, die to die), within-die (WID) variation is particularly

important for nanoscale technologies. Variations impact device feature sizes and threshold voltages, which cause delay

variations. For example, variations lead to a spread in logic gate speed in different parts of a chip. To meet target speed for

the overall system, a typical design must accommodate the worst-case portion of the chip by either reducing the frequency

or increasing the voltage. Both approaches create extra timing or voltage margins in faster parts of the chip, leading to a

less-efficient system overall.

Process variation includes both systematic variations due to lithographic irregularities and random variations due to

varying dopant concentrations. Systematic variation exhibits strong spatial correlation among device features for structures

located close together. Canary circuits placed near a circuit of interest exploit these correlations yielding insights into a

chip’s systematic variations. In contrast, adjacent circuits are uncorrelated for random variations. While it is difficult to

directly measure the random variation, statistical timing analysis provides a framework for reasoning about their impact.

We combine canary circuits and statistical timing analysis to enable new capabilities in post-fabrication tuning.

This paper uses delay and power data are derived from Hspice circuit simulations at the 32nm technology node using

Predictive Technology Models (PTM) [2]. We rely on a Monte-Carlo simulation framework, which is similar to prior

approaches [3, 4, 5]. Ideally, we would use real silicon data to verify the proposed scheme. But acquiring silicon data about

process variation is extremely difficult because this data is considered secret by many vendors. Thus, we apply Monte-

Carlo simulation to model real silicon production. This framework considers both die-to-die (D2D) and within-die (WID)

variations, handling systematic variations related to floorplans using a multi-level quad tree method. Recent experimental

3



results evaluate the accuracy of the quad-tree method, demonstrating errors of 5% relative to fabricated chips [6]. Such

error rates are sufficiently low for our architectural studies. We modeled both random and systematic fluctuations at the

transistor level. We assumeσL/Lnominal = 7% for gate-length variations andσVth/Vthnominal
= 15% for threshold

voltage variations. These assumptions are comparable to the data forecast in prior work [1, 7].

2.2 Post-Fabrication Tuning Techniques

Vendors must perform detailed chip testing and tuning to address design uncertainty due to variations. Traditionally, most

chip testing is performed directly after fabrication before systems move into the field. In contrast, built-in self-test (BIST)

mechanisms perform tests at runtime to test the correctness of circuits under long-term reliability conditions. BIST ap-

proaches can be broadly grouped into two distinct approaches: those that check timing constraints at run-time with shadow

(double) latches in pipelined combinatorial logic [8, 9], and those that perform runtime BIST checking by periodically

taking cores off-line and executing test patterns that are stored close to the CPU core [10]. While both approaches require

additional overheads in terms of latch area and power, storage for test vectors, and runtime performance overheads, if aging

becomes a major problem in future CMOS technologies vendors may begin to adopt these techniques. In this work, since

our focus is on static process variations, we consider tuning mechanisms that are configured at test time to compensate

for performance and power penalties from process variations, but our post-fabrication tuning approach would be equally

applicable to systems with runtime test capabilities. We defer this aging analysis for future work.

After diagnosing variations at test-time, traditional approaches apply global voltage/frequency tuning to sort fabricated

chips into different speed-power bins. However, these global approaches are often too coarse-grained to effectively com-

pensate for within-die variations. To address variations on a finer scale, many researchers have proposed fine-grained

post-fabrication tuning techniques to customize individual processors in response to their variation profile.

Device tuning techniques seek to optimize delay by modifying the threshold voltage, supply voltage, or logic delays.

For example, adaptive body biasing adjusts the threshold voltage for individual blocks of transistors to mitigate fluctuations

in threshold voltages arising from the manufacturing process [11, 12, 13]. Mani, et al., make the case for coordinated

optimization of gate sizes at design time and adaptive body bias post-fabrication [14]. “Voltage interpolation” technique

provides the ability for different groups of logic gates within a block to switch between two static supply voltages (high

and low) to accommodate gates that deviate from nominal delays [15, 16]. In both approaches, devices are partitioned into

groups or blocks at design time, but the block level tuning occurs after fabrication and during test.

Several post-fabrication tuning knobs have been proposed at the architectural block level. Sylvester, et al. show the

microarchitecture plays an essential role in post-fabrication tuning [17], surveying the many issues related to self-healing

systems. We further this prior work by providing the necessary detailed design and testing solutions for post-fabrication

tuning in high-end microprocessors. Most microarchitectural knobs tune either latency or resource sizes. Both latency

and size tuning seek to reduce worst-case logic delays for blocks that suffer variations. Several researchers have proposed
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architectural post-fabrication tuning, extending the latency of long pipelines to accommodate critical path delay outliers [18,

3, 19]. Researchers have also proposed register file resizing [3], cache resizing [20, 21], and criticality-aware prefetching

and resource sizing [22].

This paper takes delay as the circuit’s timing performance and latency as the number of stages used to pipeline the

circuit. To meet delay targets, we focus on three post-fabrication tuning techniques: variable latency (VL) [16], voltage

interpolation (VI) [16], and resizing [20]:

• Variable Latency (VL): VL provides two possible latency settings for each architecture unit. If the delay of one unit

exceeds the target delay, the latency of that unit can be extended without reducing the global frequency. Extending the

latency of architectural blocks often lead to an IPC loss and a detailed study of post-fabrication tuning configurations

is required to guarantee a net performance gain when using this technique.

