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ABSTRACT

To increase datacenter energy efficiency, we need memory systems
that keep pace with processor efficiency gains. Currently, servers
use DDR3 memory, which is designed for high bandwidth but not
for energy proportionality. A system using 20% of the peak DDR3
bandwidth consumes 2.3× the energy per bit compared to the en-
ergy consumed by a system with fully utilized memory bandwidth.
Nevertheless, many datacenter applications stress memory capac-
ity and latency but not memory bandwidth. In response, we archi-
tect server memory systems using mobile DRAM devices, trading
peak bandwidth for lower energy consumption per bit and more ef-
ficient idle modes. We demonstrate 3-5× lower memory power, bet-
ter proportionality, and negligible performance penalties for data-
center workloads.

1. INTRODUCTION

Energy efficiency and proportionality are major challenges in mod-
ern datacenters because they impact cost and scalability [3]. Recent
advances have eliminated most inefficiencies in power delivery and
cooling; new datacenters have a Power Usage Effectiveness (PUE)
around 1.10. The main focus for efficiency is now the tens of thou-
sands of servers. Processor energy efficiency and proportionality
have improved significantly over the years, benefiting from low-
power circuits, dynamic voltage-frequency scaling, and power gat-
ing for unused cores. The use of simpler cores, heterogeneous cores
and specialized accelerators have the potential to further improve
efficiency [29, 38].

Unfortunately, efficiency and proportionality of server memory
systems have improved at a much slower pace. Memory accounts
for more than 25% of datacenter energy [15, 26, 28] and this per-
centage will increase as applications demand larger memory ca-
pacities for virtualized multi-cores and memory-based caching and
storage [40, 34]. All commercial servers use double data rate
(DDR) DRAM technology, which is optimized for bandwidth but
not necessarily for energy efficiency. To support channel band-
widths of more than 10GB/s, high-speed DDR3 interfaces consume
significant energy, even when memory is idle but in an active power
mode (i.e., “active-idle”). This results in energy-disproportional
memory systems. When bandwidth utilization is 20%, the energy
cost per bit is 2.3× the cost under full bandwidth utilization.

With such costs, DDR3 is highly inefficient for applications that
stress capacity and latency but have modest bandwidth require-
ments (§2,§3). For example, web search packs large indices in
memory but uses a small fraction of DDR3 bandwidth [23]. So-
cial networking uses thousands of servers for distributed mem-

ory caching, but network bandwidth (e.g., 10Gb/s) limits memory
bandwidth utilization [40].

To address the disproportionality of existing server memory sys-
tems, we turn to a technology originally designed for mobile plat-
forms: LPDDR2. Mobile-class memory addresses the energy ef-
ficiency challenges of server-class memory by forgoing more ex-
pensive interface circuitry. LPDDR2 provides the same capac-
ity per chip as DDR3 and similar access latency at lower peak
bandwidth. However, without on-die-termination and delay-locked
loops, mobile-class memory is susceptible to inter-symbol interfer-
ence, which poses significant design challenges for high capacity
memory systems. And with wider chips, we face challenges in
error correction. We address these challenges, presenting a new
architecture for LPDDR2 that is viable for servers and leads to en-
ergy proportionality without significant performance penalties for
datacenter workloads.

Our work makes the following contributions:

• Emerging Applications Analysis: We find that large data-
center workloads, from web search, social media to analytics
need high memory capacity but under-utilize bandwidth (§2).

• DRAM Energy Efficiency: For such emerging workloads,
we find that DDR3 idle and termination power lead to a
highly energy-disproportional memory system, measured in
energy per bit transferred (§3). To address this specific
DDR3 limitation, we turn to mobile-class memory, which
eliminates termination and reduces idle power (§4).

• Architecting LPDDR2 for Servers: We present new archi-
tectures for memory channels that include new package and
module designs. Our LPDDR2 architecture provides DDR3-
competitive capacity and good signal integrity despite a lack
of on-die termination and delay-locked loops. With our ar-
chitecture, we reduce main memory power by 3-5× without
significant performance penalties (§5–6).

• Vertically Integrated Evaluation: In addition to evaluating
memory efficiency, we examine the implications for proces-
sor cache capacity by analyzing average memory access en-
ergy (§7). Once main memory is energy proportional, the en-
ergy inefficiency of large, shared caches is evident. We also
assess implications for datacenter capacity by analyzing total
cost of ownership (§8). Using energy-efficient main memory
increases datacenter capability at the same total cost.

2. BACKGROUND

Memory and Server Organization. Memory systems organize
chips hierarchically (Figure 1). A DRAM chip is internally divided



Figure 1: Hierarchical DRAM organization in quad-socket platforms. Interconnected sockets each support 2-4 memory channels.
Each channel is populated with 1-4 slots that can hold Dual Inline Memory Modules (DIMMs) as dense as 4GB.

into multiple banks, which share I/O pins. Each chip has 4, 8 or 16
data pins, and N = 16, 8 or 4 chips are placed in parallel to create a
64b interface to a channel respectively. These N chips form a rank.
Multiple ranks share a channel that interfaces to a controller. Each
controller can manage several channels. Signal integrity limits the
number of ranks on a channel to four or less.

Modern servers use multiple processor sockets, each with in-
tegrated memory controllers. For example, Intel-Nehalem and
AMD-Barcelona processors have tri- and dual-channel DDR3 con-
trollers per socket respectively. Cores issue requests to any con-
troller via QuickPath or HyperTransport interconnects. These plat-
forms provision a requisite amount of memory capacity by populat-
ing DIMM slots on all channels. A typical dual-channel four-socket
Barcelona in datacenters, filling two DIMM slots per channel each
with two ranks comprising of 1Gb, DDR3-1600, x8 DRAMs chips
will give 32 GB total capacity and 102 GB/s peak bandwidth.

