Towards Energy-Proportional Datacenter Memory with Mobile DRAM

Krishna Malladi¹ Benjamin Lee²

Frank Nothaft¹ Christos Kozyrakis¹

Karthika Periyathambi Mark Horowitz¹

Stanford University¹

Duke University²

Outline

Inefficiencies of server DRAM systems

- Mobile DRAM
- Evaluation

Outline

Inefficiencies of server DRAM systems

- Mobile DRAM
- ► Evaluation

Server DRAM systems

- Server power main energy bottleneck in datacenters
 - PUE of $\sim 1.1 \rightarrow$ the rest of the system is energy efficient
- Significant main memory (DRAM) power
 - 25-40% of server power across all utilization points
 - ▶ Low dynamic range \rightarrow no energy proportionality
 - Power hungry active-idle and power-down states

DDR3 energy characteristics

DDR3 optimized for high bandwidth (1.5V, 800MHz)

- On chip DLLs, on-die-termination
- 70pJ/bit at 100% bus utilization with 40% static cost
- Increases to 260pJ/bit at low datarates due to static power

LVDDR3 alternative (1.35V, 400MHz)

- Lower voltage \rightarrow Higher on-die-termination
- Still disproportional at 190pJ/bit
- Need memory systems that consume <u>lower energy</u> and are <u>proportional</u>
 - What metric can we trade for efficiency?

Workloads in datacenters

Web-search and map-reduce

- CPU or DRAM latency bound in stress-test and in-the-field measurements ^{[2][3][4]}
- At peak load, need < 6% DRAM bandwidth ^[2]

Memory caching, DRAM-based storage, social media

- memcached and RAMCloud
- Overall bandwidth limited by network (<10% of DRAM bandwidth)

Datacenter DRAM needs

- ✓ Low latency
- ✓ High capacity
- ✓ High reliability
- × High bandwidth

• Our focus: tradeoff bandwidth for energy efficiency & proportionality

[2] Kozyrakis et al, "Server Engineering Insights for Large-Scale Online Services", IEEE Micro 2010
[3] Ferdman et al, "Clearing the Clouds", ASPLOS 2012
[4] Tang et al, "The impact of memory subsystem resource sharing on datacenter applications", ISCA 2011

Outline

Inefficiencies of server DRAM systems

- Mobile DRAM
- Evaluation

Mobile DRAM characteristics

Technology Parameter	DDR3	LPDDR2
Timing (tCAS, tRAS, tRC)	15, 38, 50ns	15, 42, 57ns
Active current (Read, Write)	180, 185mA	210, 175mA
Idle current (Powerdown, Standby)	35, 45mA	1.6, 23mA
Powerdown exit latency	24ns	7.5ns
Operating voltage	1.5∨	1.2V
Typical operating frequency	800MHz	400MHz
Device width	8	16

- Same core as DDR3 devices
 - Same capacity per device , same access latency, same active currents
- IO interface optimized for very low static power
 - Including faster powerdown modes, no termination
- Same chip bandwidth
 - Wider interface operating at slower clock rate

8

LPDDR2 advantages

- Energy proportional
- Energy efificient ~ 40pJ/bit
 - 2x to 5x reduction over DDR3

LPDDR2 disadvantages

- Channel bandwidth
 - Pin bandwidth is 2x lower \rightarrow halves peak datarate per rank
 - Datacenter workloads require lower bandwidth
- System capacity ?
 - Not optimized for multi-chip modules or multi-rank channels
 - Inter-symbol interference (ISI) due to electrical loading
 - Datacenter workloads require high memory capacity
- Reliability ?
 - ECC works best with x4 devices
 - Complicated or expensive with x16 devices
 - See paper for details

Building capacity with LPDDR2

Key problems

- Wide interface \rightarrow limits # devices in parallel in a 64-bit channel
- No termination \rightarrow limits # devices in series due to ISI

Basic memory package

- Commodity LPDDR2 devices stacked (edge bonded)
- Four 2Gb x16 chips \rightarrow 8Gb x32 package
- Two devices share Chip Select

High capacity LPDDR2 module

- Minimize ISI by getting stubs close together (single point load)
- Dual Line Package (DLP) module
 - Mirrored connected with on-board vias
 - ► Four 8Gb x32 packages \rightarrow 32Gb x64 module
 - Striped ranks to minimize stub distance
- No changes needed to LPDDR2 controller

High capacity LPDDR2 channel

Key problem

- More modules per channel \rightarrow more ISI, degraded operation
- Load Reduced (LR) LPDDR2 channel
 - Introduce buffer to limit load on channel (similar to LRDDR3)
 - > 2x DQ and 4x CA lines to provide device isolation
 - Two 32Gb x64 modules \rightarrow 64Gb x64 channel

Signal integrity validation

- Signal integrity for the proposed LPDDR2 channel
 - Using SPICE and models for board traces, wire bonds, devices, connectors
 - I.5V, 800Mbps PRBS
 - > 2pF ESD cap, 2nH wire-bond
 - Industrial buffer models
- Hardest links have open eyes
 - Good time and voltage margins
 - More devices would close the eye

Outline

Inefficiencies of server DRAM systems

- Mobile DRAM
- Evaluation

D

Methodology

Workloads

- Websearch at peak throughput
 - 30GB Wikipedia dataset, 500 top queries
- Memcached at peak throughput
 - Access to key, value pairs with 100B and 10KB values
 - Zipf popularity distribution with exponential inter-arrival times
- SPECJbb, SPECPower, SPECWeb
- Multiprogrammed SPEC CPU2006, OMP2001, PARSEC