• Voltage Interpolation (VI): VI can provide fine-grained voltage tuning for each architecture unit. It can provide

effective voltage levels by interpolating two global supply voltages (VddH and VddL). Depending on the number of

cuttings of the logic blocks, we can have a different number of “effective” voltage levels, which we refer to the as

VI points. These VI points are obtained by cutting logic into multiple voltage domains and assigning each domain

to a low or high voltage. A VI point is a particular combination of low and high voltages across these domains. For

example, a logic block divided inD voltage domains will have at most2D unique VI points, which give the overall

logic block an effective voltage achieved through interpolation across theD domains.

• Resizing:Resizing adjusts array sizes of key microarchitectural structures, which significantly impact system perfor-

mance. If the delay cannot fit into the target frequency, we can reduce the array size by turning off part of the array

that operates at a slow speed. This technique should be applied with caution since the size of key architecture queues

is very important to the system performance. This technique trades off IPC with target frequency.

A common theme across the space of post-fabrication tuning schemes is an exacerbation of testing challenges. All tech-

niques, in effect, require a per-chip customization of various resources at microarchitectural block granularities. Although

many of the schemes appear promising, advances in testing strategies will be necessary to enable these schemes in practice.

3 Standard Test Flow

The standard test flow for commodity microprocessors fulfills a variety of important objectives. We define the test flow

as the sequence of steps from wafer fabrication to product shipment. A variety of tests are conducted at both wafer and

packaged-chip levels, stuck-at fault checks, IDDQ measurements, at-speed functional tests, AC scan, etc. [23]. Test time

directly translates into cost and, consequently, any post-fabrication tuning technique must minimally impact the test flow.

This subsection provides a basic overview of a test flow for commodity microprocessors to show how our proposed testing

strategy for post-fabrication tuning fits into the overall flow.
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Figure 1: Illustration of standard microprocessor test flow with additional steps for proposed post-fabrication tuning.

Figure 1 presents a simple illustration of a standard test flow for microprocessors. Preliminary tests at the wafer level

pre-screen defective parts early in the flow. After wafer-level test and sort, wafers are sent to the assembly house to be diced

up and only parts that pass wafer-level tests are packaged. We assume a relatively long latency between chip packaging and

the next test phase, especially if the fab and assembly houses are not co-located. Packaged parts are put through another

round of rigorous tests and binning before they are shipped. Additional steps in the flow added for post-fab tuning, identified

on the right, are described in Section 4.

Wafer-Level Test and Repair.Once a wafer comes out of the fab, wafer-level tests are performed by powering up and

driving signals to the device under test via tips on a probe card. For example, built-in self test checking of on-chip memories

are often run at the wafer level to identify bad bits that are flagged to be corrected by row and column redundancy circuits.

Such memory array fixes are implemented via laser-cut fuses and/or on-chip electrical fuses (e-fuses). More generally

these fuse technologies enable per-chip customization during post-fabrication tuning. Laser fuses offer simpler on-chip

circuitry, but impose minimum area overheads for each fuse sight due to laser spot-size limitations. In contrast, e-fuses

require additional circuitry for addressing and to set the fuses. However, e-fuses can be smaller and entirely embedded

within chips. Set after packaging, these fuses offer an additional degree of tuning flexibility. In this paper, we assume that

e-fuses are available for standard test flows and for post-fabrication tuning with low overheads.

Packaging. After wafer sort, bad parts are flagged (X in the figure) and good parts are sent for packaging. Fabrication

and wafer-level test is often geographically separated from packaging and package-level test. For example, fabrication

might occur in North America while the assembly house is located in Asia. As a result, long latencies between wafer-level

and package-level tests are possible. If needed, these long latencies might be exploited for more thorough wafer or chip

characterization, modeling, and optimization.

Chip-Level Test and Bin. After packaging, chips go through another round of rigorous tests to further sort out bad
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chips. Since packaged chips encompass the environmental conditions (thermal and electrical) seen by the chips out in the

field, extensive at-speed and burn-in tests are often run at this point. Again, modifications to the chips can be made via

e-fuses, which can include settings for array fixes, clock distribution tuning [24], etc. In addition to package sort, chips are

tested for binning such that higher performance (or more energy-efficient) parts can be sold at a price premium.

Cost is a critical component of the test flow as it directly affects the bottom line. As a device progresses further along

the flow, it consumes increasing investments in terms of time and capital expense, making it more costly to throw out. Parts

that pass wafer sort incur the added cost of packaging and further tests. A device that fails out in the field represents the

worst-case scenario due to penalties for replacing them and damage to the manufacturer’s reputation. However, testing is

expensive and test times must be minimized to preserve profit margins.

4 Enhanced Test Flow

Due to rising process variability in modern nanoscale process technologies, several post-fabrication tuning techniques have

emerged as potential solutions to maximize performance and energy efficiency. However, for such techniques to be vi-

able, they require low-cost test solutions that efficiently set tuning knobs without incurring large overheads. This section

describes a generally-applicable testing framework for post-fabrication tuning with minimal impact on testing latency and

time. Referring back to Figure 1, the right-most sequence of steps illustrate the additions made to the standard test flow.

The proposed scheme relies on scan-enabled on-chip process monitoring circuits, also known as canary circuits, scattered

throughout the chip to provide a “fingerprint” of on-chip process variability. Based on the variation fingerprint, we statisti-

cally estimate the true critical path delay. This estimated critical path delay is combined with regression models to predict

and optimize performance and power responses as a function of various tunable parameters. We then apply the parameters

identified optimal by regression models to chips and test to verify their timing behavior. If a chip passes the delay test,

regression-predicted optima for tuning knobs are applied to the packaged part for shipment.