Datacenter Memory Requirements. Balancing processor com-
putation and memory bandwidth is a recurring optimization in sys-
tems design. Clearly, introducing more cores increases memory
traffic although the absolute traffic level depends on the applica-
tion [39]. Transaction applications such as TPC-C, TPC-H, and
SAP, perform few operations per data item, require up to 75GB/s
of memory bandwidth [52], and need the high bandwidth of DDR3.

However, emerging datacenter applications exhibit different ca-
pacity and bandwidth demands, which do not match the system
balance in existing server organizations. These applications stress
memory capacity and latency but not bandwidth. Such applications
include web search, MapReduce data analytics, and distributed
memory caching for social media. In web search, each server’s
web index is sized to fit in memory to achieve short query laten-
cies. Microsoft Bing uses 92% of a server’s memory capacity for
web indices but utilizes a tiny fraction of memory bandwidth [38].
Search threads are bound by memory latency as their data transfers
from the index are short and have no locality.

Microsoft Cosmos, a framework for large-scale data analytics
that is similar to MapReduce and Hadoop, under-utilizes memory
bandwidth since analyses are often either compute-bound or lim-
ited by network bandwidth in a distributed storage system. Un-
der stress testing, Bing and Cosmos servers reach 67-97% proces-
sor utilization but only 2-6% memory bandwidth utilization [23].
Google Content Analyzer, BigTable, and web search similarly re-
quire substantial memory capacity but modest bandwidth. On a
dual-socket Intel Clovertown server, these applications have last-
level cache miss rates of less than 10K/msec, which translate into
0.6GB/s of memory bandwidth (less than 3% of peak) [45].

Another important datacenter workload with low bandwidth re-
quirements is social networking (e.g., Facebook, Google+, Twit-

ter, etc). To mitigate disk latencies, Facebook uses thousands of
servers to run memcached, an in-memory, distributed object storage
with 28TB of capacity. This caches 75% of all non-media data and
serves complex user requests in reasonable deadlines [40]. Projects
like RAMCloud take this approach one step further, replacing the
in-memory cache with a distributed, in-memory filesystem for uni-
formly fast data accesses [34]. Server memory for such frame-
works needs high capacity but sustains low bandwidth as memory
traffic is limited by network bandwidth. The peak bandwidth of a
10 Gbps Ethernet adapter and a DDR3-1600 memory system are
two orders of magnitude apart.

3. EXPERIMENTAL METHODOLOGY

We use an x86_64 execution-driven simulator based on a Pin front-
end [27, 41]. We use 8 out-of-order (OOO) cores at 3 GHz matched
with Intel’s Nehalem microarchitecture. Each core has a private 8-
way, 32-KB L1 data cache, an 8-way 256KB L2 cache. All the
cores share a 16-way associative 16MB L3 cache. Using Nehalem
model, the L1, L2, L3 latencies are set to 1, 7 and 27 cycles respec-
tively. An integrated memory controller models multiple channels
and standardized DRAM devices. We use a closed-page policy,
typical in multi-cores with low page locality[1]. Ranks use fast-
exit precharge power-down mode.

We study web search, which has a large memory footprint and
modest bandwidth requirements (§2) by deploying Nutch, an open-
source, Java-based web crawler and search engine. First, we index
Wikipedia pages to produce a 30GB dataset, which is distributed
across servers’ memories. We trace search engine memory activity
as the 500 most common Wikipedia queries arrive at the server’s
maximum sustainable query throughput.

We evaluate distributed memory caching, which has a large
memory footprint and modest memory bandwidth due to network
constraints. We deploy Memcached, which is an open-source
framework for distributed key-value stores in RAM. Hash func-
tions distribute data and load across Memcached servers. Memory
is broken into slabs of varying sizes and we consider 100B slabs
(Memcached.A) and 10KB slabs (Memcached.B). To exercise the
cache, we use a zipf distribution (parameter = 0.6) that models a
long tail and reflects Facebook popularity distributions [43].

We also evaluate more diverse workloads that might run
in virtualized, elastic clouds. We use SPECjbb2005 (jbb)
with 12 warehouses each with 25MB of transaction data and
SPECpower_ssj2008 (power) at the calibrated maximum sustain-
able transaction rate. SPECweb2005 (web) benchmarks a bank-
ing web server that uses Apache Tomcat. Finally, we consider 8-



Multi-Programmed Multi-Threaded Datacenter
Cache Fill B/W SPEC CPU 2006 SPEC OpenMP PARSEC
Low 416.gamess, 447.dealll, 453.povray, ammp, equake freqmine Memcached, Websearch

458.sjeng, 464.h264ref, 465.tonto, 481.wrf swaptions SPECweb
Medium 400.perlbench, 401.bzip2, 403.gcc, 434.zeusmp apsi, fma3d blackscholes, fluidanimate SPECjbb, SPECPower

435.gromacs, 436.cactusADM, 445.gobmk, 454.calculix, wupwise streamcluster
456.hmmer, 473.astar

High 433.milc, 437.leslie3d, 450.soplex, 459.GemsFDTD, 462.libquantum, applu, art canneal
470.lbm, 471.omnetpp, 482.sphinx3, 483.xalancbmk mgrid, swim

Table 1: Low, medium, high bandwidth applications, estimated from last-level cache miss rates.

