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Abstract—Process variation poses a significant threat to the
performance and reliability of the 6T SRAM cell. In response,
research has turned to new memory cell models, such as the
3T1D DRAM cell, as potential replacement designs. If designers
are to seriously consider this new design, performance models
are needed to better understand the behavior of this cell.
We propose a decoupled approach for collecting Monte Carlo
HSPICE data, reducing simulation times by simulating memory
array components separately based on their contribution to the
worst-case read critical path. We use this Monte Carlo data to
train regression models, which accurately predict retention and
access times of a 3T1D memory array with a median error of
7.39%.

I. INTRODUCTION

For decades, technology scaling has boosted performance
and increased density in integrated circuits. However, shrink-
ing device feature sizes mean that process variation has be-
come a significant hindrance, reducing reliability and limiting
performance gains from technology scaling. With process
variation, traditional memory circuit designs need revisiting.

In particular, process variation directly attacks the weake-
nesses of 6T SRAM producing transistors that deviate from
their specified sizes, thereby causing device mismatches.
This reduces reliability and adversely affects performance.
In addition to device mismatch, process variation limits 6T
performance scalability by causing variation in the operating
speed of individual cells and memory lines. Thus, the 6T cell
is not sufficiently robust to withstand the challenges that come
with future technology scaling.

Recent research has turned to alternative designs that can
replace the 6T cell. One such design is that of the 3T1D
DRAM cell, which promises operating speed comparable to
that of SRAM without the destructive reads of the standard
1T DRAM cell. Furthermore, 3T1D does not rely on matched
transistor strengths, so its reliability is not affected by process
technology in the same way that the 6T cell’s is. Recent
research indicates 3T1D can be used directly in the place of
6T SRAM in structures, such as L1 caches, with negligible
performance loss [6].

If chip designers are to consider the 3T1D cell as a practical
design option, they need high-level models to quickly esti-
mate 3T1D memory performance and its implications for the
overall system. Prior work in memory models consider only
6T SRAM for on-chip memory or implement less analytical
DRAM models (e.g., CACTI [2]). However, on-chip DRAM

will figure prominently in future variation-tolerant designs.
Prior work also overly emphasizes detailed circuit simulation,
which makes performance estimates prohibitively expensive
for early stage design space exploration by architects. To be
widely adopted by architects and to be integrated into chip-
level simulators, memory models must be computationally
efficient.

To address these fundamental challenges, we propose empir-
ical performance models that combine new circuit simulation
methodology with best-known practices in regression model-
ing. After surveying the background and motivation for 3T1D
memories in Section II, this paper presents:
• Circuit simulation methodology that decouples memory

array components along the critical path, reducing the
size of simulated circuits and capturing performance
characteristics more efficiently. (Section III).

• Application of spline-based regression models, which are
empirically derived from circuit simulations to accurately
estimate performance with the speed of solving analytical
regression equations (Section IV).

We apply these new methodologies to construct models to
estimate retention and access times for a given set of 3T1D
array design parameters, operating conditions, and expected
device size variation.

II. BACKGROUND AND MOTIVATION

A. Process Variation and 6T Limitations

Process variation can affect the speed of a 6T SRAM cell,
and consequently jeopardize the operating frequency of an
entire array. Figure 1a shows the schematic of a standard
6T cell. Reads are performed by precharging both bitlines
(the bitline and the inverted bitline) to high, strobing the
wordline, and seeing which bitline discharges. If the inverted
bitline discharges, a 1 is read from the cell. If the regular
bitline discharges, a 0 is read from the cell. For example,
this discharge path moves through transistors T1 and T2 to
read a 0. Any variation in the gate length or threshold voltage
of these transistors changes the current driving capability of
the read path, and thus affects the access times of these cells.
Within-die variation further complicates this scenario: because
these transistor sizes can vary from cell to cell, each memory
cell and memory line may operate at different speeds. Circuit
designers must clock the circuit at the worst-case operating



(a) Schematic of 6T Cell (b) Schematic of 3T1D Cell

Fig. 1. Comparison of 6T and 3T1D memory cells.

frequency, leading to significant performance penalties for the
entire memory array.