4.1 Variation Fingerprint

The variation fingerprint of a chip characterizes its systematic variations using measurements of canary circuits.1 Canary

circuits are on-chip process monitoring circuits, commonly used to profile chip characteristics. Since canary circuits are

physically located next to the critical paths of an architectural block, the effects of systematic variations on canary circuits

and the average path are highly correlated. Ideally, delay measurements from canary circuits will perfectly match the

average path delay. The design and use of canary circuits is an area of ongoing research. Without loss of generality, we use

ring oscillators to demonstrate our proposed framework. A ring oscillator consists of a loop of inverters where the number

of inverters is determined by logic depth. For example, a pipelined logic block with 30 FO4 delays per stage will require a

ring oscillator with 15 inverters each of which drives an inverter sized 4x larger. Although we use ring oscillators to capture

1Canary circuits are named after canaries in coalmines that helped determine the amount of breathable air in a coalmine. Thus, canaries are a metaphor

for tools providing early measurement and detection.
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Figure 2: The PDF plot of the delay difference between the ring oscillator and critical path delay in the instruction decoder

whereδR − δC ∼ N(δS ≈ 30ps, σ ≈ 12ps), a representative architectural block.

systematic variations, our methodology does not depend on this particular canary circuit and other canary circuits can be

used, for exampe, for dynamic logics.

In practice, canary delays are imperfect proxies of path delays since canary circuits only capture systematic variations

and do not account for random variations. These random variations will determine measurement differences between the

canary circuit and the average path. Furthermore, canary circuits are representative of theaveragepath and not thecritical

path. To illustrate this difference, we consider a hypothetical scenario where we know the delay for both ring oscillators

and critical paths. To quantify delay differences, we implement a Monte Carlo experiment with one thousand instances of

the instruction decoder, a logic-dominated architectural block, each instance with a slightly different oscillator and critical

path delay due to process variations.

Figure 2 illustrates the distribution of delay differences between the oscillator delay (δR) and the worst-case critical

path delay (δC) in the decoder block from Monte Carlo simulations. The delay difference follows approximately a Normal

distribution with meanδS and standard deviationσ. Intuitively, δS quantifies the expected difference between the measured

ring oscillator delay and true critical path delay (δS = E[δR − δc]). If we consider a large number of paths through a logic

block, the expected difference between measured ring oscillator delay and trueaveragepath delay is zero. But for a fully

synchronous digital system, the truecritical path delay determines the operating frequency. Given this difference between

average and critical path delays and noting that ring oscillators are designed to capture only average delays, critical path

delays are estimated from ring oscillators with an additional delay shiftδS that accounts for this difference.

The standard deviationσ captures variation in differences between measured oscillator delay and true worst-case critical

path delay. Thisσ is primarily due to random variation on the critical paths, which produces a delay distribution for

fabricated chips. We apply statistical analysis based on this distribution to estimate the worst-case critical path delay of

each architecture block. In practice, we would fully pre-characterizeδS andσ by measuring an initial lot of fabricated chips
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during wafer-level test and repair as described in Figure 1. In this work, we assume 1,000 chips are pre-characterized early

in the production cycle as the product ramps up. The overhead of measuring 1,000 sample chips is relatively low compared

with the future mass production of millions of chips. This characterization might be refined as more chips become available

for measurement.

4.2 Statistical Delay Analysis

In contrast to statistical timing analysis at design time, our testing framework implements post-fabrication statistical delay

analysis. A post-fabrication test defines a target for critical path delay and identifies all chips that satisfy that target. Because

worst-case critical path delay is unknown, the testing methodology must rely on a combination of a measured ring oscillator

delay (δR), the expected difference between measured oscillator and true critical path delays (δS = E[δR − δC ]), and extra

delay padding (δP ) that provides an error margin to the estimate of critical path delay. PaddingδP is needed since tests

are evaluated with measured oscillator delays that may not accurately capture true critical path delay. Thus, the estimated

critical path delay for a microarchitectural block is given byδ̂C = δR +δS +δP and the estimate is made more conservative

by increasingδP . δ̂C is an estimate for the true delayδC .

Post-fabrication delay tests are evaluated with estimated worst-case critical path delayδ̂C but results may differ if tests

were evaluated with true critical path delayδC . We define theblock pass rate(PRblock) as the number of blocks that pass

the same test under̂δC . Intuitively, the pass rate is a measure of confidence in the estimateδ̂C . A high pass rate meanŝδC

is a conservative estimate and is likely at least as large asδC . If δ̂C ≥ δC , then any tuning configuration that satisfies the

delay test for̂δC (a more difficult constraint) will also satisfy the delay test forδC (a less difficult constraint) leading to a

high pass rate.

To further explore this relationship betweenblock pass rateand average chipBIPS3/W efficiency, we consider a range

of chip pass rates(PRchip) and define delay tests such that the pass rate is achieved. We translate chip pass rate to block

pass rate using elementary probability theory forB blocks: (PRblock)α = PRchip. If B microarchitectural block delays

are perfectly correlated, the chip-level pass rate must be satisfied by every block andα = 1. If the B microarchitectural

block delays are completely independent, each of theB blocks must have pass rate of(PRchip)1/B andα = B. In practice,

blocks are neither fully correlated nor fully independent, implying1 ≤ α ≤ B. In the absence of any variation, all blocks

are perfectly correlated by design. Systematic variations reduce this correlation at coarse granularity and random variations

reduce this correlation at fine granularity. The exact impact on correlation must be quantified by measurement or simulation.

