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Accelerator design is expensive due to the effort required to understand an algorithm and optimize the de-

sign. Architects have embraced two technologies to reduce costs. High-level synthesis automatically gener-

ates hardware from code. Reconfigurable fabrics instantiate accelerators while avoiding fabrication costs for

custom circuits. We further reduce design effort with statistical learning. We build an automated framework,

called Prospector, that uses Bayesian techniques to optimize synthesis directives, reducing execution latency

and resource usage in field-programmable gate arrays. We show in a certain amount of time that designs dis-

covered by Prospector are closer to Pareto-efficient designs compared to prior approaches. Prospector permits

new studies for heterogeneous accelerators.
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1 INTRODUCTION

As Dennard scaling ends, the pursuit of specialized hardware for energy efficiency has become
prevalent. Accelerators have been developed for various applications, including machine learn-
ing [8, 63], robotics [43], web search [49], and others [26, 36]. Accelerators derive their energy
efficiency from specializing datapath and control for specific functionality [21]. Many platforms,
including datacenters [49], instantiate accelerators on field-programmable gate arrays (FPGAs) to
realize their benefits while avoiding the costs of custom circuits.

The need for accelerators has renewed interest in high-level synthesis (HLS) [27], a toolflow
in which designers specify functionality in a high-level language and automated tools produce
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register transfer level (RTL) code. Such toolflows offer large productivity gains when compared
to manually writing RTL, a time-consuming process that requires expertise in digital design. But
challenges remain because designers must rely on HLS directives to guide synthesis and produce
quality RTL [65].

Directives are hints to the HLS tool, indicating that some code locations could be optimized to
improve performance. Designers of complex accelerators need to tune varied directives at different
code locations, which define a vast design space. The size of the space depends on the number of
lines of code, the choice of directives (e.g., loop unrolling), and the choice of settings for a given
directive (e.g., unrolling factor). Even worse, the effects of multiple directives interact to affect
performance in subtle and unexpected ways. Given the scale of the challenge, designers need
automated solutions that generate many RTL variants and explore trade-offs between cost and
performance yet deliver the desired accelerator functionality.

We have developed Prospector [39], a framework for synthesizing efficient accelerators with
optimization directives. While Prospector supports both ASICs and FPGAs, this article focuses on
FPGAs given the growing interest in reconfigurable accelerators. The framework coordinates the
placement and configuration of directives, seeking low execution time and efficient resource usage.
Prospector achieves these goals in two ways. First, it encodes the design space so that statistical
models can capture accelerator performance and FPGA costs (e.g., flip-flops, lookup tables, block
RAMs, and digital signal processors) more effectively. Second, as HLS measurements are expensive,
it samples the design space in order to reveal optimal designs more efficiently.

Prospector uses Bayesian optimization, a method starting to find success in digital design [37,
52], to judiciously collect data, incrementally train models, and efficiently optimize designs. Ef-
ficient data collection and analysis is critical because evaluating each point of the design space
involves costly synthesis and place-and-route. We show that Prospector efficiently reveals design
optima by running HLS measurements on a small percentage (e.g., < 1%) of the whole design space.
Such capabilities reflect Bayesian optimization’s particular strengths, which are absent in popular
search heuristics, such as genetic algorithms and simulated annealing.

This article builds on the original Prospector work [39] in three ways. First, we provide more
depth and details on both the statistical basis for Prospector and the components of the Prospector
framework. Second, we extend the evaluation of Prospector with new experiments that provide
additional insight into Prospector’s behaviors and relationship to prior work. Third, we develop
a case study of Prospector usage, in which Prospector improves heterogeneity gains by finding
more accurate Pareto-optimal design variants.

The following summarizes our contributions:

• Effective Search Algorithms. Prospector places and configures optimization directives by
modeling their effect on accelerator performance and FPGA resource usage. Concise design
encodings and intelligent design sampling permit the use of Bayesian optimization for HLS.

• Efficient Resource Usage. Prospector discovers designs that meet performance targets
using fewer FPGA resources. Compared to classic approaches, Prospector discovers designs
that require 35% fewer FPGA resources on average (Table 4).

• Broad Pareto Frontiers. Prospector captures high-dimensional trade-offs between per-
formance and FPGA cost and finds more accurate Pareto frontiers. The distance between
the Pareto frontier and the true frontier for Prospector is 0.57× (less distant) of the average
distance for alternative approaches (Figure 11).

• Heterogeneous Accelerator Design. Prospector supports heterogeneous mixes of accel-
erator designs, allowing the FPGA to use trade-offs between fast but large and small but
slow accelerators to respond when workload mixes evolve and resource allocations change.
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Fig. 1. Prospector framework.

2 THE PROSPECTOR FRAMEWORK

We optimize accelerator design flows that use HLS to target FPGAs. HLS reduces design effort
by compiling behavioral descriptions into hardware descriptions at the RTL [12, 44]. Behavioral
descriptions support high levels of abstraction that allow architects to express design intent effi-
ciently. HLS produces RTL, allowing architects to simulate performance, estimate resource utiliza-
tion, and verify functionality. RTL results are used for FPGA implementations and more accurate
resource usage estimates via place-and-route.

We develop a statistical framework, called Prospector, for identifying synthesis parameters that
best optimize an accelerator design. We leverage Bayesian optimization, which builds a proba-
bilistic model that approximates an unknown function and serves as its surrogate [56]. Bayesian
techniques are particularly effective when the function is a black box and evaluating the function
is costly. The technique iteratively samples parameter values, evaluates the function with those
values, and updates the probabilistic model. Over multiple iterations, the optimization approaches
optimal parameter values x̂ = arg maxx∈X f (x ) for function f .

We consider the HLS toolflow (i.e., simulate, synthesize, place-and-route1), an unknown func-
tion to be modeled and optimized. The function’s inputs specify the placement and configuration
of synthesis directives [11, 12]. The function’s outputs quantify design quality, which include exe-
cution time and multiple measures of FPGA resource utilization. Although we can invoke the HLS
toolflow to evaluate the function for any set of inputs, evaluations are prohibitively expensive
when exploring large, complex design spaces.

Figure 1 summarizes the Prospector framework. Its input is high-level source code that describes
accelerator functionality. Its outputs are RTL implementations that reflect varied performance and
cost trade-offs. Within Prospector, the Bayesian optimization unit (BOU) explores the design space
iteratively. In each iteration, the BOU controls the choice of synthesis directives and the HLS
toolflow converts source code to RTL. After multiple iterations, Prospector identifies synthesis
directives and accelerator designs that balance execution time and FPGA resource utilization.

2.1 Design Space

Architects use directives to specify optimizations and guide HLS. For example, software pipelining
increases throughput by executing instructions from multiple loop iterations simultaneously [50].
Memory allocation increases throughput by distributing data across independent memory banks

1Place-and-route is a user option in Prospector, and we assume it is chosen in this article.
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Fig. 2. Gaussian process with measurements for x1,x2,x3 and prediction for x∗ (left). Bayesian optimization

updates the model as data is acquired (center). The acquisition function selects data measurements based

on expected benefits (right).

[47]. Determining which directives are effective requires time-consuming simulation. The problem
is complicated by two inter-related questions:

• Placement. Which code locations should be targeted by an optimization?
• Configuration. What values should an optimization’s arguments take?