Figure 2: Application memory bandwidth demand estimated from last-level cache miss rates with a fixed memory latency. Actual
sustained bandwidth is determined by DRAM internal timings and applications’ memory level parallelism (MLP).

way multi-threaded SPEC OMP2001 and PARSEC benchmarks as
well as 8-way multi-programmed combinations of SPEC CPU2006
benchmarks with each core running one copy/thread. (Table 1).

We follow the methodology used in prior memory studies [1,
47, 22, 8, 20]. We match the number of application threads or
processes to the number of cores. We fast-forward 10 to 20 billion
instructions to skip warm-up and initialization stages and focus on
memory behavior in steady state, which is consistent with prior
architectural evaluations of enterprise workloads [52]. To model
the distribution of activity across channels, ranks, and banks, we
emulate virtual to physical address translation.

3.1 Workload Validation

We compare the bandwidth requirements of our workloads, as
shown in Figure 2, against independently reported measurements.

Nutch. Production search engines (e.g., Microsoft Bing) require
less than 6% of peak memory bandwidth [23]. Commercial servers
have tri-channel DDR3 with peak bandwidth of 32-39 GB/s. At
6% of peak, search would require 1.9-2.3 GB/s. We use VTune to
characterize Nutch on indexed Wikipedia; it consumes 752 MB/s
per thread on a Xeon X5670 system and 180 MB/s per thread on
an Atom Diamondville. The former measurement suggests that our
simulated 8-core system might scale Nutch bandwidth demand to
6.0 GB/s. But contention for shared multiprocessor resources re-
duces memory demand. Our Nutch simulations indicate 1.8 GB/s
of utilized bandwidth, which is consistent with real system mea-
surements for both Bing and Nutch.

SPECjbb, power, web. Jbb requires 6 GB/s on a server with
four quad-core Intel Core-2 Duo processors [44]. In our environ-
ment, jbb requires about 10 GB/s. Power calibrates transaction
rates to the platform’s capabilities, which leads to differences in
bandwidth demand on each system. On an IBM JS12 blade with a
dual-core Power6, power uses 30% of peak bandwidth [13], which

is 6 GB/s since Power6 has a dual-channel DDR3-1333 system with
peak bandwidth of 21 GB/s. Our own VTune measurements for
power on a four-core Intel Xeon E5507 show 1.2 GB/s. In our
simulations, power requires 2.5 GB/s. Finally, web exhibits low
L2 miss rates and does not exercise memory in Simics full-system
simulation of a SPARC V9 system [4]. Our web simulations show
a requirement of 0.3GB/s.

SPEC-OMP, SPEC-CPU, PARSEC. Our multi-threaded appli-
cations require up to 21GB/s and the multiprogrammed workloads
require up to 24GB/s of main memory bandwidth. These numbers
are consistent with similar workload deployments in prior studies
[1, 22, 8, 47]. While there are some differences in the specific
bandwidth numbers, the cross-validation indicates that we correctly
identify applications with low, medium, and high bandwidth de-
mand, which stress memory.

3.2 Memory Bandwidth Demand

Architects choose the channel count to match either the memory
capacity or the bandwidth demanded by applications of interest.
We start with a dual-channel 16GB DDR3-1600 system using 2Gb
parts (Table 2). If higher capacity is needed, system architects
may deploy more channels. However, adding channels will also
increase a socket’s memory bandwidth. For applications with low
to medium bandwidth demand, adding channels allow us to reduce
per channel bandwidth and improve energy-efficiency without af-
fecting performance.

To trade peak bandwidth for energy efficiency, we need to un-
derstand application sensitivity to bandwidth. For the dual-channel
DDR3-1600 baseline, 1 Figure 3 characterizes application perfor-
mance penalties as channel frequency are scaled down for vari-
ous processor scenarios. Confirming prior studies, most datacenter

1DDR3-1600 operates at 800MHz in a double data rate manner.



Figure 3: Application bandwidth sensitivity measured by performance penalties for various channel frequencies relative to DDR3-
1600. Shown for Out-of-order/In-order cores with 2 channels. Groups refer to Table 1. Note change in Y-axis scale.

workloads do not fully exploit peak bandwidth [4, 13, 23]. Only
SPECjbb incurs a 15% penalty and only after bandwidth has been
throttled by 60%. Similar tradeoffs are observed for out-of-order
and in-order core systems. Four channels further reduce already
modest penalties, indicating that high-capacity, multi-channel sys-
tems over-provision bandwidth.

4. IMPROVING MEMORY EFFICIENCY

DDR3 Inefficiency. DDR3 dissipates approximately 1-1.5W/GB
on average [33], and approximately 2.5W/GB at peak [14]. Our ex-
periments produce numbers in these ranges. Variations in activate,
read, and write power reflect differences in channel activity. The
cost of over-provisioned DDR3 bandwidth is primarily the power
dissipated when idle, which often dominates the total.2 This power
is required to keep high-speed interfaces active. Despite using per
rank power-down modes, idle and termination power is nearly 40%
of the total power in an active memory system. The latter includes
ranks’ static power during the active period for a different rank on
the same channel. These overheads mean that DDR3 technology
is most efficient at high utilization, where these overheads can be
amortized over many data transfers. At lower utilization (i.e., few
transfers), energy proportionality is poor. This analysis is detailed
in Figure 9(a) and Figure 10(a).

LVDDR Limitations. Because static power overheads from
high-performance interfaces are the problem, simply scaling volt-
age and frequency often have a negative impact. For example,
LVDDR3 operates at 1.35V and link-speeds of 400, 533, and
800MHz. However, LVDDR3 termination power per pin is 20%
higher than that of DDR3, which reflects the challenge of ensuring
signal integrity at lower operating voltages. At low channel uti-
lization, such static power increases the energy per bit transferred
and harms energy proportionality. LVDDR3-800 is the best low-
power alternative to DDR3, over LVDDR3-1600 at low utlizations.
However, for our workloads, LVDDR3-800 dissipates an average
of 11.8W of which 68% is static power and independent of fre-
quency (Figure 9(a) and Figure 10(a)). Thus, we must address high
static power in memory interfaces.