As described in Section 4.4, we empirically determine the proper valueα̂, our best estimate of the trueα.

PRblock = (PRchip)1/α̂ (1)

δP = Q(PRblock)× σ (2)

Given α̂, we compute the block pass rate from the desired chip pass rate as shown in Equation 1. The block pass rate,

in turn, defines the block-level delay padding as show in Equation 2. Specifically, we compute a particular quantile of the
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Configuration Parameter Value Configuration Parameter Value

Issue Width 4 instructions Issue Queues 20-entry INT, 15-entry FP

Load Queue 32-entries Store Queue 32-entries

Reorder Buffer 80-entry I-Cache, D-cache 64KB, 4-way Set Associative

Instruction TLB 128-entry Fully-Associative Data TLB 128-entry Fully-Associative

Integer Functional Units 4 FUs Floating Point Functional Units 2 FUs

L2 Cache 2MB 4-way Branch Predictor 21264 Tournament Predictor

Table 1: Baseline processor configuration.

Arch unit Latency choices Array size choices VI points

DEC 3,4-cycle - 0.8:0.02:1.2

MAP 3,4-cycle 32, 64, 96, 128 0.8:0.02:1.2

RF 3,4-cycle 32, 64, 96, 128 0.8:0.02:1.2

IQ 3,4-cycle 10, 20, 30, 40 0.8:0.02:1.2

FXU 3,4-cycle - 0.8:0.02:1.2

FPU 4,5-cycle - 0.8:0.02:1.2

Table 2: Post-fab tuning knobs.

block’s oscillator delay distribution and multiply by its standard deviation. For example, if we wish to achieve a block pass

ratePRblock = 0.997, thenQ(PRblock) = 3, since 99.7% of the probability distribution for estimates of critical path delay

is located belowδS + 3σ (shown in the normal distribution of Figure 2). Both the quantile functionQ and the standard

deviationσ are known once we pre-characterize 1,000 chips to get a variation fingerprint during wafer-level test and repair

as described in Figure 1.

4.3 Predictive Model

We consider a space of configurations achievable by post-fabrication tuning that is defined by six microarchitectural pa-

rameters and three tuning techniques. The space contains hundreds of billions of possible configurations, which exhibit

significant diversity in performance and power. To tractably identify optimal configurations for each chip, we must con-

struct predictive models to capture the relationship between performance, power, and tuning parameters. Computationally

efficient predictive models enable comprehensive optimization across the large configuration space.

We assume a baseline processor, which is comparable to the Alpha 21264, with parameters listed in Table 1. Our frame-

work is not specific to this configuration space and might be applied more generally. To control the number of simulations

in this work, we use 8 SPEC2000 benchmarks and rely on Sim-Point for sampling [25]. Phansalkar et al. show that 8

benchmarks (crafty, applu, fma3d, gcc, gzip, mcf, mesa, twolf) can adequately represent the entire SPEC2000 benchmark

suite [26]. For each benchmark, 100 million instructions are simulated after fast forwarding to specific checkpoints. In this

paper, single number results of power or performance correspond to the harmonic mean of all simulated benchmarks.

We study six architectural units: instruction decoder (DEC), register rename table (MAP), physical register file (RF),

issue queue (IQ), fixed-point unit (FXU), and floating-point unit (FPU). We apply three post-fabrication tuning techniques to
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Figure 3: Power-BIPS for different settings for two chips.

these structures: voltage interpolation (VI), variable latency (VL), and structural resizing. The possible tuning parameters

are listed in Table 2. With voltage interpolation, every unit can have 20 effective voltage settings from 0.8V to 1.2V in

increments of 0.02V. These 20 settings are derived from 20 corresponding combinations of high-low voltage settings. With

variable latency, every unit can have two latency choices. Array structures take one of four sizes. Additionally, we allow

eight frequency choices for each chip. This yields a large design space of 282 billion post-fabrication configurations, which

cannot be exhaustively evaluated in simulation or measurement. Again, our framework is not specific to this configuration

space and might be applied more generally.

Figure 3 illustrates the power and performance characteristics for two chips experiencing different process variations.

For each chip, the figure considers a representative subset of the 240 billion configurations. Even for this reduced subset

of configurations, we find different configurations produce very different power and performance values. Across these

configurations, we find performance ranges between 0.39 and 1.39 BIPS, a factor of 3.6×. Similarly, we find power ranges

between 0.53 and 0.98, a factor of 1.86×. Given the size of the configuration space and observing that each chip might

have different optimal configurations, an exhaustive exploration of these post-fab tuning configurations is intractable and

we require more computationally efficient methods.

Techniques in statistical inference reveal performance and power trends from sparsely measured configuration samples,

enabling performance and power analysis for much larger, comprehensive tuning spaces. In particular, we apply spline-

based regression models, which predict a performance or power response as a function of design parameter values [27].