Both placement and configuration heavily influence optimization effectiveness and design qual-
ity. The design space size increases exponentially with the number of loops, arrays, and functions
targeted for acceleration. An architect may need to try many directives because interactions be-
tween the different optimizations are difficult to anticipate. If each trial were to invoke HLS, the
computation for simulation, synthesis, and place-and-route would require days if not weeks. To
understand the magnitude of the optimization problem, consider a benchmark like 2mm that adds
product matrices from two matrix multiplications. The spectrum of unrolling factors and pipeline
initiation intervals for its nested loops (shown later in Table 2) produces a parameter space with
over 15,000 points.

Tuning the HLS parameter space is particularly important for reconfigurable platforms. FPGAs
are cost-effective and have been deployed in numerous high-performance settings such as dat-
acenters [10, 24, 49]. Their reconfigurability is necessary when user demands vary across time,
applications evolve quickly, and data inputs affect implementation choices [49]. But reconfigura-
bility is also challenging when architects seek to simplify application development while retaining
accelerator efficiency [23]. Responsive reconfigurability requires methods to identify and realize
the best accelerator design from large design spaces.

2.2 Statistical Model

The Gaussian process is a statistical model of an unknown function. For each input, the model esti-
mates the function’s output and the uncertainty around that estimate. The model is trained by sam-
pling inputs, evaluating the function, and obtaining outputs. These sampled measurements supply
data that refine estimates for unobserved outputs. Moreover, they reduce uncertainty around esti-
mates for the corresponding outputs. As data become available, the Gaussian process updates its
model of the function to produce increasingly accurate and confident estimates.

Figure 2 illustrates the Gaussian process. Suppose we obtain data
{
(x1, f1), (x2, f2), (x3, f3)

}
by

evaluating the function. We model output f∗ for previously unobserved input x∗ using a Gaussian
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random variable with mean μ∗ and standard deviation σ∗. Intuitively, μ∗ should be near the outputs
for inputs similar to x∗ and σ∗ should decrease when more outputs are observed for inputs similar
to x∗.

The Gaussian process uses samples as training data to construct a multivariate Gaussian model.
The kernel function K constructs the covariance matrix for the joint Gaussian distribution of the
function outputs (f ) based on the function inputs (x ). Many kernel functions exist, but the squared
exponential kernel is popular because it models high correlation between outputs fi and fj when
inputs xi and x j are similar.
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2.3 Data Acquisition

Gaussian processes and Bayesian optimization use data sparingly. An acquisition function incre-
mentally selects inputs for which the target function should be evaluated, producing a sequence
of implemented designs (x , f ). Early in the procedure, the acquisition function favors exploration
and selects inputs for which the function’s output is uncertain. Later, it favors exploitation and
selects inputs for which the function’s output is likely closer to the optimum. Thus, data collection
reflects prior measurements and statistical uncertainty about the function’s output.

Figure 2 illustrates updates to the Gaussian process and the acquisition function’s estimate of
utility from data. This example selects the input based on expected improvement over the cur-
rent optimum modeled by the Gaussian process. Many acquisition functions have been proposed
to select the next evaluation based on varied goals such as probability of improvement, expected
improvement, GP confidence bounds, etc. [7, 59]. Prospector uses the PESMO acquisition function
for multi-objective Bayesian optimization. PESMO selects inputs to reduce the estimated Pareto
frontier’s entropy [22]. The Pareto frontier includes points for which we cannot further optimize
one dimension in the objective without harming another dimension. PESMO is an effective acquisi-
tion function when synthesizing accelerators for reconfigurable substrates because the accelerator
consumes resources in multiple dimensions. The optimization seeks to reduce both execution time
and FPGA resource utilization, measured in terms of the number of flip-flops (FFs), lookup tables
(LUTs), digital signal processors (DSPs), and block RAMs (BRAMs).

2.4 Prediction and Optimization

As the acquisition function supplies data to train the Gaussian process, predictions become more
accurate. Suppose we wish to predict the function’s output f∗ at x∗, a previously unobserved in-
put. The Gaussian process assumes that f∗ follows a Gaussian distribution with meanm∗ = 0 and
variance K∗∗ = 1 and extends the multivariate Gaussian distribution. To aid the explanation, let us
define covariance for prior inputs K , covariance for the target input K∗, and variance for the target
input K∗∗.
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K =
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We calculate the posterior conditional distribution of f∗ given data f =
{
f1, f2, f3

}
from the pro-

cedure for calculating marginal and conditional distributions for multivariate Gaussians [42].

p ( f∗ | f ) ∼ N (μ∗,σ∗) = N (m∗ + KT
∗ K
−1 f ,K∗∗ − KT

∗ K
−1K∗)

In Bayesian terminology, the posterior mean μ∗ updates the priorm∗ to reflect observed outputs f .
The posterior standard deviation σ∗ updates the prior K∗∗ to reflect covariance between observed
outputs K .

The mean μ∗ predicts the output and the standard deviation σ∗ assesses prediction uncertainty.
Accuracy increases and uncertainty decreases as the training process evaluates the function for
inputs similar to x∗. The estimate for μ∗ is a linear combination of f s that assigns greater weights
when the corresponding xs are similar to x∗. The estimate for σ∗ decreases as similarities between
x∗ and x increase.

Bayesian optimization and the acquisition function use predictions to assess design quality, as-
sess model uncertainty, and guide data acquisition in the search for inputs that optimize the output.
In this article, the inputs encode optimization directives used for HLS. The outputs describe figures
of merit in accelerator design. We use separate Gaussian processes for execution time, FF usage,
LUT usage, DSP usage, and so forth. This formulation permits multi-dimensional Bayesian opti-
mization, which is important when navigating trade-offs for accelerators synthesized on FPGAs.

2.5 Directive Encodings

We refine Gaussian processes by iteratively synthesizing and evaluating a sequence of designs
(x , f ).

Inputs. We define input x to be a vector of variables, each of which encodes the use of a syn-
thesis directive. First, we encode directive placement using a binary variable, indicating whether a
directive is applied, for each code location that could be optimized. Next, we encode directive con-
figuration using a categorical variable to describe the optimization’s mode and integer variables
to specify the optimization’s tunable argument.

Outputs. The synthesis of input x produces output f . We define f to be a vector of metrics
relevant to our optimization objective. These metrics include execution time and utilization for
each type of FPGA resource including FFs, LUTs, DSPs, and BRAMs.

Encoding Directive Placement. Users specify the code locations for which they wish to ex-
plore optimization directives. For instance, users can select labels for loops in the high-level code.
Based on user specifications, Prospector defines parameters for the number of code locations L
and the number of possible directives D for each location. We construct a bit map for each direc-
tive. The map’s length equals the number of locations optimized. The result is D maps with L bits
each. Each bit indicates whether a directive d ∈ [1,D] is active at location l ∈ [1,L]. We convert
each directive’s map into an integer between zero and 2L − 1. For example, if each of three loops
could be unrolled, we encode the unrolling strategy with a three-bit map that corresponds to an
integer between zero and seven. Thus, the bitmaps permit Gaussian processes to model and ex-
plore directive placement. Because some directives do not apply to some locations (e.g., function
inlining does not apply to loop locations), users can provide separate sets of L and D values for
different types of locations. Placement is monitored either via this separate integer parameter or
by considering inactive state as one possible configuration value for all locations. For example, an
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Fig. 3. bbgemm code.