LPDDR2 Opportunities. In contrast to server DRAM, memory
designed for mobile platforms has been optimized for low energy
264ms DRAM refresh periods are too infrequent to impact power.

Figure 4: Energy per bit (mW/Gbps = pJ/bit) with varying
channel utilization. Assumes four ranks per channel and 3:1
read to write ratio. DDR3 is x8-1600 (Peak BW = 12.8GB/s).
LPDDR2 is x16-800 (Peak BW = 6.4GB/s).

costs per bit transferred. Examples include LPDDR2 and mobile
XDR. By eliminating expensive delay-locked loops (DLLs) and
on-die termination (ODT) from the chip interface, mobile mem-
ory addresses the largest source of inefficiency in server memory:
idle and termination power. However, without DLLs and ODT,
LPDDR2 complicates architecting server systems for capacity and
signal integrity. DDR3’s link speed (and channel bandwidth) is
twice that of LPDDR2.

LPDDR2 chips have more I/O pins since individual memory
chips, not modules, are deployed in mobile platforms. Wider
LPDDR2 can use fewer chips to supply the same number of bits
for a channel, which may improve power efficiency [51, 7, 10, 53]
but it complicates error correction (§5.4). We quantify LPDDR2
efficiency and then address these challenges (§5).

On the other hand, mobile and server memories share the same
memory core architecture and, thus, have similar timing parame-
ters. Table 2 presents timing parameters for a column access (tCAS),
for a row access (tRAS), and for the length of a read cycle (tRC) [21].
LPDDR2’s lower voltages may increase latencies but these differ-



ences are small.
While LPDDR2 active standby and powerdown are significantly

lower than those of DDR3, LPDDR2 has higher read-write currents
compared to the latest DDR3 revision. We calculate memory power
[31] and divide by memory bandwidth to determine energy per bit
transferred. Figure 4 illustrates energy proportionality, plotting en-
ergy per bit as a function of bandwidth utilization.

DDR3-1600 has a peak bandwidth of 1.6 Gbps per pin. How-
ever, these pins use a lot of energy. At high channel utilization,
interface energy is amortized over more transferred bits, reducing
energy per bit. With 100% channel utilization, DDR3 requires 70
pJ/bit; 30% and 10% of this energy is background and termination,
respectively. These I/O overheads are incurred even when the chip
is idle but in active power mode. Such active-idle power is particu-
larly evident under more typical 20% utilization where background
and termination energy is amortized over less work. At low sus-
tained channel bandwidth, say 1.28GBps, energy per bit increases
by 3.7× to 260 pJ/bit. While LVDDR3-800’s energy per bit is bet-
ter than that of DDR3-1600 at these low utilizations by 1.4×, it is
still high at 190 pJ/bit since it halves bandwidth in exchange for
modest power savings.

In contrast, mobile memory is energy proportional; energy per
bit is flat as utilization varies. At peak and typical utilization,
LPDDR2 consumes 40 and 50pJ/bit, respectively. Compared to
DDR3 and LVDDR3 at low utilization (e.g., 20%), LPDDR2 sees a
4-5× energy reduction in exchange for 2× lower peak bandwidth.
For applications with modest bandwidth demands, this is a good
trade-off.

5. ARCHITECTING MOBILE DRAMS

While §4 shows the potential efficiency of LPDDR2 in servers,
we must address several significant challenges posed by its power-
efficient interfaces. First, non-terminated LPDDR2 memory chips
increase vulnerability to inter-symbol interference, which compli-
cates the design of high-capacity memory systems [42]. Second,
wide LPDDR2 chip interfaces may increase error correction costs.

To address these issues, we present a new channel architecture
using commodity LPDDR2 devices. We combine board design
with stacked dies to obtain DDR3-competitive capacities with good
signal integrity. To further increase capacity, we present a new
module architecture for LPDDR2, which draws lessons from regis-
tered/buffered DDR3. We can also scale channel and socket counts
[2, 11]. Finally, we describe error correction for this system.

5.1 Channel Architecture

LPDDR2 devices are edge-bonded, making them suitable for ca-
pacity stacking; mass manufacturing four-stacked LPDDR2 dies is
already viable [32]. Figure 5(a) shows a Micron LPDDR2 dual-
rank package with four LPDDR2 dies, the basic block of our ar-
chitecture. However, its capacity is limited to 1GB/channel and is
not acceptable for high-capacity server memory. To increase ca-
pacity, we can architect a given capacity with some combination
of channels and packages per channel. With fewer channels and
more packages per channel, the system becomes less expensive but
performance and signal integrity suffer.

Alternatively, we propose a new architecture called Dual-Line
Packages (DLPs). As shown in Figure 5, DLPs have LPDDR2
packages on both sides of a board. We stripe four ranks across
multiple packages with two chips from each package. Since two
devices share a Chip Select (CS) internally, we place them in the
same rank. The two sets of x16 bond-wires from a package are

multiplexed with the mirroring wires from the package on the op-
posite side of the board through an on-board via. Since each edge
on the via is x16, four such traces form the 64 bit output DQ bus.

As each package has only two devices from the same rank, only
two dies can have active column operations at a given time in the
package. Other active-idle dies dissipate very little power and en-
sure thermal constraints are satisfied. With four ranks, each with
2Gb x16 devices, we obtain a total capacity of 4GB on channel,
which is DDR3-competitive. As we apply memory-memory stack-
ing only and not memory-processor stacking, we avoid the thermal
and pin challenges of the latter.