Within this framework, interactions between predictors are captured by products terms specified in the models’ functional

form using domain-specific knowledge. For example, cache sizes for adjacent levels in the memory hierarchy should interact

(i.e., the optimal L1 cache size depends on the L2 cache size and vice versa, thereby requiring joint optimization). Non-

linearity is captured by cubic spline (ie. piecewise polynomial models) transformations on the predictors. Given sparsely

measured configurations from the space, a multi-dimensional curve fit is performed to capture the relationships between
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Figure 4: Distribution of prediction errors for 100 random validation configurations.

design metrics of interest and tunable parameters. Model construction is computationally efficient and may be reduced

to a series of cubic transformations followed by a linear solve (highly-optimized matrix operations). Model evaluation,

expressed as matrix multiplication, is also highly efficient. Hundreds or thousands of predictions per second are possible.

This computational efficiency allows us to tractably explore a large space of microarchitctural structural, voltage, and latency

configurations.

We train regression models with 500 configurations sampled uniformly at random from the space of 282 billion points.

Such a sparse sampling is used to construct unbiased models that weight every part of the configuration space equally. These

training configurations are measured at the beginning of a production cycle, incurring the one time cost of constructing

these models. Figure 4 illustrates model accuracy when validated against simulation for 100 randomly selected and separate

validation points, demonstrating median errors of 7.4 percent for performance. Similar models have been applied to and

validated for practical design studies, demonstrating accuracy sufficient for early stage design optimization [28]. This

prior work also found outlier errors tend to occur near design space boundaries where models are extrapolating instead of

interpolating. Since joint performance and power optimization typically identifies optima well within space boundaries,

outliers are unlikely to significantly affect our analysis. However, outliers might be mitigated with more advanced sampling

techniques. For example, Latin Hypercube sampling ensures evenly spaced samples and weighted sampling emphasizes

training configurations from regions of the space modeled less accurately. To further reduce error, we might continuously

refine these models as chip manufacturing provides additional training samples across production cycles.

Our enhanced test flow relies on these efficient predictive models to capture the relationship betweenBIPS3/W effi-

ciency and post-fab tuning parameters. Since test time and costs have a direct impact on profit margins, statistical inference

and other modeling methodologies are imperative. The computational efficiency of regression models enables previously

intractable modeling and optimization for the space of structure sizes, latencies, and voltages. The results of regression

model optimization determine the configuration applied in post-fabrication tuning.
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Figure 5: BIPS3/W and price for representative Intel Xeon processors (12MB L2, 1333MHz FSB, 45nm) [30]. Data

series annotated with products’ frequencies in GHz.

4.4 Constrained Optimization

ConstrainedBIPS3/W optimization identifies optimal tuning configurations. Delay constraints are provided from analy-

ses of Section 4.2 whileBIPS3/W estimates are provided by predictive models of Section 4.3.

Optimization Objective. Current microprocessors are binned with respect to maximum achievable clock speed or

power efficiency as power often constrains performance in modern designs. Given the direct trade-off between frequency

and power, we differentiate chips via theBIPS3/W metric [29]. Derived from the cubic relationship between power

and voltage/frequency, this metric is voltage and frequency invariant. However,BIPS3/W is sensitive to parameters in

the post-fabrication tuning techniques studied throughout this work. In the absence of detailed cost and pricing models,

which are typically closely guarded industrial secrets, we useBIPS3/W as a proxy for price and evaluate the proposed

framework with respect to trade-offs betweenBIPS3/W , yield and test time.

Published product data sets, although lacking detailed price and performance components, suggest a strong relationship

betweenBIPS3/W and price. For example, Figure 5 plots price againstBIPS3/W as reported by data sheets for server

class processors. The figure illustrates ten frequency bins for a particular server product and the price differentiation across

these bins. This data captures only the frequency contribution toBIPS and its associated power cost. Despite analyzing

this subset ofBIPS contributors (other contributors include latency, structure sizes), we observe material relationships

betweenBIPS3/W and price. An exponential relationship is fit very closely to (R2=0.98) to six of tenstandardproducts.

We would expect similar relationships if latency and size contributions toBIPS were included. Thus, we takeBIPS3/W

as our proxy for price without loss of generality. Price is likely a function ofBIPS3/W and, although we illustrate an

exponential function, the exact function is orthogonal and independent of the proposed methodology. Any other price

function might be used in our testing framework.
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Four of ten products are outliers, which Intel classifies for different market segments. Intel grades the two products

above the exponential trend asextremeprocessors for their high frequency and significant power costs. Despite their low

BIPS3/W , these processors are sold at much higher prices. Similarly Intel grades the two products below the trend aslow-

endprocessors for their low frequency and exceptionally low power costs. Despite their highBIPS3/W , these processors

are sold at much lower prices. Thus, although most processors exhibit an exponential relationship betweenBIPS3/W and

price, the current market for microprocessors prefers high performance over low power. In such a market, processors with

high frequency and exceptionally high power costs are sold at much higher prices than processors with low frequency and

exceptionally low power costs. As power becomes increasingly important in the microprocessor market, prices of the four

outliers will likely gravitate toward the exponential trend.

Optimization Constraints. The framework maximizesBIPS3/W of the overall chip while ensuring each architectural

block satisfies the constraint of Equation 4. The estimated critical path delay consists of three components. Ring oscillator

δR is measured and known for each block. The delay shiftδS is pre-characterized for a small number of chips and is

included in the variation fingerprint. Lastly,δP is delay padding computed for a desired block pass rate from Equation 2.

For each block, the estimated critical path delayδ̂C is constrained to be less than the delay of the tuning configuration. A

block’s delay is a function of its configuration, which includes configured voltageVcfg relative to some nominal voltage

Vnom, configured latencyLcfg, and configured frequencyfcfg. Vcfg affects the constraint as a higher voltageVcfg reduces

critical path delay and allows the constraint to be more easily satisfied.