Fig. 4. Input (x ) selected by PESMO acquisition function.

Fig. 5. Input (x ) translated into HLS directives.

unroll factor of 1 means the unrolling directive is applied to repeat the loop by a factor of one,
which technically means the loop is not unrolled.

Encoding Directive Configuration. We specify the range of possible values for each direc-
tive’s categorical and numerical settings. Prospector explores and samples directive configurations
within these ranges. For example, a loop could be unrolled by 2x , where x ∈ [1 : 4], or pipelined
with an initiation interval x ∈ [2 : 5]. Note that we sample parameters for directive placement and
configuration independently. The sampled unrolling factor for a code location has an effect only
if the sampled bitmap activates unrolling for that location.

Example. Figure 3 presents code for blocked matrix multiplication, which iterates over matrix
blocks and block elements in five nested loops. We optimize three code locations (e.g., loops i, j, k),
each with two possible directives (e.g., loop unrolling, pipelining). In each optimization step, the
framework samples an input, translates the input into directives, and runs the HLS toolflow.

In Figures 4 and 5, the LocationUnroll bitmap indicates that the second loop is unrolled
(210 = 0102) and the LocationPipeline bitmap indicates that the innermost loop is pipelined
(110 = 0012). The input specifies initiation intervals for each loop in case the sampled bitmap ap-
plies pipelining and specifies unrolling factors for each loop in case the sampled bitmap applies
unrolling. Thus, our strategy for encoding HLS inputs models and optimizes directive placement
and configuration simultaneously.

Scalability. Our encoding produces concise inputs for Bayesian optimization. This efficiency
allows the framework to explore both directive placement with categorical, discrete variables as
well as directive configuration with numerical, continuous variables. The encoding produces vec-
tors with D × (1 + L) elements, using integers to determine whether D directives are enabled at
various locations and D × L integers to specify numerical configurations for those directives. Ex-
panding the range of configurations increases the range of values for the corresponding D × L
elements but does not lengthen the vector.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 4. Publication date: December 2020.
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In contrast, prior work is limited by its reliance on binary flags alone to indicate whether di-
rectives are applied at code locations [37]. Such a one-hot encoding requires a rapidly increasing
number of binary flags and one vector element per possible use of HLS directives. For example,
unrolling a target loop by two and by four is treated as two separate directives, each with its own
binary flag at each location. The encoded vector length increases with the number of permissible
directives, numerical settings, and code locations. Because the encoding does not scale, prior work
focuses on directive placement and excludes directives’ numerical settings.

Constraining Exploration. A multi-objective acquisition function addresses limitations from
single-objective analysis, which optimizes a single-dimension subject to constraints on all other
dimensions. An example of single-objective analysis is latency minimization subject to constraints
on the number of LUTs used [37]. Although this approach accounts for multiple figures of merit,
the designer must specify reasonable constraints on all but one dimension prior to data collection.
If specified constraints are too lax or stringent, Bayesian optimization is likely to return results
that do not reside on the multi-dimensional Pareto frontier.

Prospector is robust even when the designer provides no guidance about or constraints on rea-
sonable directive usage. When evaluation reports high execution time or resource utilization, the
acquisition function is less likely to sample from the corresponding neighborhood of inputs in
future iterations. When synthesis fails to generate RTL or warns about long simulation times,
Prospector assigns high execution times to the corresponding outputs, discouraging further explo-
ration of similar directive configurations. For example, HLS generates warnings when pipelining
the outer-most loop in blocked matrix multiplication. Despite these pitfalls, Prospector converges
to synthesis inputs that optimize design quality.

Although Prospector does not require domain-specific guidance, it can explore inputs more
efficiently when the designer supplies such guidance. Guidelines might constrain particular com-
binations of directives or specify dependencies between directives, thereby pruning optimizations
known to perform poorly. For example, unrolling every loop in blocked matrix multiply makes
little sense. Using one directive for a loop might preclude the use of others on the same loop.
Prospector can ensure the acquisition function selects inputs that satisfy user constraints before
generating HLS directives.

3 EXPERIMENTAL METHODS

Benchmarks. Prospector supports any benchmark written in a high-level language that inter-
faces with HLS tools. We evaluate application kernels from two benchmark suites, PolyBench [48]
and MachSuite [51], which cover a wide range of functionality and complexity. We explore de-
sign spaces for fdtd-2d, 2mm, and heat-3d from PolyBench and fft, bbgemm, and stencil-3d from
MachSuite.

Bayesian Optimization Unit (BOU). The BOU generates new values for target directives at
each step in the optimization procedure. The BOU integrates our encoding and translation mech-
anisms with Spearmint,2 a software package that implements Gaussian processes and acquisition
functions. The encoding unit converts a user-defined space of HLS directives and code locations
into input parameters for Spearmint. Spearmint’s acquisition function selects parameter values,
which the translation unit converts into a TCL script that describes how directives are to be located
and configured. HLS uses the script to generate a hardware description. This hardware descrip-
tion is used for place-and-route to profile its performance and assess its costs. Data from the design
profile updates Spearmint’s Gaussian process and influences the acquisition function’s subsequent
selections.

2Spearmint: https://github.com/HIPS/Spearmint/tree/PESM.
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Table 1. Directives’ Ranges That Define the Design Space

Directive Parameter Values

Loop Unrolling Factor ∀2x | x ∈ [0 : M]

Loop Pipelining Initiation Interval ∀x | x ∈ [1 : 7]

Array Partitioning Factor ∀2x | x ∈ [1 : N ]

Function Inlining Setting on/off

Allocation Instance and Limit instance ∈ [add,mul], ∀x |x ∈ [1 : Nadd ], ∀2x |x ∈ [1 : Nmul ]

The values of M, N differ across benchmarks. See Table 2.

Table 2. Design Space Summary

Benchmark Optimization Targets Range Design Space Size

fdtd-2d 4 loops M=9 6,561

2mm 4 loops, 1 array M=12, N=1 15,625

fft 9 loops, 3 arrays, 3 functions, 2 allocations M=8, Nadd=10, N=2, Nmul=8 36,000

bbgemm 2 loops, 1 array M=16, N=4 960

stencil-3d 2 loops, 1 array M=16, N=4 960

heat-3d 4 loops M=16 2,304

High-Level Synthesis and Place-and-Route. We use Xilinx Vivado HLS, which produces RTL
from high-level code. Vivado HLS simulates our benchmark’s C code to determine functionality
and then synthesizes RTL in three steps. First, Vivado HLS determines which operations occur
in each cycle based on clock rate. Second, it binds hardware resources to operations according to
optimization directives and the targeted FPGA. Third, Vivado HLS extracts the finite state machine
that controls the RTL, storage, and I/O. The final RTL result is fed into the Vivado Design Suite to
perform place-and-route and generate the bitstream to program the FPGA.

Directives. Table 1 defines a set of directives: loop unrolling, loop piplelining, array partition-
ing, function inlining, multiplier allocation, and adder allocation. This set includes the most effec-
tive directives found in our experiments, which align with those in prior work [53]. These direc-
tives define a design space with thousands of points for which exhaustive analysis would require
days of synthesis and simulation.