System Architecture

- 8 OoO Nehalem cores at 3GHz, with 8MB shared L3 cache
- 2 memory channels: I 6 GB capacity using 2Gb DDR3, LPDDR2 chips
- Validated Pin-driven simulator

Datacenter workloads

5-6x lower DRAM power

- Low active-idle states
- Very low power down state
- No static termination
- Fewer active devices/access

 Negligible performance impact

Other applications

TCO sensitivity to cost of LPDDR2 modules

	Xeon + DDR3 (8 cores)		Xeon + LPDDR2 (8 cores)	
	Cost (\$)	Power (W)	Cost (\$)	Power (W)
Processor (2 socket)	760	125	760	125
Motherboard	200	30	200	30
Network Interface	0	5	0	5
Memory (32GB/2-sockets)	600	40	775	10
Storage (HDD)	100	10	100	10
Total	1660	210	1835	180
No. of Servers (X 10 ³ , in 15MW)	70		83	
TCO (in \$ per sever per month)	\$86.4		\$86.4	
Capability	1.0		1.2	

- Equal cost per server analysis
 - Based Hamilton's TCO model and Reddi et.al Bing analysis
- Can tolerate up to 30% price premium for LPDDR2 modules initially
 - Will drop as LPDDR2 modules get commoditized
- LPDDR2 improves datacenter capability by 20%

Combining energy efficient memory + processors

	Xeon + DDR3 (8 cores)		Atom + LPDDR2 (16 cores)	
	Cost (\$)	Power (W)	Cost (\$)	Power (W)
Processor (2 socket)	760	125	360	25
Motherboard	200	30	1340	3
Network Interface	0	5	0	5
Memory (32GB/2-sockets)	600	40	775	10
Storage (HDD)	100	10	100	10
Total	1660	210	2575	53
No. of Servers (X 10 ³ , in 15MW)	70		283	
TCO (in \$ per sever per month)	\$86.4		\$86.4	
Capability	1.0		4.0	

Similar equal cost per server analysis

- Similar results for other energy efficient processors (e.g., ARM)
- Can tolerate premiums for LPDDR2 modules, Atom boards
- LPDDR2 + Atom improves datacenter capacity and throughput by 4x
 - Note: simple cores can slowdown latency-critical queries

Other conclusions (see paper)

- Reliability
 - Options for ECC with x16 devices
 - \Box Virtualized ECC
 - Chipkill
 - Tradeoff between parity overhead and energy efficiency
- Implications to on-chip cache hierarchy
 - Improved DRAM energy efficiency magnifies LLC static power
 - Question: how big should the LLC be?
 - $\hfill\square$ Tradeoff: reduced execution time Vs. increased static power
 - Introduce AMAE metric similar to AMAT to guide analysis

Conclusions

- DDR3 memory systems
 - Energy inefficient and disproportional due to high static power
- Datacenter workloads have low memory BW requirements
 - Low bandwidth utilization at 100% load (typical load ~30%)
 - DDR3 ill suited for these workloads
- LPDRR2 memory systems
 - Tradeoff peak BW for energy efficiency
 - 4-5x lower DRAM power and energy proportional
 - High capacity using die-stacking and buffered channel
- Datacenter implications
 - Significant capacity improvement even with higher cost modules

Thank you for your attention! Questions?

ktej@stanford.edu

Optimizing caches

- Last level cache sizes & leakage
 - Need joint optimization of L3 static and DRAM powers

Average memory access energy (AMAE)

- Quantifies energy efficiency
- $AMAE_{L(i)} = Ed_{L(i)} + Es_{L(i)} + MR_{L(i)} AMAE_{L(i+1)}$
- Accounts for static and dynamic

Mobile DRAM characteristics

Technology Parameter	DDR3	LPDDR2			
Static					
Idle current (power-down, standby)	35, 45mA	1.6, 23mA			
Powerdown exit latency	24ns	7.5ns			
Operating voltage	1.5V	1.2V			
Typical operating frequency	800MHz	400MHz			
Typical device width (pins)	8	16			
Dynamic					
Timing (CAS, RAS, RC)	15, 38, 50ns	15, 42, 57ns			
Active current (read, write)	180, 185mA	210, 175mA			
Energy per bit (peak, typical)	70, 160 mW/Gbps	40, 50 mW/Gbps			

LPDDR2 Device

- Similar core, optimized IO interface for very-low static power
- Similar capacity (ex: 2Gb), chip bandwidth using wider parts
- Similar timing and dynamic energy currents

System capacity

- Key idea
 - Minimize stubs by getting close to single point load
 - Maximize # devices while keeping reliable link margins

Basic block

- LPDDR2 commodity packages
- Edge bonded, four x16 2Gb devices

Dual Line Package (DLP)

- Mirror packages with on-board vias
- > 2x more load per 16-bit trace

Channel interface

- Stripe ranks to minimize stubs
- Four x16 traces \rightarrow x64 to controller
- No change on controller

4GB/Channel

High Capacity LPPDR2 Channel

- More packages/channel \rightarrow More devices/load \rightarrow Degrade SI
- Load Reduce (LR) buffer per channel
 - > 2x DQ and 4x CA duplicate lines provide device isolation
 - Doubles capacity to 8GB