δ̂C = δR + δS + δP (3)

δ̂C ×
Vnom

Vcfg
≤ Lcfg

fcfg
(4)

The space of post-fabrication tuning configurations is defined by combinations ofVcfg, Lcfg, fcfg. The optimization relies

heavily on the computational efficiency of our predictive regression models. We exhaustively evaluate regression equations

to predict the performance and power efficiency of every configuration. We repeat this optimization for every chip, obtaining

chip-specific measurements forδR and identifying chip-specific optimal values forVcfg, Lcfg, fcfg.

Calibrated Optimization. Recall the analysis of Section 4.2 assumes an empirically derivedα̂. To empirically deter-

mine the measure of block-level correlationα̂, we repeat the above optimization for varying values ofα, 1 ≤ α ≤ B. For

each value ofα, we characterize pass rates using the estimated critical path delayδ̂C and the true critical path delayδC . The

empirically derived̂α is chosen such that pass rates are equal for both analyses. This empirical calibration effectively iden-

tifies the degree to which blocks are correlated or independent. The calibration ofα̂ is a one-time cost, requiring detailed

measurements of true critical paths for 1,000 sample chips early in the manufacturing process.

The chip pass rate directly influences the performance of chips passing the delay test. Figure 6 quantifies this relation-

ship, plottingBIPS3/W efficiency against chip pass rate. A high pass rate leads to lower average efficiency since the high

pass rate is achieved by more delay paddingδP and conservative estimates ofδ̂C , which effectively increase the delay a

14



25262728293031323334
0

10

20

30

40

50

60

70

80

90

100

BIPS3/W

C
hi

p 
pa

ss
 r

at
e 

(%
)

Figure 6: The relationship between averageBIPS3/W and the chip pass rate.

chip can deliver and still pass. Searching the space of post-fabrication tuning configurations under such conservative delay

estimates will produce configurations with higher latencies, lower frequencies, and higher voltages. The net effect is lower

efficiency. In contrast, if we consider a low pass rate, less delay paddingδP is required and moreBIPS3/W efficient

configurations are identified. However,δ̂C is a less conservative estimate, which increases estimation error (δ̂C-δC) and

causes more chips fail delay tests than when evaluated under the true critical path delayδC .

5 Analysis and Evaluation

We evaluate the proposed testing framework by assessing trade-offs the deliveredBIPS3/W and various measures of

testing cost, including the number of tests and the density of canary circuits. We find our framework robust against higher

systematic variation, fewer tunable knobs, and differences across workloads. Lastly, we evaluate our post-fabrication tuning

framework with several testing and tuning heuristics, finding fundamental trade-offs betweenBIPS3/W and testing cost.

5.1 Tuning with Multiple Tests

There is an inherent trade-off betweenBIPS3/W and pass rate for a single test iteration. As shown in Figure 6, the

pass rate directly influences the averageBIPS3/W efficiency of chips passing the test. Average efficiency decreases with

increasing pass rates. Further exploring the relationship between pass rate and average efficiency, we consider multiple tests

and their ability to deliver greater efficiency. Multiple tests stratify chips by theirBIPS3/W efficiency to improve average

efficiency. Suppose, for example, we implement two tests. The first test is defined to achieve a low pass rate. Although a

small fraction of chips pass this first test, each passing chip will achieve highBIPS3/W efficiency as shown in Figure 6.

The second test is defined to achieve a high pass rate, effectively a catch-all for chips that fail the first test. Due to this higher

second pass rate, chips that fail the first but pass the second test will achieve on average lowerBIPS3/W than those that
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Figure 7: The relationship between the averagedBIPS3/W and the number of tests.

pass the first test.

Given this intuitive understanding of multiple tests, we consider a range of test counts and assess its impact on delivered

efficiency. Figure 7 illustrates efficiency trends as the number of tests increases. We consider a continuum betweenno-

tuningandoracle-tuning. No-tuning is the baseline method which does not implement post-fabrication tuning techniques

for architecture flexibility, voltage interpolation, and variable latency. Thus, in the no-tuning case, the operating frequency

is defined by the slowest critical path on the chip. In contrast, oracle-tuning assumes the true critical path is estimated

perfectly with no error. Given this perfect estimate whereδ̂C = δC , the enhanced test flow fully utilizes architectural

flexibility, voltage interpolation, and variable latency to maximizeBIPS3/W efficiency while guaranteeing constraints for

the true critical path delay are satisfied. The efficiency results of oracle-tuning are not achievable in practice since it would

require perfect knowledge of each architectural block’s critical path.

To explore intermediate values between no-tuning and oracle-tuning, we consider varying test counts between one and

five. We assume a final pass rate of 100 percent, which means all chips must eventually pass a delay test and the total

pass rate acrossT tests must sum to 100 percent:
∑T

t=1 PRt = 100. If only one test is used (T = 1), PR1 = 100 and

passing chips will achieve low average efficiency. If multiple tests are used (T > 1), we explore all combinations of pass

rates that satisfy
∑T

t=1 PRt = 100 to identify the combination that maximizes average efficiency. For example, ifT = 3,

we examine all combinations of (PR1,PR2,PR3) to maximize efficiency. Thus, our analysis considers the best achievable

efficiency for each test count.