Table 2 reports the number of loops and arrays that are targeted by our optimizations, the range
of parameter values that were considered, and the total size of the design space. For a robust ex-
perimental evaluation, we also explore the entire design space with exhaustive search. In practice,
Prospector does not require exhaustive search, and broadening the design space to include more
directives is possible.

First, directives for loop unrolling and pipelining specify the target loop and values for the
unrolling factor and initiation interval. Unrolling generates the specified number of copies for
the loop body, improving parallelism by using more hardware. Pipelining starts the next iteration
before the current one finishes, improving parallelism with concurrent execution. The initiation
interval specifies how many cycles separate the start of two loop iterations. Second, directives for
array partitioning specify the array and number of partitions. Breaking large arrays into smaller
ones or single registers permits concurrent access to multiple block RAMs. Third, function inlining
removes the hierarchy of the function to potentially improve logic usage between the function
and its caller. Fourth, allocation directives restrict the maximum number of instances of a specific
operation/function that can be used.
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We use two additional directives to guide the use of loop and array directives. First, the “de-
pendence” directive guides the handling of loop-carried dependencies. In some scenarios, such
as variable-dependent array indexing, Vivado HLS’s automatic analysis of dependencies may be
conservative and leave parallelism (e.g., loop pipelining) unexploited. The dependence directive
indicates when loop-carried dependencies are false. For example, the directive is helpful where
loop-carried dependencies do not exist in source code and loop pipelining is an important perfor-
mance optimization. The directive removes dependencies from the code region and allows HLS
to pursue parallelism more aggressively. Prospector automatically considers applying the depen-
dence directive on loops requested by users. Second, the “resource” directive guides an operation’s
implementation, identifying particular compute or memory units for operations or data structures.

For all designs, with whatever directive settings are used, safe parallelism is ensured automati-
cally by the last HLS stage, C/RTL co-simulation, which verifies the RTL. In standard HLS toolflow,
after the HLS tool produces RTL from C code, the RTL’s functional correctness is verified using
a testbench that compares the C code and RTL code output on a reference dataset. If a specific
directive setting violates the rules and produces incorrect outputs, the RTL’s functionality will not
match the C code’s. If verification fails, Prospector discards the design point and continues with
its exploration.

We consider comprehensive design spaces, defined by many directives and settings, that include
sub-optimal designs. Prospector defines design space boundaries generously for two reasons. First,
an automated framework for design space exploration cannot know a priori the point of dimin-
ishing marginal returns from an optimization directive and the most effective boundaries for the
space. Moreover, the framework should not need the designer to specify tight boundaries for explo-
ration, a difficult task given how multiple, interdependent directives affect performance and cost.

4 EVALUATION

We evaluate Prospector’s ability to find optimal design points and reveal the Pareto frontier. We
first perform an exhaustive characterization of the design space by running every possible design
point through HLS and place-and-route, measuring execution time and FPGA utilization. These
measurements produce the Golden Pareto Frontier, which we take as the optimal baseline be-
cause it reveals the best designs after trying all possible configurations of D directives on L lo-
cations. We determine how closely Prospector and alternative heuristics compare against these
optima. The total number of points in each design space for exhaustive search is in Table 2.

Because Prospector relies on search, we compare its single- and multi-dimensional variants
against popular search heuristics for design space exploration. The baseline heuristics account for
multiple dimensions in different ways. Some heuristics, like genetic algorithm and random search,
account for multiple dimensions easily. Other heuristics, like simulated annealing, account for
multiple dimensions ineffectively. Evaluated methods include:

• Prospector. Models and optimizes one or multiple objective function(s), including latency3

and multiple dimensions of FPGA usage, with Gaussian processes. Prospector searches for
Pareto optima based on objective(s). Prospector denotes optimization for all five dimen-
sions of our problem (latency, FFs, LUTs, DSPs, and BRAMs), while Prospector-kD denotes
optimization for k < 5 dimensions.

• Random Search. Samples uniformly at random from the design space, evaluating these
samples based on design objectives [4]. The sampling procedure is independent of the num-
ber of design objectives, and we do not require multiple variants for multiple objectives.

3Improving latency leads to higher throughput, which is used in Section 5.
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Fig. 6. Latency, LUT usage across iterations of Prospector-1D when minimizing (a) latency, (b) latency-LUT

product, and (c) latency-LUT product with normalized, scaled measures. Data for fdtd-2d.

• Simulated Annealing. Samples designs that are likely to improve upon prior measure-
ments. Samples are increasingly focused as iterations progress [54]. Simulated annealing
accounts for multiple dimensions inefficiently. Simulated annealing could use an energy
function that accounts for multiple objectives, but as we discuss in Section 4, combining
FPGA performance and cost metrics into a single objective is both challenging and inef-
ficient. So, we evaluate simulated annealing to account for a single objective, latency. But
even in this setting, simulated annealing cannot find low-latency, Pareto-optimal designs
and Prospector-1D outperforms it.

• Genetic Algorithm. Samples design populations by using the fittest designs from the pre-
vious generation of samples [13]. Searches for Pareto optima based on latency and cost.
We use DEAP [17] framework to implement our genetic algorithm. This genetic algorithm
baseline accounts for multiple dimensions. The genetic algorithm is a natural fit when op-
timizing multiple objectives and, like Prospector, we evaluate it to optimize latency and
multiple dimensions of FPGA usage.

For all heuristics, each search iteration includes (1) parameter selection, (2) design synthesis,
and (3) performance and cost evaluation. The runtime per iteration is completely dominated by
HLS and RTL generation, common to all heuristics. For fairness, we allocate heuristics the same
number of search iterations (or equivalently, the same amount of wall-clock time) and compare
the resulting design quality.

4.1 Visualizing Pareto Efficiency

We start evaluating Prospector by applying Prospector-1D. Figure 6(a) indicates that Prospector-
1D explores the design space to minimize latency without regard for cost. Although most design
samples lie within the 25th percentile from minimum latency (bottom), most also exceed the 25th
percentile from minimum LUT usage (right); see dotted lines. This outcome arises from the narrow
optimization objective. Figure 7(a) indicates that Prospector-1D identifies designs that converge
toward optimal latency but not the optimal number of LUTs.

Designers often care about more than one objective (i.e., cost and latency). Architects sometimes
account for two metrics by optimizing their product or putting constraints on one when optimizing
the other [37], but defining constraints is a burden on the user. Figure 6(b) applies Prospector-1D
on the LUT-latency product. As shown in Figure 7(b), product optimization is a fragile solution.
LUT usage is reduced, but latency remains high when minimizing this fused metric. LUT usage
dominates the product and optimization procedure. One could normalize and rescale metrics to
overcome the range difference between latency and LUTs. Figure 6(c) applies Prospector-1D on
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Fig. 7. Latency, LUT usage across iterations of Prospector-1D when minimizing (a) latency, (b) latency-LUT

product, and (c) latency-LUT product with normalized, scaled measures. Data for fdtd-2d.

Fig. 8. Exploring fdtd-2d design space with random search, simulated annealing, genetic algorithm, and

Prospector-2D.

the LUT-latency product with normalized measures. Figure 7(c) indicates that doing so does not
solve the issue. Latency is reduced, but LUT usage remains high. These challenges increase with
the number of dimensions in the design space.