Process variation also attacks the stability of a 6T SRAM
cell. For example, transistor T2 is designed to be very strong,
transistor T1, moderately strong, and transistor T3, weak. In
reads, this allows T2 to quickly discharge the necessary bitline
while ensuring the intermediate node between T2 and T3 does
not rise enough to store a 1 when it is supposed to store a
0. Any variation within the cell changes the strength of each
transistor, and may lead to a weaker T2 that does not discharge
the bitline quickly enough. Such variation allows the value at
the intermediate node to rise completely and flip the bit stored
in the circuit, causing a pseudo-destructive read. The same
analysis holds for transistors T4, T5, and T6.

Variation also causes instability in writes. Normally, a value
is written to the cell by forcing the normal bitline to the value
we want to store, the inverted bitline to the opposite value,
and strobing the wordline. The access transistor T1/T4 and the
write transistor must be strong enough to overcome the pull-
up strength of T3/T6 to flip the bit. By changing the relative
strength of each transistor, variation may prevent writes from
occurring. Thus, in the case of both reads and writes, process
variation makes it hard to ensure that a 6T cell can function
reliably. Studies show that even small error rates in an SRAM
array can lead to a huge performance loss [1].

B. The 3T1D Cell

In light of such problems with the standard 6T SRAM
design, researchers are investigating new cell designs that can
better withstand process variation. One such design is that
of the 3T1D cell, first proposed by Luk, et. al [7]. 3T1D
design is a DRAM memory cell that, unlike a typical 1T or
1T1C design, provides non-destructive reads and high-speed
operation that is comparable to (and in some cases better than)
the standard 6T SRAM cell. 3T1D is also more compact and
produces less leakage power than the 6T cell [6]. Moreover, it
does not suffer from the stability issues that are present in the
6T design: no transistor needs to overpower another for this
cell to function properly, nor are any two transistors required

to be of relatively equal strength. Variation only affects the
operating frequency of the cell, making it much more robust
to process variation than the 6T design.

Figure 1b presents a schematic of a 3T1D cell. To write to
the cell, the write bitline is charged to the value we wish to
store in the cell, and the write wordline is strobed. Because
of the threshold voltage of transistor T1, a degraded value
is stored at storage node S. To read from the cell, the read
bitline is precharged high and the read wordline is strobed.
If a 1 is stored in the cell, transistor T2 turns on and the
bitline discharges. The key to fast access times is the gated
diode, which is tied to the read wordline. When a 1 is stored
in the cell, the diode provides a “boosting” effect to the value
at the storage node and temporarily gives it a value close to
(and sometimes greater than) Vdd, which allows T2 to turn
on quickly and discharge the bitline.

When a 0 is stored in the cell, the capacitance of D1 is
smaller and little to no voltage boosting occurs, keeping T2
turned off. Because the 3T1D is a dynamic memory cell,
the value at the storage node leaks away as time passes. As
this happens, accesses to the cell become slower and slower.
Eventually, this access time becomes so slow that it is no
longer comparable to that of the 6T cell. Eventually, the stored
value degrades completely. While the fast access times and
non-destructive reads of the 3T1D cell position it as a good
replacement candidate for the 6T cell, its dynamic nature
introduces a new issue that SRAM designers need not consider.

Although there are many instances where static data storage
is desirable, it is also important to remember that most data
used by modern processors is transient, and need not be stored
for large periods of time. Data stored in structures like L1
caches, register files, and TLBs change quickly, and these
structures do not necessarily need (or desire) static storage.
Following this line of reasoning, recent work investigates the
viability of building cache structures out of 3T1D arrays [6].
According to preliminary estimates, 3T1D performs within 2%
of 6T memories under typical variation, outperforms 6T by
36% under severe variation, and offers lower leakage power in
both cases [6]. 3T1D thus seems to solve a lot of the problems



Parameter Retention Time Access Time Access Time Access Time
Wordline Local Bitline Global Bitline

Vdd 0.8V - 1.4V 0.8V - 1.4V 0.8V - 1..4V 0.8V - 1.4V
Temperature 0 ◦C-126 ◦C 0 ◦C-126 ◦C 0 ◦C-126 ◦C 0 ◦C-126 ◦C
Technology 45nm 45nm 45nm 45nm
No. Wordlines 8, 16, 32, 64, 128
No. Local Bitlines 8, 16, 32, 64, 128 8, 16, 32, 64, 128
No. Global Bitlines 8, 16, 32, 64, 128
T1 length 4λ±15nm? 4λ±15nm?

T1 width 3λ±15nm? 3λ±15nm?

T2 length 2λ±15nm? 2λ±15nm?

T2 width 16λ±15nm? 16λ±15nm?