The diamond line (canary-per-block) of Figure 7 illustrates efficiency trends as the number of tests varies. No-tuning

is 30 percent less efficient than oracle-tuning, indicating significant efficiency gains are possible from post-fabrication

tuning. Thus, we demonstrate the importance of adding these tuning capabilities to mitigate process variations. With these

capabilities, even a modest number of tests drastically improves delivered efficiency. A single test improves efficiency by

1.27x, increasing normalized efficiency from 70 to 89 percent of oracle-tuning. Efficiency increases monotonically with the
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Figure 8: The relationship between the averagedBIPS3/W and number of VI points.

number of tests. However, we observe diminishing marginal returns in efficiency. Two post-fabrication tests are sufficient

to achieve 93 percent of oracle-tuning whereas five post-fabrication tests achieve 96 percent. Overall, this analysis shows

the effectiveness of using canary circuits to guide post-fabrication tuning. These canary circuits characterize the variation

fingerprint by capturing systematic variations and are the basis for our statistical estimates of critical path delay.

5.2 Canary Circuit Density

The efficiency gains from our enhanced test flow are driven by canary circuits and their characterization of variation fin-

gerprints. The effectiveness of this characterization depends on the density of canary circuits. Additional canary circuits

would provide more detailed information about systematic variations simply by increasing the granularity of on-chip delay

measurements. Furthermore, these additional canary circuits would further the characterization of random variations. If too

few canary circuits are used, systematic variation is imperfectly characterized and might be mistaken for random variation.

Treating systematic variation as random variation directly reduces our confidence in our critical path delay estimates by in-

creasing the standard deviationσ in Figure 2. These estimation errors, in turn, will impact the test flow’s ability to correctly

identify optimal post-fabrication tuning configurations. Despite the potential benefits of additional canary circuits, we must

ensure these circuits are used judiciously to control measurement times in the test flow.

Figure 7 illustrates efficiency trends under different canary circuit (e.g., ring oscillator) densities. We consider three

scenarios in order of decreasing canary density: (1) canary-per-block, (2) canary-per-cluster, and (3) canary-per-chip. The

canary-per-block scenario is the baseline scenario considered in the previous analysis, illustrating trends for the greatest

canary density where each of the six architectural blocks contains a ring-oscillator. For comparison, we define a cluster of

three architectural blocks and consider a canary-per-cluster scenario where the three blocks share a single ring oscillator.

In this scenario, the test flow attempts to capture systematic variations for the three blocks using a single measurement.

Similarly, we also consider a canary-per-chip where all six architectural blocks share a single-ring oscillator. Thus, we
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Figure 9: The relationship between the averagedBIPS3/W and different benchmarks.

explore trade-offs between fewer ring oscillator measurements andBIPS3/W efficiency.

As shown in Figure 7, canary density significantly impacts achieved efficiency from our test flow. Post-fabrication

tuning is less effective when fewer ring oscillators are available. In particular, one post-fabrication test is worse than

no-tuning under canary-per-cluster or canary-per-chip scenarios. These scenarios deliver only 63 and 71 percent of canary-

per-block efficiency. Canary circuits are designed to capture the impact of process variations for a small, localized on-

chip area, but the canary-per-cluster and canary-per-chip scenarios attempt to generalize variation estimates from these

localized measurements to much larger cluster or chip areas. This generalization is ineffective, providing a misleading

variation fingerprint that leads to a failure of testing and optimization schemes. Efforts to identify optimal chip-level

post-fabrication tuning configurations from a small number of localized measurements leads to sub-optimal configurations.

Although efficiency increases with more tests, canary-per-cluster and canary-per-chip scenarios are disadvantaged because

they perform these additional tests with an incomplete characterization of systematic variation that also leads to inaccurate

estimates of random variations.

5.3 VI Points and Benchmark Sensitivity

We assess the sensitivity our enhanced test flow to the resolution of our tuning configuration space. In particular, Figure 8

plots efficiency trends for a varying number of voltage interpolation (VI) points. These VI points are obtained by cutting

logic into multiple voltage domains and assigning each domain to a low or high voltage. A VI point is a particular combina-

tion of low and high voltages across these domains as described in Section 2.2. Figure 8 suggests our test flow is insensitive

to the number of VI points; 5 VI points per block deliver efficiency within 5 percent of 20 VI points per block. Considering

the significant design complexity and test overhead of additional VI points, we conclude 5 VI points are sufficient for our

enhanced test flow. This modest number of required VI points improves the speed and efficiency of tuning and optimization

by reducing the size of the configuration space.
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Figure 10: The relationship between the averagedBIPS3/W and the variations.

To further demonstrate the general applicability of our enhanced test flow, we assess the sensitivity of efficiency gains

to choice of benchmark. Figure 9 illustrates negligible efficiency differences across the benchmark suite with similar trends

as the number of tests increases. Thus, our enhanced test flow is application insensitive and might be considered a general

strategy for microprocessor testing.

5.4 Sensitivity to Process Variation

Figure 10 illustrates the impact of process variations on our enhanced test flow. We consider three scenarios: (1) typi-

cal variation, (2) large random, and (3) large systematic. Typical variation assumes gate length coefficient of variation

σL/Lnom = 7% and threshold voltage coefficient of variationσVth/Vthnom = 15%. Large random variation considers

greater gate length variation withσL/Lnom = 14% and large systematic variation considers greater threshold voltage vari-

ation withσVth/Vthnom
= 30%. This analysis considers canary-per-block measurements and assesses the impact of greater

variations on our test flow.