5.2 Signal Integrity (SI)

To demonstrate feasibility, we analyze signal integrity. Lumping
DRAM dies together into a single package moves the impedance
discontinuity problem to the end of the link. Each DRAM I/O
pin presents a load on the bus, causing a small impedance discon-
tinuity and a reflection. Lumping these loads on the end of the
link makes the discontinuities and reflections larger. As load in-
creases, we will reach a point where the bus no longer functions.
We simulate SPICE models of the PCB transmission lines and the
bond wire inductance and the ESD/pad/driver capacitance associ-
ated with the DRAM package/pin (Figure 6). We model few energy
losses, which is generally a worst-case situation for reflections.

In Figure 6, the data eye diagrams for write data (controller to
DRAM) and read data (DRAM to controller), clearly show open
eyes in both directions, which means this type of communication
is possible. Write data is much cleaner than read data which is
expected. Consider link interfaces at the transmitter (i.e., memory
controller) and receiver (i.e., DRAM). During writes, the link is ter-
minated at the transmitter end, so the quality of the impedance near
the receiver is not that critical. Discontinuities at the receiver will
cause reflections, but these reflections travel back to the terminated
transmitter and are absorbed: none of these new reflections will be
able to reflect again and make it back to the receiver. Thus, even
though the large load affects impedance at the receiver, the received
signal for write data is good.

Read data looks worse since now the termination is on the trans-
mitting DRAM, and the reflected data at the cleaner controller side
is re-reflected back to the DRAM where it gets reflected back to the
controller. Fortunately by placing the DRAMs close together, their
reflections still leave a signal with good noise margins. The CA
bus operates at DQ speeds but is more heavily loaded. However,
CA communication is only in one direction (controller to DRAM),
somewhat alleviating signal integrity challenges. Thus, our simu-
lations indicate the feasibility of grouping four chips into a pack-
age and placing four packages onto a shared channel, despite using
non-terminated LPDDR2 dies.

5.3 System Capacity Strategies

The signal integrity analysis shows that stacked modules support
4GB per channel using 2Gb x16 LPDDR2 chips. To further in-
crease system capacity, we could add more channels. While some
applications would benefit from the parallelism of more channels
(Figure 3), many emerging applications do not. Additional chan-
nels also introduce complexity in controllers [2] and we cannot
tune capacity/bandwidth ratios since adding a channel simultane-
ously increases both capacity and bandwidth. This bandwidth over-
provisioning is less expensive for energy-proportional LPDDR2
than for DDR3 but it still requires pins and chip area. To solve
this problem, we increase LPDDR2 channel capacity with buffers.



DDR2 DDR3 LVDDR3 LPDDR LPDDR2
Technology Parameter [30] [31, 33] [31, 33] [21, 37] [35, 37]
Operating Voltage 1.8V 1.5V 1.35V 1.8V 1.2V
Operating Frequency 400MHz 800MHz 400MHz 200MHz 400MHz
Typical Device Width (pins) 4 8 8 16 16
Peak Channel Bandwidth (sequential) 6.4GBps 12.8GBps 6.4GBps 3.2GBps 6.4GBps
Dynamic
Timing (CAS, RAS, RC) 12, 40, 55ns 15, 38, 50ns 15, 38, 50ns 12, 40, 54ns 15, 42, 57ns
Active Current (read, write) 160, 160mA 180, 185mA 125, 130mA 130, 130mA 210, 175mA
Energy per bit (peak, typical) 111, 266mW/Gbps 70, 160 mW/Gbps 110, 190 mW/Gbps 110, 140 mW/Gbps 40, 50 mW/Gbps
Static
Idle current (power-down, standby) 50, 70mA 35, 45mA 22, 32mA 3.6, 20mA 1.6, 23mA
Min power-down period 84ns 90ns 90ns 20ns 20ns
Slow Powerdown Exit latency 20ns 24ns 24ns 7.5ns 7.5ns

Table 2: Memory technology comparison showing key latency and energy parameters for 2Gb parts.
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Buffers. To hold the number of channels constant and increase
channel capacity, we need to scale either module capacity or the
number of modules per channel. The former may be difficult due
to packaging constraints. For this reason, we increase the number
of modules per channel. But simply adding modules will overload
the shared channel and degrade signal integrity.

Following the example of Load-Reduced (LR) DDR3 DIMMs,
we propose buffered LPDDR2 DIMMs that buffer and re-time both
DQ and CA buses to ensure signal integrity. The buffer is posi-
tioned between the channel and DRAM chips. Chips and buffers
communicate via point-to-point links to ensure reliable communi-
cation even as capacity increases, reducing channel load and per-
mitting a larger number of stacked chips. Such buffers can double
LPDDR2 per channel at modest latency and pin cost.

Figure 7 illustrates our new LPDDR2 module architecture. The
buffer has 64 DQ and 14 CA pins on the input side. These pins
need to be duplicated to provide point-point links to the multiple
LPDDR2 packages on the board. To double channel capacity from
4 to 8GB without compromising signal integrity, the output DQ bus
needs to be replicated 2× while the CA bus needs to be replicated
4× due to its higher load. We use our new DLPs with packages on
both sides of the board. The capacity can now be scaled by having
multiple DLPs per channel since the buffer isolates the load on the
controller and enables multiple buffers per channel. Figure 8 shows
the SI simulations of the proposed 8GB architecture with 8 pack-
ages per channel. The signal and timing margins are all sufficiently
high for the controller-buffer and buffer-chip lines that allow for
reliable communication in the relevant directions.