T3 length 2λ±15nm? 2λ±15nm?

T3 width 4λ±15nm? 4λ±15nm?

D1 length 8λ±15nm? 8λ±15nm?

D1 width 20λ±15nm? 20λ±15nm?

Mstart length 45nm±15nm?

Mstart width 2um±15nm?

Mend length 45nm±15nm? 45nm±15nm?

Mend width 90nm±15nm? 90nm±15nm?

Time elapsed between 0ns - 500ns
write and read

TABLE I
PERFORMANCE MODEL PARAMETERS AND MONTE CARLO SIMULATION RANGE. ? THE RANGE OF 15NM IS BASED ON THE EQUATION: 0.5X(PREVIOUS

TECHNOLOGY NODE - NEXT TECHNOLOGY NODE), MEASURING APPROXIMATELY 30% VARIATION.

Fig. 2. Circuit schematic for retention time simulation.

encountered by the 6T cell, and stands as a viable replacement
option for transient, on-chip memory structures.

III. CIRCUIT MODELS

Architects rely on memory models to determine what kind
of memory structures they need to get desired performance.
For example, an L1 data cache requires fast access time but
can tolerate a low retention time, but an L2 or L3 cache
needs a higher retention time and can tolerate slower access
times. Each of these performance targets calls for different
transistor sizing and array structuring, and models are essential
for figuring out what exactly these targets are. There already
exist many different models to help designers understand 6T
SRAM cell arrays (e.g. CACTI [2]). Thus, if architects are
to really consider 3T1D as a potential replacement for 6T
structures, performance models are need to estimate 3T1D
performance within architectures.

Our performance model consists of two components: a
retention time model, which gives the time it takes for the
storage node in an individual 3T1D cell to decay to Vdd/4,

and an access time model, which gives the time it takes to
perform a single read in the array. We do not model writes,
as we consider reads to be the worst-case delay.

We perform Monte Carlo simulation using HSPICE to get a
large sample of timing data across the different input param-
eters of Table I. The 3T1D model is intended for chip-level
memory hierarchy design and, therefore, estimate performance
from high-level design parameters such as the number of word-
lines and bitlines. However, given the challenges of technology
scaling, architects must also incorporate low-level parameters
for environmental conditions (temperature, voltage), device
parameters (transistor sizes), and variations in all of the above.
We take transistor sizes as proxies for device variations and do
not model threshold voltages, which could also be included.

A. Retention Time Model
Our retention time model calculates the retention time for

an individual 3T1D cell, given the following input parameters:
supply voltage, temperature, and expected variation expressed
in terms of transistor sizes. We define retention time as the time
required for the storage node in the cell to decay to Vdd/4 after
a 1 has been written to the cell. Such understanding allows
architects to better identify refresh policies or invalidation
schemes necessary for their array.

To generate the retention model, we conduct Monte Carlo
simulations of a 3T1D cell using HSPICE, randomly varying
input parameters and measuring the cell’s retention time.
Figure 2 shows the schematic for the simulated circuit. It
consists of a single 3T1D cell, connected to simple precharge
and driver circuitry as appropriate. Wire parasitics are deter-
mined using standard recommendations from the Predictive
Technology Models (PTM) [9]. Driver circuitry was sized to
produce a fanout-of-four delay, and all input signals were
shaped appropriately. To simulate this circuit, we write a 1
to our cell, wait for the value of the storage node to decay
past Vdd/4, and report this value.



(a) Schematic of wordline circuit

(b) Schematic of cell and local bitline circuit

(c) Schematic of global bitline circuit

Fig. 3. Circuit schematic for access time simulation.

B. Access Time Model

The model calculates access time for an individual 3T1D
cell in an array, given the following input parameters: Vdd,
temperature, wordline length, local bitline length, global bit-
line length, time elapsed between write and read, and expected
variation expressed in terms of transistor sizes. We define
access time as the time required to perform a single read when
a 1 has been written to the cell. We consider this read to be
the worst case operation of the cell; modeling this read is
sufficient to describe the expected performance from a cell.

We adopt an array structure similar to that of the IBM
Power6 SRAM arrays, with hierarchical bitlines and no sense
amplifiers (often referred to as a domino sense scheme) [11].
This structure is better suited for high frequency operation,
typical for 3T1D cells. We also chose a compositional ap-
proach to this model, breaking the array into three separate
pieces: (1) wordline, (2) cell and local bitline, and (3) global
bitline. We model the delay of each piece separately. This
compositional approach is more practical for empirical mod-
eling, as users will want varying combinations of wordline
and bitline lengths and modeling every combination of these
lengths would be intractable. To get the delay for the entire
array, we only need to compute the delay through each of
these paths and add them together.