As shown in Figure 10, the enhanced test flow is more sensitive to random variations. Under a canary-per-block scenario,

ring oscillators effectively capture the effects of large systematic variations and our test flow delivers efficiency comparable

to that delivered under typical variation. We observe negligible efficiency differences between two and three percent when

we consider greater systematic variation. In contrast, we observe significant efficiency losses under large random variation.

Ring oscillators cannot capture increased random variation, which increases errors in estimates of critical path delay by

increasing the spreadσ in Figure 2. As the spread between canary-derived estimates and true critical path delays increases,

our test flow requires greater delay paddingsδP to guarantee desired chip-level pass rates. These paddings reduce average

BIPS3/W , thereby hindering our tuning strategy.
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5.5 Alternative Test Schemes

Given the sensitivity of our enhanced test flow to large random variations, we propose and evaluate several test schemes

and attempt to mitigate these large random variations. In particular, we evaluate the following five methods with large gate

length variations withσL/Lnom = 14% and canary-per-block measurements.

• Method 1 (No Tuning): The baseline method which does not implement post-fabrication tuning techniques for

architecture resizing, voltage interpolation, and variable latency. Operating frequency is defined by the slowest critical

path on the chip and is identified by beginning at the lowest frequency and progressively increasing frequency until

the delay test is failed.

• Method 2 (VI with Relaxed Latency/Size): Optimizes only voltage while fixing latencies and sizes torelaxed

values. These relaxed values are longer latencies and larger sizes. Voltage optimization, implemented with voltage

interpolation (VI), begins at the lowest effective voltage and progressively increases effective voltage until delay test

is passed.

• Method 3 (VI with Popular Latency/Size + Method 2): Optimizes only voltage while fixing latencies and sizes to

popularvalues. These popular values are found effective for a representative number of pre-characterized chips early

in the manufacturing process. Voltage optimization begins at the lowest effective voltage and progressively increases

effective voltage until delay test is passed. If a chip cannot pass the delay test under popular latencies and sizes, the

scheme reverts to Method 2.

• Method 4 (Tuning with Block-Level Pass Feedback):Appliesdependenttests with feedback from the first test into

subsequent tests. The first test defines a low pass rate to maximize efficiency by tuning latency, size, and voltage.

Block-level pass rate is measured, identifying blocks that pass and fail. Voltage is progressively decreased for passing

blocks and increased for failing blocks.

• Method 5 (Tuning with Two Tests): Applies twoindependenttests. Tests define pass rates to maximize efficiency

by tuning latency, size and voltage (described in Section 4.2).

Figure 11 compares average normalized efficiency and average number of tests required by each method. Method 5 achieves

an average efficiency of 0.81 using only 2 tests. In contrast, the baseline Method 1 achieves 0.70 using, on average, 4 tests to

identify the highest operating frequency without tuning latencies, sizes, and voltages. This data is consistent with Figure 10.

Methods 2-4 deliver greater efficiency than Method 5 at greater cost. Methods 2-4 deliver efficiency between 0.84 to 0.97,

improvements of 3.7 to 19.7 percent over Method 5. However, these methods require a greater number of tests and do not

deliver efficiency in a cost-effective manner. Method 2 requires, on average, 4.5x the number of tests (9 versus 2) to deliver

a 3.7 percent increase in efficiency (0.84 versus 0.81). Even less cost effective, Method 3 requires, on average, 10x the

number of tests (20 versus 2) to deliver a 13.6 percent increase in efficiency (0.92 versus 0.81).
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Figure 11: Comparison of testing schemes.

Method 4 warrants particular attention. Although its delivered efficiency is 19.7 percent greater than Method 5, its

costs are less clear. Method 4 requires at least 1 test that attempts to maximize efficiency by tuning size, latency, and

voltage. It then requires, on average, 3 additional tests that adjust per block voltages depending on whether a block passes

or fails. However, Method 4 relies on knowledge of per block pass and fail rates, which might require additional per block

measurements per test and increases the cost of every test. Furthermore, Method 4 requires state that is saved in the first test

and used in subsequent tests, complicating the test flow.

Thus, Methods 2-5 deliver a range ofBIPS3/W efficiency and cost trade-offs. The best method depends on the partic-

ular testing and reliability requirements of each manufacturer. Manufacturers with low volume production might be willing

to run more tests, incurring higher costs for higher performance and power efficiency. In contrast, high volume manufactur-

ers might find marginal costs of additional tests are not justified by the marginal benefits inBIPS3/W efficiency. Thus,

post-fabrication tuning is the strategy we advocate, but the specific implementation of the strategy depends on cost-benefit

analyses particular to each manufacturer.

6 Conclusion

Process variations has become an increasingly important issue for future microprocessor designs in nanoscale technologies.

Various post-fabrication tuning techniques have been proposed recently to adapt the microarchitecture and circuit to different

degrees of variations. But most of these techniques ignore a key question—the testing issue—since it will be prohibitive

for efficient testing if the post-fabrication testing space is huge. This paper proposes the use of on-chip canary circuits

to capture the correlated systematic variation, combined with statistical analysis and regression models to estimate the

random variation and find the best post-fabrication settings for all chips. Experiments show the testing cost for the proposed

approach is relatively low and can fit well into existing test flows with minimal overheads. Simulations shows the proposed

test method can achieve close-to-optimal post-fabrication tuning results in terms ofBIPS3/W , even under very large
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systematic variation and under reasonable assumption of random variation.
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