Figures 8 and 9(a)–(c) indicate that alternative methods produce narrower trade-offs or Pareto
sub-optimal designs. In Figure 8 for fdtd-2d, random search and simulated annealing are ineffec-
tive at identifying Pareto optima. Although the genetic algorithm identifies many low-latency and
low-cost designs, measurements are concentrated in the lower-left quadrant and only partially re-
veal the Pareto frontier. In Figure 9 for fft, random search and simulated annealing fail even when
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Fig. 9. Exploring fft design space with random search, simulated annealing, genetic algorithm, and

Prospector-2D.

optimizing one objective. Random search and simulated annealing select very few points close
to the Pareto frontier. Although the genetic algorithm identifies some points on the Pareto fron-
tier, it samples disproportionately from high-latency, high-cost regions and misses Pareto optima
with similar latency and lower costs. Prospector overcomes this limitation when modeling and
optimizing multiple objectives simultaneously.

We evaluate the ability of design frameworks to reveal the Pareto frontier, which is essential
to reasoning about design trade-offs. A good Pareto frontier identifies a broad spectrum of de-
signs for which no other design improves one metric without harming another. We find that pop-
ular techniques—simulated annealing, random search, and genetic algorithm—do not accurately
describe the Pareto frontier and do not reveal efficient trade-offs. These techniques converge to
optima poorly or slowly, get stuck in local minima, or restrict the optimization to only parts of
the design space. We find that Prospector can navigate multiple objectives, producing low-latency
designs that use resources efficiently.

Figures 8(d) and 9(d) show how Prospector-2D for latency and LUT usage reveals the broad
latency-LUT Pareto frontier for fdtd-2d and fft. Figure 10 also demonstrates Prospector-2D re-
sults for more benchmarks. One might hypothesize that, while Prospector-1D is insufficient, per-
haps Prospector-2D suffices and there is little or no need for higher-dimensional optimization.
However, although Prospector-2D outperforms Prospector-1D, its results are Pareto sub-optimal
and fall short of coordinated analysis across all dimensions. Neglecting other FPGA resources in
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Fig. 10. Prospector-2D for latency and LUTs.

Table 3. Each Design is Pareto Optimal in 2D Analysis but, in the 5D

Space, Is Actually Sub-optimal and Obscures Interactions

between FPGA Resource Types

Design 2D Pareto FFs LUTs DSPs Cycles (M)

1 Latency-DSPs 4,926 7,289 32 1.175
2 Latency-LUTs 2,927 5,048 32 1.185
3 Latency-FFs 3,199 5,151 32 1.180
4 Latency-FFs 2,768 4,808 32 1.204
5 Latency-DSPs 3,810 5,536 20 1.194
6 Latency-LUTs 2,659 4,670 32 1.214
7 Latency-FFs 2,620 4,108 20 1.220

Data for fdtd-2d.

Prospector-2D results in missing sophisticated resource interactions and opportunities to use the
FPGA more efficiently.

Table 3 details these limitations by presenting Prospector-2D’s “Pareto-optimal” designs, which
do not actually satisfy criteria for optimality and miss interactions between resources in the 5D
space. First, Prospector-2D misses Pareto optima within the neglected dimensions of the 5D space.
We can find designs that incur the same costs for one resource but lower costs for another resource.
For example, Design 5 is not Pareto optimal because Design 7 performs nearly identically and uses
the same number of DSPs, but reduces the number of LUTs and FFs by 25% and 31%, respectively.
We consider designs that differ in latency by less than 50K cycles or 0.5ms to be equally good.
Design 5 is Pareto dominated, yet Prospector-2D discovers it when optimizing latency and DSP cost
while neglecting other resources. Design 7 is truly Pareto optimal and discovered by Prospector.

Second, Prospector-2D misses opportunities to substitute and exchange resources in the pur-
suit of performance. Substitution effects are important for FPGAs, because competition for shared
resources may require flexible resource requests for an accelerator. For example, Designs 5 and 6
illustrate the possibility of substituting DSPs for LUTs and FFs. We could reduce the number of
DSPs by 37% and increase the number of LUTs and FFs by 18% and 43% with nearly equal latency.
Optimization in higher dimensions is more likely to discover substitutability, mitigating resource
bottlenecks and revealing multiple paths to the same performance.

Finally, Prospector-2D misses complementary resource demands that require coordinated allo-
cation. Points in the 2D Pareto frontiers indicate that LUTs and FFs are neither substitutes nor
independent. LUTs and FFs are often used in related proportions such that if LUT usage changes,
so does FF usage. Comparing Design 1 to Designs 2, 3, and 4, we find that LUTs and FFs are reduced
together by 30% to 40%. Comparing Design 5 to Designs 6 and 7, we find that LUTs and FFs are
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Fig. 11. Distances between golden and estimated Pareto frontiers, normalized to that from Prospector.

reduced together by 16% to 32%. These conclusions are missing from 2D analysis and require 5D
analysis.

4.2 Quantifying Pareto Efficiency

We assess goodness by measuring the distance between two Pareto frontiers. We calculate the
Euclidean distance from every design on the source frontier to the closest point on the destination
frontier, producing a number of distances equal to the number of design points in the source. Note
that each design point is represented by a five-dimensional vector that quantifies latency and usage
for four FPGA resources. Our measures build on related work that explored several indicators to
evaluate multi-dimensional Pareto frontiers [6].

Other simpler metrics such as counting the number of Pareto-optimal designs found could be
misleading. Each design space has several points with similar efficiency or cost. Even if a search
heuristic does not find the Pareto optimum, it may find other designs nearly as good. Counting
exact matches is far too conservative and neglects the value of finding good designs that are slightly
sub-optimal. One might define a threshold that specifies how close a design must be to the Pareto
frontier in order to be counted, but defining appropriate thresholds for diverse benchmarks and
design spaces is challenging.

When measuring distances, the source is the golden frontier identified by exhaustive evaluation
of the design space, and the destination is an estimated frontier identified by Prospector or other
heuristics. For each point on the golden frontier, we measure the shortest distance to any point on
the estimated frontier. We mitigate the inconsistency between ranges measured for latency and
FPGA resource usage by normalizing values so that they are in [0,1].

Figure 11 compares each heuristic by showing the distance of its designs to the golden Pareto
frontier, which reflects the best designs from exhaustive search.4 We normalize distances to those
for Prospector to accommodate multiple scales and visualize results more effectively.