The proposed load-reduced buffers’ static power overhead is
small since termination is not required for LPDDR2. However,
PLLs for clock re-timing incur a small active power cost. Regis-
tered DDR3 modules are very common in servers and LRDIMMs
are increasingly becoming popular. We envision that our architec-
ture for buffered LPDDR2 DLPs will be just as attractive, but with
excellent energy-proportionality.

5.4 Error Correction Strategies

Memory system designers have used Error Correcting Codes
(ECC) with Single Error Correction Double Error Detection
(SECDED) [47, 51] to detect and correct memory errors. These
techniques were originally developed for DRAMs with single bit
outputs, where SECDED would protect from chip failures as well,
and used 8 parity bits to protect a 64bit data word. This 72bit in-
terface has become a standard, and much work has been done on
protecting wider parts within this form factor. As the width of the
DRAM increased, Single Symbol Correct, Double Symbol Detect
codes were used, that could correct a multi-bit symbol, rather than
a single bit [5]. Using the B-adjacency algorithm, b bits can be pro-
tected through the use of two b-bit wide symbols [19]. While this
code uses more parity bits, it can be implemented in the same over-
head by protecting larger blocks of memory; percentage overhead
decreases as block size increases. These types of algorithms have
been used to protect DDR3 x4 devices using a block size of 128
bits, and have been extended to protect x8 devices.

The wide x16 LPDDR2 interface causes two challenges for ECC.
The first is due to quantization: 72 bits is not divisible by 16 and we
cannot naturally provide data using the standard memory interface.
The second is the larger number of bits needed to protect against a
loss of 16 bits. These challenges are similar to those in architectures
that access fewer chips for energy-proportionality [1, 47, 53], and
we leverage some of their techniques to address these issues.

There are four ways to deal with the quantization issue: make
x18 LPDDR2 DRAM, increase the overhead and create an 80/64
module, create a 144/128 bit channel, or embed the ECC data into
the memory space. While the first solution seems simple, it would
generate a different DRAM part type, which is expensive. Us-
ing x16 parts, we can either use one to protect four or eight other
DRAMs. In the former, we double the parity overhead, which in-
creases the cost of the memory by 12.5% but makes protecting from
chip-kill much easier. In the latter, we merge two channels into a
single channel with twice the bandwidth and larger block transfers.

The last option is to maintain a 64 bit interface and embed the
ECC into the memory space instead of sitting in disparate devices
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Figure 8: Signal Integrity analysis for Load-Reduce Buffers to increase channel capacity using LPDDR2 Package Modules. Figure
8(a) to Figure 8(e) show open eyes (for reliable communication) using On board buffer.

[53, 51]. The memory controller performs two accesses, one for
data and one for ECC. Embedded ECC does not require dedicated
chips for parity and is energy-efficient. However, memory system
capacity falls as ECC is embedded in the data space and memory
controller complexity increases as it must map ECC words. This
basic idea is quite flexible, and can support multi-tiered error cor-
rection [51], where the OS can determine which pages in memory
only need error detection (i.e., clean pages) and which need protec-
tion and correction. Furthermore, since errors are infrequent, the
correction data will be accessed infrequently, reducing overheads.
This approach is important for modern web applications that map
large, slowly changing datasets in their memories.

Thus, while LPDDR2 device width causes some challenges for
ECC, there are many ways these challenges can be addressed. In
our view, it seems likely that some form of multi-tiered error cor-
rection will be implemented in these systems, since they are likely
to support chip-kill with modest overhead.

6. EVALUATING EFFICIENCY

LPDDR2 is far more energy-proportional than DDR3 (§4) and this
section shows that LPDDR2 is also far more energy-efficient as it
reduces memory power with modest performance penalties.

Power. Using DLPs, we architect a 16GB LPDDR2 system
with two channels per processor socket. Relative to DDR3 of the
same capacity, LPDDR2 reduces memory system power by 3-5×
for our applications (Figure 9(a), Figure 10(a) versus Figure 9(b),
Figure 10(b)). Strikingly, LPDDR2 total power is often less than
DDR3 idle power. LPDDR2 also benefits from the fast power-
down modes that further reduce background power and that, un-
like DDR3, do not require slow DLL re-calibration. In addition
to these lower idle overheads, LPDDR2 dynamic power also falls
due to lower activate current and voltage and fewer chips per ac-
cess, which reduce the cost of activates, reads, and writes relative

to DDR3.
Datacenter benchmarks, such as websearch and memcached,

show significant power reductions due to their low bandwidth re-
quirements. Power falls from approximately 5W to well below 1W,
a 5-6× reduction. Other applications, with diverse memory behav-
ior, also save memory power. Multiprogrammed benchmarks show
a power reduction in the range of 3.3× for 482.sphinx3 to 16.8×
for 465.tonto. The savings are proportional to bandwidth, with an
average power reduction of 4.4× (Figure 2). Significant contrib-
utors to this reduction are very low active-idle states and a much
better power-down state. Active power is also lower because wider
LPDDR2 devices means fewer chips are accessed per cache line.
Similarly, multithreaded benchmarks show an average power re-
duction of 4.3× in a range of 3.3× for art to 18.8× for ammp.

Performance. Most applications realize significant power sav-
ings with modest performance penalties. Figure 10(b), Figure
9(b) show application time on an LPDDR2 memory system nor-
malized to that on a DDR3 memory system. For instance, the
performance of datacenter workloads like websearch, Memcached
and SPECJbb, SPECpower, and SPECweb is barely affected when
DDR3 is replaced by LPDDR2.