To generate the access time model, we conduct Monte Carlo
simulations using HSPICE for the three separate pieces. The
schematics for each of these components are shown in Figure
3. The wordline circuit (Figure 3a) consists of a simple driver,
which is composed of a NAND and NOR gate, and a chain
of “dummy” wordline cells, which consist of a single access
transistor and the appropriate wire parasitics. The NAND and
NOR gates are sized to have a fanout-of-four delay. The local
bitline circuit (Figure 3b) consists of a single 3T1D cell, where
the read and write bitlines are connected to a chain of dummy
bitline cells, which consist of a single access transistor and
wire parasitics. The end of the read bitline is connected to
circuitry that activates the global bitline. The global bitline
circuit (Figure 3c) consists of a precharge transistor, a select
transistor that turns the bitline on, a chain of dummy bitline
cells, and an output driver.

To simulate these circuits, we consider a typical read op-
eration proceeding through the array and emulate this path in
each of the three circuits. In the wordline circuit, we measure
the propagation of a clock signal through a driver and chain of
dummy (i.e. access transistor only) cells. In the local bitline
circuit, we write a 0, write a 1, wait a given time interval,
and measure the delay between a read signal on the wordline
and the discharging of the last part of the local bitline. In the
global bitline circuit, we measure the propagation of a signal
through a chain of dummy bitline cells and an output driver.

C. HSPICE Simulation Results

Figure 4 presents representative scatter plots of Monte Carlo
HSPICE simulations used to construct regression models. We
observe a wide range of retention times and delays from the
space of parameters in Table I, which highlight the challenges
for empirical modeling. Retention times span a range between
zero and three microseconds. Figure 4a indicates three discrete
segments in wordline delays for our 1000 Monte Carlo trials.
These segments indicate three different delay regions, which
we find correspond to array configurations with 128 wordlines,
64 wordlines, and fewer than 32 wordlines; the number of
wordlines is the most significant determinant of wordline
delay. We use this Monte Carlo data to construct empirical
regression models, which predict retention times and delays



Fig. 4. HSPICE Monte Carlo simulation results.

as a function of memory parameters and serve as surrogates
for detailed HSPICE simulations.

IV. REGRESSION MODELS

Regression models are empirically derived equations that
express a response as a linear combination of predictors. In
computer engineering, such models are often used as computa-
tionally efficient surrogates for detailed microarchitectural or
circuit simulation [3], [5]. In this paper, we simulate 3T1D
circuits to train regression models that estimate performance
as a function of input parameters. Thus, we combine the detail
of HSPICE data with empirically derived regression equations,
simultaneously achieving accuracy close to HSPICE simula-
tion and speed similar to that of purely analytical approaches.
Without regression models, traditional Monte Carlo circuit
simulations are far too slow for microarchitectural design
space exploration.

A. Model Formulation

Notation. Suppose we have a set of n training observations
for which values of a response y = y1, . . . , yn and predictors
xi = xi,1, . . . , xi,p, i ∈ [1, n], of that response are known.
Let β = β0, . . . , βp denote regression coefficients used in
describing the response as a linear function of predictors
plus a random error εi as shown in Equation (1). F and G
are non-linear transformations to capture non-linearity and
improve model fit. The errors εi are independent random
variables with zero mean and constant variance. Least squares
is commonly used to identify the best-fitting model for the
training observations.

F (yi) = G(Xi)β + εi (1)

In this work, 3T1D retention and access times are the
responses. We construct four separate regression models: (1)

Fig. 5. Association between local bitline access time (sec) and device
parameters (number of local bitlines and device lengths (m)) as reported by
Monte Carlo simulations. Device lengths are grouped into four intervals and
average access time across Monte Carlo simulations within each interval are
plotted.

retention time, (2) wordline delay, (3) local bitline delay, (4)
global bitline delay. These models are trained with HSPICE
simulations of circuits in Figures 2–3. Predictors of these
responses are the parameters of Table I.