Prospector most accurately reveals the Pareto frontier by reporting the shortest distances to
the golden frontier. The average normalized distance for alternative approaches is 1.74, mean-
ing that alternative approaches find Pareto frontiers that are 1.74× more distant from the golden
frontier than Prospector’s. Conversely, Prospector’s distance from the golden frontier is 0.57× that
of the average distance of the alternatives. Optimization in fewer dimensions or using alternative

4HLS automatically allocates FFs and BRAMs, sometimes using only FFs. The BRAM-latency bar is shown only for fft,

which required BRAMs.
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Table 4. Optima from Other Algorithms Use More Resources Than Prospector, Given the

Same Target Latency and Budget for Optimization Time

Scheme Low Latency Medium Latency High Latency

Prospector 2D Latency-LUT (0, 13, 8) (0, 64, 38) (0, 35, 25)
Prospector 2D Latency-FF (0, 13, 8) (25, 32, 16) (0, 22, 15)
Prospector 2D Latency-DSP (25, 86, 65) (25, 55, 32) (0, 138, 89)
Prospector 1D (25, 74, 56) (0, 134, 82) (0, 191, 123)
Genetic Algorithm 5D (25, 20, 9) (0, 42, 19) (0, 24, 8)
Genetic Algorithm 2D Latency-LUT (25, 31, 18) (0, 20, 12) (0, 32, 18)
Genetic Algorithm 2D Latency-FF (25, 26, 23) (0, 7, -1) (0, 32, 22)
Genetic Algorithm 2D Latency-DSP (20, -10, -2) (25, 28, 20) (150, 59, 60)
Genetic Algorithm 1D (25, 20, 11) (0, 0, 1) (0, 15, 8)
Simulated Annealing (25, 68, 50) (25, 180, 93) (150, 201, 157)
Random Search (25, 16, 13) (0, 17, 13) (0, 53, 39)

Results shown are percentage increases in resource usage (%DSP, %FF, %LUT). fdtd-2d benchmark.

heuristics is less accurate and reports greater distance to the golden Pareto frontier. Although
Prospector-2D appears to produce accurate frontiers when visualizing 2D projections, distances
between its 2D frontiers and the golden reference in 5D could be high.

In Figure 11, for heat-3d, Prospector’s advantage is substantial due to the design space shape and
structure. Relative to other benchmarks, heat-3d’s design space is characterized by discrete regions.
Designs are farther from each other and no dense cluster of similar designs exists. Therefore, when
a search heuristic selects a sub-optimal design, the design’s distance to the golden frontier is larger.
Alternative heuristics make inefficient choices and incur higher costs for each mistakenly selected
design from the space, missing opportunities to explore and model the space accurately.

Even though distances are the most important metric, they can be difficult to interpret. Table 4
shows how Prospector often identifies designs that use far fewer FPGA resources than those iden-
tified by other methods. The table compares resource usage for three performance targets (low,
medium, high) that correspond to the 25th, 50th, and 75th percentiles in the golden frontier’s la-
tency distribution. For example, Prospector-1D’s designs require up to 191% more resources than
Prospector’s. These points illustrate the likelihood of considerable resource inefficiencies when de-
signing with Prospector’s alternatives. Alternative approaches require 35% more FPGA resources
than Prospector, when overheads are averaged over resource types and heuristics in Table 4.

5 CASE STUDY IN HETEROGENEITY

Prospector has many applications, and in this case study we illustrate how Prospector can be used
to aid a system in using an allocation of FPGA resources to accelerate a computational kernel. Our
case study explores classic questions in the design of large-small systems and the balance between
serial performance and parallel throughput. Our study of FPGA-based accelerators is analogous to
those that explore heterogeneous processor cores [19, 28, 29, 45].

Problem Statement. How should a computational kernel use an allocation of FPGA resources?
Answering this question is challenging for two reasons. First, the kernel must choose between
several accelerator implementations. Prospector supports this choice by exploring the design space
and quantifying trade-offs between performance and FPGA resource usage. By revealing the Pareto
frontier, Prospector focuses the kernel’s choices to the most efficient implementations. In this case
study, each kernel considers two accelerators, one that is faster and uses more resources (denoted
large) and another that is slower and uses fewer resources (denoted small). We obtain these designs
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Table 5. Latency and Resource Usage Trade-offs between Small

and Large Designs from the Pareto Frontier

Benchmark Latency (cycles) DSP BRAM FF LUT

fdtd-2d (pareto-optimal large) 1175242 32 0 4317 6642
fdtd-2d (pareto-optimal small) 2095242 8 0 911 1527

2mm (pareto-optimal large) 230044 168 0 62565 49129
2mm (pareto-optimal small) 262404 17 0 5207 3917

bbgemm (pareto-optimal large) 16389 48 0 1713 1629
bbgemm (pareto-optimal small) 1212417 3 0 331 664

stencil (pareto-optimal large) 7906 795 0 17617 45121
stencil (pareto-optimal small) 96314 6 0 518 1268

heat-3d (pareto-optimal large) 3670301 8 0 52363 36327
heat-3d (pareto-optimal small) 4485661 0 0 3620 1864

fft (pareto-optimal large) 10348 1861 148 80771 172428
fft (pareto-optimal small) 32556 114 16 11101 12990

by defining deadlines of latency on the Pareto frontier. Table 5 reports latency and resource usage
trade-offs between small and large accelerators from the Pareto frontier of our benchmarks.

Second, the kernel must balance the tension between a single task’s performance versus mul-
tiple tasks’ throughput. This balance is increasingly important when FPGAs serve a stream of
requests for acceleration from multiple processor cores. Ideally, with unlimited FPGA resources,
each processor core would be paired with a large accelerator so that a task would always find a
capable accelerator ready and available. With FPGA resource constraints, however, such resource
allocations are infeasible.

In practice, we should implement a few large accelerators when few tasks are expected. And we
should implement many small accelerators when task arrival rates are high, thereby reducing the
risk of tasks arriving when all accelerators are busy. In this setting, heterogeneous architectures
can improve system performance by switching between large and small configurations across time
(temporal heterogeneity) or by instantiating a mix of large and small accelerators at the same time
(spatial heterogeneity).

5.1 System Model

Task Execution. The system is organized around a queue of tasks, each of which requests com-
putation on a processor core and an FPGA accelerator. When a core finishes its previous task, it
dequeues the next task. The core computes for the task until it reaches a region targeted for accel-
eration (e.g., matrix multiply). Then, the core requests support from the most capable accelerator
available. It sends data and control signals to the FPGA and waits for results. Finally, the core uses
the results to complete its task. When all relevant accelerators are serving other cores, the region
targeted for acceleration must execute on the general-purpose core. We model diverse task queues
to generate varying demands on FPGA accelerators. We populate the task queue in two steps. First,
we specify a benchmark of interest, determine the frequency (from 10% to 100%) with which it ap-
pears in the queue, and place the corresponding number of tasks at random locations in the queue.
Second, we populate the remaining queue entries uniformly at random from our benchmark suite.
Regardless of task intensities, all queued tasks are assumed to have already arrived, and through-
put is measured as the number of tasks completed per second. The queued tasks ensure that the
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processor cores are fully utilized yet exercise the FPGA with requests for accelerators separated
by diverse inter-arrival times. We use a queue of 100,000 tasks in our experiments.

System Architecture. We consider a chip with eight out-of-order x86 cores and an integrated
Xilinx Zynq FPGA. Each core and the FPGA has its own private L1 cache, and they all share a multi-
banked L2 cache. The cores and FPGA communicate via cache-coherent shared memory (e.g., Intel
HARP [20], IBM CAPI [61]), which uses a MESI two-level protocol and a mesh topology. Such tight
integration reduces communication costs due to faster last-level cache accesses and simplifies the
programming model when compared to DMA-based systems [9].