For conventional workloads (SPEC-CPU) multiprogrammed
mixes, and PARSEC, SPEC-OMP, the performance impact varies
from nearly zero for a majority of workloads to a worst case of
1.55x. Even when an application is stalled waiting for memory, it
may not have sufficient memory-level parallelism (MLP) to benefit
from additional sequential memory bandwidth. For example, art
is as a memory-bound application with low MLP. However, other
memory-bound workloads (e.g., swim) are impacted by the intro-
duction of LPDDR2. Note that any performance penalties arise en-
tirely from reduced bandwidth and not latency, which is unchanged
when adopting LPDDR2 over DDR3. The applications affected by
the lower LPDDR2 bandwidth generally have bursty cache misses
that introduce channel contention.



(a) DDR3-1600 and LVDDR3-800 power, performance. Circles
show LVDDR-800 performance penalties.

(b) LPDDR2-800 power, performance. See change in y-axis scale.

Figure 9: Datacenter, Multithreaded workloads with 16GB. Idle, termination power are significant in DDR3.

(a) DDR3-1600 and LVDDR3-800 power, performance. (b) LPDDR2-800 power, performance. See change in y-axis scale.

Figure 10: Multiprogrammed workloads with 16GB. x-axis label numbers correspond to Table 1.

Figure 11: DDR3 and LPDDR2 average memory access energy (AMAE) in nJ per memory instruction and average memory access
time (AMAT) in cycles per memory instruction. Shown for 4, 8, 6, and 32MB L3 cache sizes.



Xeon+DDR3 Atom+DDR3 Xeon+LPDDR2 Atom+LPDDR2
8-cores 16-cores 8-cores 16-cores

Cost ($) Power (W) Cost ($) Power (W) Cost ($) Power (W) Cost ($) Power (W)
Processor (2-socket) 760 125 360 25 760 125 360 25
Motherboard 200 30 1340 3 200 30 1340 3
Network Interface 0 5 0 5 0 5 0 5
Memory (32GB/2-sockets) 600 40 600 40 775 10 775 10
Storage (HDD) 100 10 100 10 100 10 100 10
Total 1660 210 2400 83 1835 180 2575 53
No. Servers (×103, in 15MW) 70 180 83 283
TCO ($ per server per month) $86.4 $86.4 $86.4 $86.4
Capability 1.0 2.5 1.2 4.0

Table 3: Define TCO-neutral price with Xeon+DDR3 baseline ($86). Atoms use TCO-neutral price for custom board ($1340).
Atom+LPDDR2 shows TCO-neutral price for mobile memory ($775 for 32GB). Capability quantifies data center throughput nor-
malized against Xeon+DDR3.

Mobile-class LPDDR2-800 performance effects are similar to
those in server-class LVDDR3-800. LVDDR3 lowers the volt-
age from 1.5 to 1.35V and also reduces channel frequency. Low-
ering the voltage reduces memory core power, but does not ad-
dress the inefficiencies of interface circuitry. Lowering the chan-
nel frequency also reduces power, but does not address static
power dissipated by interface circuitry. For the same perfor-
mance penalty, (e.g., iso-penalty LVDDR3-800 and LPDDR2-
800), LVDDR3 saves much less power. We cannot perform an
iso-savings comparison of performance because LVDDR3 cannot
match LPDDR2’s power savings.

7. PROCESSOR CACHE INTERACTIONS

Memory performance and power efficiency impact processor cache
architecture. To understand these effects, we introduce Average
Memory Access Energy (AMAE), which is analogous to the conven-
tional Average Memory Access Time (AMAT). AMAE provides a
way to evaluate new memory technologies by combining the effects
of dynamic and static energy in both processor caches and main
memory. Quantifying the average number of Joules per memory in-
struction, AMAEL(i) = EdL(i) + EsL(i) + MRL(i) × AMAEL(i+1).

Dynamic energy for accessing level i in the memory hierarchy
is denoted by EdL(i), the miss rate is denoted by MRL(i). EsL(i) is
the total static energy consumed during an application’s execution
amortized over the number of memory accesses. CACTI[16] esti-
mates cache energy, DRAMSim[49] estimates activate, read-write
energy, and Micron power calculators [31] estimate DQ energy.

In conventional wisdom, the high latency and energy of DRAM,
motivates larger processor caches that improve average memory ac-
cess time and energy. By reducing memory activity, caches also
increase opportunities for DRAM low-power modes while reduc-
ing the likelihood of memory contention. However, larger caches
dissipate more static power and are less effective for emerging ap-
plications (e.g., web search, memcached). Balancing benefits and
costs requires a holistic view with AMAE.

Figure 11 illustrates AMAE for a variety of L3 cache sizes. The
trade-offs between dynamic and static energy vary across appli-
cations, which are placed along the x-axis in order of decreas-
ing memory intensity. Accessing DDR3 is expensive and larger
caches mitigate its cost. AMAT falls with cache size, especially
for bandwidth-intensive applications. In contrast, the net change
in AMAE from larger caches is modest. The increased energy of
larger caches cancels, in large part, reductions in DRAM dynamic
energy (due to fewer accesses) and DRAM static energy (shorter
execution time).

Consuming less energy, LPDDR2 reduces AMAE when com-

pared to DDR3. Lower LPDDR2 energy also magnifies the impact
of static energy as L3 cache sizes increase. For many workloads,
increasing the cache size leads to flat or increasing AMAE. Al-
though larger caches reduce execution time, LPDDR2 is energy-
proportional and opportunities to further reduce memory static en-
ergy are small. On the other hand, larger caches introduce a new
problem in cache static energy. For AMAE, it is preferable to
pay the high dynamic energy accessing DRAM rather than rather
than continuously consume high static energy for a large L3. Most
importantly, perhaps, we illustrate an analysis framework and an
AMAE metric that allows architects to reason about emerging
memory technologies and their interactions with other layers in the
cache and memory hierarchy.