Predictor Interactions. In some cases, the effect of two
predictors x1 and x2 on the response cannot be separated;
the effect of x1 on y depends on the value of x2 and vice
versa. This interaction may be modeled by constructing a third
predictor x3 = x1x2 to obtain y = β0 + β1x1 + β2x2 +
β3x1x2 + εi. We specify these interactions using domain-
specific knowledge. For example, devices D1 and T2 of the
3T1D cell in Figure 1b likely interact to affect the local bitline
delay. T2’s ability to discharge the bitline is determined by the
boosting effect, which depends on the size of D1.

Non-Linearity. As illustrated by the non-linearity of Figure
4 in Section III-C, our regression models must capture discrete
segments or non-linear trends. We use cubic splines to model
non-linearity. Splines are piecewise polynomials, dividing the
fitted function into intervals and fitting different polynomials
to each interval. Splines of higher order polynomials may
offer better fits and cubic splines have been found particularly
effective [4], [5].

We determine the number of intervals based on a pre-
dictor’s significance. If a predictor is highly correlated with
the response, we use a greater number of intervals because
modeling the predictor’s non-linearity is likely more important
to overall model accuracy. Less significant predictors will
use fewer intervals. This link between significance and spline
intervals requires exploratory data analysis to identify strong
associations and correlations during model derivation.

Figure 5 illustrates an association analysis for local bitline
access times. The scatter plots reveal strong monotonic trends



Fig. 6. Box plot of error rates for regression model.

for the number of local bitlines (nLBL) and T3 length (T3L)
and a weaker trend for T2 length (T2L). There is no obvious
relationship between access times and devices T1 or D1. We
reconcile these trends with domain-specific knowledge. Access
times depend on the speed at which transistors T2 and T3
discharge the bitline, which depends on transistor sizes. Access
times also depend on bitline parasitics, which are affected by
the number of connected access transistors. We use a larger
number of spline intervals for nLBL, T3L, and T2L given
their significance, providing model flexibility to capture trends
likely important to predictive accuracy.

B. Fit and Accuracy

We collect 1000 Monte Carlo HSPICE simulations, using
800 for training and reserving 200 for validation. The R2

statistic quantifies fit to training data with R2 → 1 indicating
a better fit. The retention time model achieves R2 = 0.95.
For components of the access time model, we observe 0.93 <
R2 < 0.98. Thus, we observe good fit to training data.

For non-training data, Figure 6 illustrates error distributions
for model predictions on the 200 independent validation
points. These plots illustrate quartiles (horizontal lines), dis-
persion (vertical lines), and outliers (circles). The performance
model is comprised of the retention time model (RT) and the
access time model, which is further comprised of wordline
(WL), local bitline (LBL), and global bitline delays (GBL).

Retention time is predicted with a median error of 7.39%.
Wordline delays are predicted with a median error of 1.01%,
the lowest of models presented. These low errors are likely
due to the smaller number of predictors used to estimate the
response (Table I). Global bitline delay is estimated with a
median error of 8.65%.

We construct multiple local bitline delay models with an
overall median of 6.65%. Each model predicts delay for a
particular time elapsed between write and read. In Figure 6,
LBL1 estimates delay for reads that occur immediately after
a write. LBL2, LBL3, and LBL4 estimate delays for reads
that occur 20ns, 40ns, and 60ns after the write, respectively.
Models for other access times were constructed with similar

accuracy and we present these four representative models for
illustrative purposes.. To combine these separate LBL models
into an integrated model and to predict delays for elapsed times
not explicitly modeled, we interpolate between predictions
from models capturing adjacent points in time.

Across all models, we observe a median error rate of 7.39%.
Such error rates are likely sufficient for early stage design
optimization. Should designs need greater accuracy later in
the design process, additional HSPICE simulations and model
refinements might be applied.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a performance modeling methodology
for 3T1D memories. Models are constructed empirically using
detailed HSPICE simulations made tractable by breaking the
simulated circuit into smaller parts of the read critical path.
Spline-based regression on HSPICE training data provides
equations to quickly estimate performance metrics. Such mod-
els are a necessary tool if computer architects are to success-
fully implement 3T1D memories and effectively combat the
effects of process variation on memory performance.

In the future, we might apply spline-based regression to a
number of different memory cells, including 6T, 2T, and 1T1C.
We might also use these models to build up models for higher-
level structures, like L1 caches or register files. These models
might be integrated into simulators or other pieces of software
that need information about memory performance. This project
provides a powerful proof-of-concept for a promising method-
ology, opening the doors to many new avenues of research.
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