System Simulation. We evaluate system throughput using hybrid simulation [40]. First, we
simulate one core and an integrated FPGA. We use PAAS, which extends gem5 with FPGA models
[5, 34]. PAAS takes as inputs the CPU’s x86 executable and the FPGA’s Verilator executable [60],
which compiles Verilog for Prospector’s selected design and estimates performance. PAAS reports
task performance without acceleration and with heterogeneous acceleration. In addition, synthesis
reports describe each accelerator’s FPGA resource usage. We record these performance and area
statistics in the Single Core Performance Table (SCPT).

In each experiment, the workload is executed with a particular configuration of small and large
accelerators programmed onto the FPGA. We do not reconfigure the FPGA dynamically. Rather,
the mix of accelerators is programmed once and executes all tasks in the workload. Across ex-
periments, we vary the combination of small-large accelerators and the workload intensities to
measure the effect on throughput.

Second, we model multi-core behavior with a discrete event simulator (DES). Upon initializa-
tion, all cores and accelerators are idle and available for computation. In each time step, the DES
dequeues and assigns the next task to an available core and its most capable accelerator. If no ac-
celerator is available, the task computes on the core alone. The DES marks the time when cores
and accelerators become available (i.e., current time plus recorded execution time from the SCPT’s
corresponding entry).

The DES efficiently captures first-order effects. The simulator details the assignment of tasks to
computational resources, recording the number and type of tasks executed on the small and large
accelerators as well as those executed solely on the core because no accelerator was available.
Furthermore, the DES reports the start and end time for every task, which permits us to measure
task throughput from varied accelerator and FPGA configurations.

5.2 Opportunities for Heterogeneity

We explore three scenarios in which having heterogeneous accelerators offers benefits. Naturally,
if heterogeneous accelerators are useful, then Prospector’s ability to efficiently find Pareto-optimal
accelerators is beneficial. Without loss of generality and for clarity, these examples are limited to
small amounts of heterogeneity. First, we motivate heterogeneity for FPGA accelerators. Second,
we show that Prospector, which more accurately reveals Pareto trade-offs, produces greater bene-
fits from heterogeneity when compared to alternative approaches. We present results for fdtd-2d
and heat-3d; results for other kernels are similar.

Temporal Heterogeneity. Temporal heterogeneity describes an FPGA that reconfigures itself
to use large or small accelerators, but not both, between workloads. Considering the FPGA size, it
can hold either four large (4L) or eight small (8S) fdtd-2d accelerators. For heat-3d, the FPGA can
hold either three large (3L) or eight small (8S) accelerators. Table 6 shows each task’s end-to-end
latency on the CPU, with the small FPGA accelerator, and with the large FPGA accelerator. The
latencies for accelerators include the time to transfer data between the CPU and the accelerator.

Figures 12 and 13(a) plot throughput as a function of task intensity (i.e., percentage of queued
tasks that demand acceleration for the same kernel). The figures illustrate trade-offs between serial
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Table 6. Execution Time for fdtd-2d and Heat-3d Benchmarks on CPU, with Small FPGA

Accelerator, and with Large FPGA Accelerator

Benchmark Latency on CPU (sec)
Latency with Small

Accelerator (sec)

Latency with Large

Accelerator (sec)

fdtd-2d 102.5 67.63 47.88
heat-3d 4995.6 1727.8 1159.8

Fig. 12. Throughput given increasing workload intensity, measured by the percentage of queued tasks that

demand the same accelerator type. Data for representative fdtd-2d workload.

performance and parallel throughput. Lower intensities generate less task parallelism, and the all-
large configuration provides higher throughput via larger speedups. Higher intensities correspond
to greater task parallelism, and the all-small configuration performs best. An FPGA that instanti-
ates many small accelerators reduces the likelihood that a task dequeues, fails to find an available
accelerator, and computes on the processor core. For throughput, accelerating all tasks moderately
is preferable to accelerating a few tasks significantly. The figures’ crossover points make the case
for adapting to task arrival rates and switching between all-large and all-small.

The frequency of FPGA reconfiguration, between all-small or all-large accelerators, depends
on workload mix and intensity. Reconfiguration is required only when mix and intensity change
significantly. Given that our task queue involved a large number of tasks (100,000), the total exe-
cution time of each queue could take days. Thus, we consider reconfiguration for phases that are
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Fig. 13. Throughput given increasing workload intensity, measured by the percentage of queued tasks that

demand the same accelerator type. Data for representative heat-3d workload.

long enough that reconfiguration latency (100s of milliseconds) is amortized over long workload
phases.

Spatial Heterogeneity. Spatial heterogeneity describes an FPGA that simultaneously deploys
a mix of large and small accelerators. Figures 12 and 13(b) show the benefits of spatial heterogene-
ity, compared to a baseline (denoted “Temporal”) that optimally deploys the all-large or all-small
configuration based on task intensity. At low task intensities, spatially heterogeneous mixes that
favor large accelerators perform best. At high intensities, those that favor small accelerators per-
form best. Spatially heterogeneous mixes outperform all-large or all-small configurations by as
much as 24% when 30% to 100% of queued tasks demand the same accelerator for the fdtd-2d ker-
nel. For heat-3d, heterogeneous mixes outperform all-large or all-small configurations by as much
as 20% when 60% to 90% of the queued tasks demand the same accelerator.

Differing FPGA Budgets. Heterogeneous accelerators can also be useful when targeting FP-
GAs with different resources. Table 7 (top) holds fdtd-2d intensity at 80%, varies FPGA resource
budgets, uses Prospector to determine the accelerator mixes that fit, and reports throughput. The
large and small accelerators are defined as the designs that achieve the 25th and 75th latency
percentiles on the Pareto frontier. We normalize throughput to that from eight large accelerators
supporting eight processor cores to show throughput penalties due to resource limits. As FPGA
resources decrease, from Budget 1 to 8, the number of (spatially) heterogeneous mixes that fit also
decreases. We highlight the mix that maximizes throughput for each budget.

Given generous FPGA resources, the system accommodates all-large configurations. However,
with scarce resources in a multi-programmed FPGA, heterogeneity’s benefits are significant. As
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Table 7. Throughput, Normalized to that from Eight Large Accelerators,

Given Decreasing FPGA Resource Budgets

Budget 1 Budget 2 Budget 3 Budget 4 Budget 5 Budget 6 Budget 7 Budget 8

(8L,0S) 1 (7L,0S) 0.92 (6L,0S) 0.85 (5L,0S) 0.78 (4L,0S) 0.71 (3L,0S) 0.64 (2L,0S) 0.57 (1L,0S) 0.50

(7L,1S) 0.98 (6L,2S) 0.96 (5L,2S) 0.89 (4L,2S) 0.82 (3L,2S) 0.75 (2L,2S) 0.68 (1L,2S) 0.60 (0L,2S) 0.53

(6L,2S) 0.96 (5L,3S) 0.94 (4L,4S) 0.92 (3L,5S) 0.85 (2L,6S) 0.78 (1L,6S) 0.71 (0L,6S) 0.64

(5L,3S) 0.94 (4L,4S) 0.92 (3L,5S) 0.90 (2L,6S) 0.88 (1L,6S) 0.81 (0L,6S) 0.74

(4L,4S) 0.92 (3L,5S) 0.90 (2L,6S) 0.88 (1L,7S) 0.86 (0L,8S) 0.85

(3L,5S) 0.90 (2L,6S) 0.88 (1L,7S) 0.86 (0L,8S) 0.85

(2L,6S) 0.88 (1L,7S) 0.86 (0L,8S) 0.85

(1L,7S) 0.86 (0L,8S)