8. DATACENTER COST IMPLICATIONS

As servers adopt mobile hardware for efficiency, more of each dol-
lar is spent on computing and less is spent on overheads. On the
other hand, at least initially, capital costs for mobile hardware may
be higher. Table 3 analyzes these trade-offs, accounting for capi-
tal costs in datacenter construction and IT equipment and operating
costs from power [12, 38]. The model assumes $0.07/kWh, $200M
facility cost, and a 15MW budget. Facility and IT capital costs are
amortized over 15 and 3 years, respectively.

TCO-neutral prices. In the early stages of a new technology
(e.g., LPDDR2-based servers) when costs are evolving, end-users
might more tractably reason about the price they would willingly
pay for expected benefits. We define a TCO-neutral price for a
component as the price that produces a TCO matching some base-
line. Our baseline is Xeon+DDR3 (TCO=$86).

Until now, advances in processor efficiency have out-paced those
for memory. Moreover, simpler OOO cores or in-order cores, such
as mobile Atoms are being considered for servers. Conventional
motherboards are over-provisioned for such cores motivating sys-
tems like the one from SeaMicro, which eliminates 90% of moth-
erboard components [29]. By adopting Atoms or other power effi-
cient processors, server power falls from 190 to 63W, a 3× reduc-
tion. To realize such efficiency, datacenters might willingly pay for
custom boards as long as TCO does not change. Sweeping board
prices, TCO is held to $86 if customization costs less than $1340.

As processor efficiency improves, memory becomes an ef-
ficiency bottleneck. DDR3 dissipates 4-5× more power than
LPDDR2 for applications with moderate memory activity, such as
web search. Because mobile memory reduces power costs, dat-
acenters might willingly pay a premium for LPDDR2. Sweep-
ing LPDDR2 prices, we find Atom+LPDDR2 is justified if mobile
memory prices are less than $775 per 32GB, a 30% premium over



Figure 12: Power breakdown across server components.

Figure 13: Total cost of ownership breakdown across servers and infrastructure.

DDR3 prices. This analysis is conservative because it precludes
TCO increases, which might be justified by additional datacenter
capacity enabled by mobile hardware.

Capacity. Mobile processors and memory shift power and TCO
breakdowns (Figure 12, Figure 13). Of each dollar spent, 89% goes
to server costs and not infrastructure overheads. In contrast, with
Xeon+DDR3 servers, only 58% of costs go to servers. Table 3
presents datacenter capacity normalized to Xeon+DDR3 for web
search based on published measurements [38]. Within a 15MW
critical load, we can deploy 2.5× more 16-core Atom servers than
8-core Xeon servers, leading to a commensurate capacity increase
even when taking into account that an Atom core sustains 0.5×
the query throughput of a Xeon core. Atom+LPDDR2 power is
even lower and allows a further 1.6× increase in the number of
servers. Capacity increases by a cumulative total of 4.0× over
Xeon+DDR3.

This analysis assumes no performance penalty from mobile
memory. While true for search, which uses less than 10% of
DDR3 peak bandwidth [23], other applications may see perfor-
mance penalties that degrade the 1.6× gain from LPDDR2. For
example, if application performance falls by 20% when using mo-
bile memory, the 1.6× increase in servers is offset, in part, by the
0.8× impact on per server capacity. Thus, we illustrate a frame-
work that allows architects to reason about justifiable prices for the
benefits of emerging technologies.

9. RELATED WORK

To improve the efficiency of server-class memory, Lim et al. com-
pare various grades and generations of DDR [25, 26]. These tech-
nologies provide modest performance and efficiency trade-offs. To
increase the dynamic range of these trade-offs, one might reconfig-
ure the voltage and frequency of memory systems [6, 8]. Such an
approach allows users to match memory system capabilities to ap-
plication demands and increase efficiency. However, voltage scal-
ing applies only to the memory core and only in a narrow range
defined by the device margins. Frequency scaling applies to the
memory channel, reducing power, but often increasing the energy
per bit because of the static power component.

A large body of work manages data placement [10, 24, 46, 9,
36, 17] and batches memory requests [7, 18] to increase the length

of idle periods, which are necessary to exploit power modes that
have long exit latencies. Despite these techniques, DDR power
modes often incur performance penalties due to batching and the
latency of the critical word is always affected. Although many of
these techniques could be applied to LPDDR2, mobile-class power
modes have much shorter exit latencies, effectively eliminating the
problem these techniques try to solve. With faster transitions be-
tween power modes, LPDDR2 provides more opportunities to ex-
ploit them or simpler control heuristics to manage them.

Seeking to improve energy proportionality, other researchers
work to narrow the access width of a memory operation. Instead
of accessing a wide row that spans multiple KB, they access a
smaller subset [1, 47, 50, 53]. However, rank subsetting signifi-
cantly increases the amount of peripheral circuitry in a chip, de-
grading density [48]. In contrast, LPDDR technologies use the
same DDR memory core, achieving comparable densities. LPDDR
only changes the interface circuitry, addressing the power over-
heads in chip I/O, the largest efficiency bottleneck in DRAMs [48].

10. CONCLUSION

Many data center applications under-utilize the memory bandwidth
available in modern servers. We presented an alternative design for
server memory systems that uses commodity DRAM chips for mo-
bile applications. These memory systems tradeoff peak bandwidth
for significant gains in energy efficiency and proportionality. We
have shown that LPDDR2 based servers provide high capacity and
small performance impact for data center workloads.
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