(0L,8S) 0.85

Budget 1 Budget 2 Budget 3 Budget 4 Budget 5 Budget 6 Budget 7 Budget 8

(6L,2S) 0.92 (6L,0S) 0.85 (5L,1S) 0.82 (4L,1S) 0.75 (3L,1S) 0.68 (2L,1S) 0.61 (1L,1S) 0.53 (0L,1S) 0.46

(5L,3S) 0.89 (5L,2S) 0.85 (4L,2S) 0.78 (3L,2S) 0.71 (2L,2S) 0.64 (1L,2S) 0.57 (0L,2S) 0.50

(4L,4S) 0.85 (4L,4S) 0.85 (3L,4S) 0.78 (2L,4S) 0.71 (1L,3S) 0.60 (0L,3S) 0.53

(3L,5S) 0.82 (3L,5S) 0.82 (2L,5S) 0.75 (1L,5S) 0.68 (0L,5S) 0.60

(2L,6S) 0.78 (2L,6S) 0.78 (1L,6S) 0.71 (0L,6S) 0.64

(1L,7S) 0.74 (1L,7S) 0.74 (0L,7S) 0.67

(0L,8S) 0.71 (0L,8S) 0.71

Data for representative fdtd-2d workload. Bold entries are the best-performing allocation(s) at a given budget from

Prospector (top) and Prospector-2D on latency and flip-flops (bottom).

the budget constrains the number of large accelerators, the system improves performance by sub-
stituting a few large accelerators with several smaller ones. From Budget 4 onwards, all-small
outperforms all-large, and there is a trade-off between many small accelerators and a few big
ones. For example, in Budget 4, the best spatial mix outperforms the all-large and all-small config-
urations by 10%.

Table 7 (bottom) presents the same experiment with Prospector-2D. Its large and small acceler-
ators are larger than Prospector’s, such that fewer accelerators fit within each budget level. More-
over, Prospector-2D’s designs perform worse. Thus, using small and large accelerators found by
an alternative approach leads to lower throughput under each budget.

In summary, the performance benefits of heterogeneity, both temporal and spatial, show the
importance of diverse RTL libraries that support flexible FPGA configurations. We expect perfor-
mance benefits to increase further with diverse RTL libraries that look beyond the two large and
small configurations and accommodate a richer set of performance and cost trade-offs.

6 RELATED WORK

Black-Box Optimization: Black-box optimizations like Bayesian optimization and reinforcement
learning are interesting candidates in approaching design space exploration problems for objec-
tive functions with an unknown closed-form relation to inputs. Bayesian optimization has been
applied to hardware design in two separate studies. First, Bayesian optimization tunes directives
to minimize latency [37]. This work explores only the placement, but not configuration, of HLS
directives due to its limits in design encoding. Furthermore, it fuses metrics into a single objective
(i.e., latency-LUT product), which we show is problematic, to leverage standard data collection
procedures. Second, Bayesian optimization tunes neural network workloads, optimizing both net-
work hyperparameters and some continuous hardware parameters (e.g., operand bit width) [52].
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This study employs Aladdin’s pre-RTL models [57]. It does not consider the HLS directives needed
to instantiate accelerators on reconfigurable hardware.

Bayesian optimization (BO) and reinforcement learning (RL) share some similarities in black-
box optimization—both are frameworks for online and incremental learning. BO is composed of
two main components. First, models (e.g., Gaussian processes) estimate probability distributions
on outcomes based on past observations to optimize design. Second, the acquisition function (e.g.,
expected improvement) determines how data is acquired to update models. RL is also composed
of two parts. First, models (e.g., Q-table, neural network) estimate outcomes based on past obser-
vations to optimize design and policy. Second, strategies (e.g., experience replay) determine how
data is acquired to update models. We use BO instead of RL for several reasons. BO’s Gaussian
processes and acquisition functions are a natural fit for design space exploration and have been
applied extensively in other domains. In contrast, RL’s policy and reward functions would need
customization for the HLS design space. Formulating HLS design space exploration as an RL prob-
lem could be an interesting future direction.

Design Space Exploration: First, statistical learning constructs efficient predictive models that
act as surrogates for unwieldy design flows. Machine learning has been used in a variety of domains
such as compiler auto-tuning for optimization purposes [3, 64]. Architects also train models from
sampled measurements [14, 25, 35, 38, 41, 55, 66]. Regression can predict performance and power
from sparse simulations of microarchitectural design spaces [30, 31]. These methods sample the
parameter space, evaluate the corresponding design, and learn models for design quality.

Machine learning models for design space exploration require training data and predictive ac-
curacy. Prior work proposed using regression trees to predict performance and area from discrete
HLS directive configurations for ASICs [35]. Acquiring training data and iteratively refining the
model requires a larger number of synthesis iterations, which will increase the search time. In
addition to the training challenge, our design space is harder to model given how interactions be-
tween directive placement and configuration dictate multiple measures of FPGA cost (as discussed
in Section 4).

Second, pre-RTL frameworks support early-stage ASIC design (e.g., Aladdin [57]), but the ar-
chitect must still perform design space exploration, relying on expert design or tuned directives to
identify efficient implementations. Our study differs from Aladdin in its focus on intelligent design
space exploration, on generating RTL, and on instantiating accelerators on FPGAs.

Third, heuristics search the design space defined by tunable knobs. Random search (RS) samples
designs randomly [4]. Some heuristics, such as simulated annealing (SA) [54, 58] and gradient
descent, judiciously sample designs likely to improve upon prior measurements but may become
stuck in local minima [33, 52, 59]. Genetic algorithm (GA) uses the fittest designs in a population
of samples to produce the next generation of samples [1, 2, 13, 15, 32, 46]. Prospector outperforms
these techniques for HLS and FPGAs’ large parameter spaces.

Finally, analytical models explore simpler parameter spaces but do not extend easily to directive
placement and configuration for multiple interdependent code targets. Some models focus on a
restricted design space such as memory organization [18, 62]. Others study directives for a single
code target [68]. Yet others optimize directives to reduce usage for specific FPGA resource types
such as BRAMs and DSPs [67]. None of these approaches model directive placement and config-
uration for multiple HLS code targets and comprehensive FPGA design spaces. Researchers have
also constructed lattices for HLS design space exploration [16]. Lattices are promising but thus
far have considered only two objectives, latency and area, rather than the multiple objectives re-
quired for FPGA implementation. They have also been applied to configuring a limited number of
directives at fixed code locations, leading to design space sizes that are only 20% of those in our
study.
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7 CONCLUSION

Prospector uses multi-dimensional Bayesian optimization to efficiently search large accelerator
design spaces defined by HLS directives. Despite the plethora of possible HLS directive placements
and configurations and despite the multiple metrics optimized, Prospector efficiently finds Pareto-
optimal designs. Prospector is much more effective than alternative search heuristics. We highlight
Prospector’s usefulness by producing a heterogeneous mix of accelerators that balances latency
and throughput as well as responds to evolving workload demands and resource allocations.
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