
Learning Sparse Matrix Row Permutations for
Efficient SpMM on GPU Architectures

Atefeh Mehrabi∗, Donghyuk Lee†, Niladrish Chatterjee†, Daniel J. Sorin∗, Benjamin C. Lee‡, Mike O’Connor†§
∗Duke University, † NVIDIA, ‡University of Pennsylvania, §UT Austin

∗atefeh.mehrabi@duke.edu, †donghyukl@nvidia.com, †nchatterjee@nvidia.com
∗sorin@ee.duke.edu, ‡leebcc@seas.upenn.edu, †§moconnor@nvidia.com

Abstract—Achieving peak performance on sparse operations
is challenging. The distribution of the non-zero elements and
underlying hardware platform affect the execution efficiency.
Given the diversity in workloads and architectures, no unique
solution always wins. In this paper, we improve SpMM efficiency
on GPUs. We propose several simple, but effective, sparse data
permutations on the CSR data structure. Picking the right
permutation over 1,688 datasets improves performance by 1.4×,
on average, compared to plain CSR and 2.6× against NVIDIA
cuSPARSE. Furthermore, we propose a set of novel features to
describe sparsity patterns and their interactions with the kernel
and hardware. Using these features, we develop a predictor to
select the best permutation for each matrix. Predicted permuta-
tions’ average gain achieves 96% of oracle gains.

Index Terms—Sparse linear algebra, SpMM, GPU, HPC

I. INTRODUCTION

Sparse matrix computation is integral to varied applications
in high-performance computing [1], graph analytics [2], and
machine learning [3]. Computation on sparse matrices is
challenging due to their many zero-valued elements, which
induce irregular memory access patterns. Sparsity degree (i.e.,
percentage of zero-valued elements) varies from from approxi-
mately 50% in CNNs to more than 99% in big graph analytics.

In this paper, we optimize Sparse Matrix Multi-vector Mul-
tiplication (SpMM) performance on Graphics Processing Units
(GPUs). GPUs can exploit data parallelism in SpMM, but the
distribution of non-zero elements across rows and columns of
the matrix (i.e., sparsity pattern) affects load balance and data
locality. Skipping operations with zero-valued operands saves
time and space. But this strategy also creates imbalanced load
across parallel processing elements, which harms performance
and degrades resource utilization.

We study performance optimizations for SpMM with com-
pressed sparse row (CSR) format. Standard libraries predom-
inantly use CSR or DCSR [4]. Other formats exist, but may
require expensive conversions or storage overheads. SpMM
performance with CSR varies with both the sparsity pattern
and the GPU design. Sparsity requires strategies to better
balance load across warps within a cooperative thread array
(CTA) and strategies to improve data locality to reduce mem-
ory bandwidth demand.

In this paper, we study sources of inefficiency of the CSR
format on GPU performance and propose permutation tech-
niques for matrix rows to improve data locality, load balance,
or both. We improve SpMM performance by identifying the

permutation technique best suited for a given matrix sparsity
pattern. We do so by modeling performance as a function of
summary statistics and abstract features that describe matrix
structure and hardware-software interactions. In summary,

• We analyze effects of load balance and data locality
when GPUs perform SpMM. The analysis motivates our
proposed policies for matrix permutations.

• We propose several row permutation strategies for CSR
to improve load balance and data locality on GPUs.
Moreover, we select the best permutation given matrix
features. We improve performance by 1.4× on average
and up to 20× compared to plain CSR on two GPUs.

• We derive features that model the relationship between
sparsity pattern and GPU performance. These features
reveal the best permutation strategy for each matrix. For
1,688 sparse matrices, performance under our model-
driven policy is 96% of the performance under an oracular
policy.

This paper is a first step towards broader studies on ef-
ficient sparse computations on a variety of data structures
and hardware platforms like neuromorphic accelerators [5].
Given the success of our performance models, studying more
complex predictors (e.g. deeper neural networks) could extend
our results to higher dimensional, sparse tensors in CNNs.

II. BACKGROUND

A GPU consists of multiple streaming multiprocessors
(SMs) that execute kernels in parallel. Each SM runs multiple
cooperative thread arrays (CTAs), which are also known as
thread blocks, that are defined by the program. Each CTA
consists of multiple warps, each with a fixed number of threads
(e.g., 32). Threads within a warp execute the same instruction
on multiple data (i.e., SIMD). Each SM has fast private mem-
ory such as the L1 cache and a shared memory space (shmem)
for inter-thread communication. Shared memory space of an
SM is divided between different CTAs of that SM. Different
SMs communicate through an L2 cache and global memory.

A. Sparse Data Structures

SpMM multiplies sparse matrix A and dense matrix B,
producing output matrix C. Storing sparse matrices efficiently
requires compressed representations. Among numerous for-
mats, CSR is most widely used [6] [7].

Algorithm 1 Parallel Sparse Matrix Multi-vector Multiplication

Input: CSR A[M][N], float B[N][K]
Output: float C[M][K]

1: int WarpSize = 32; //number of threads in each warp
2: int wid = threadIdx.x/WarpSize; //warp ID
3: int twid = threadIdx.x%WarpSize; //thread ID within a warp
4: int numWarps = blockDim.x/WarpSize //number of warps within a block
5: for i = wid; i < M ; i+ = numWarps do
6: for j = rowidx[i] + twid; j < rowidx[i+ 1]; j+ = WarpSize do
7: //partial sum computation and accumulation

Compressed Sparse Row (CSR). CSR represents a sparse
matrix with M rows and nnz non-zero elements using three
arrays—rowidx, colidx, and value. Together, these ar-
rays specify the row, column, and value for each non-zero
element and avoid explicitly storing the many zeros. The
value and colidx arrays, each with nnz elements, specify
the value of non-zero elements and their column indices in the
order of their occurrence across rows. The rowidx array, with
M+1 elements, specifies where each matrix row starts and ends
in the value and colidx arrays. rowidx[i] specifies
the aggregate number of non-zero values in the first i rows.
Starting row indices from 0, rowidx[i+1]− rowidx[i]
gives the number of non-zeros in row i.

Doubly Compressed Sparse Row (DCSR). DCSR further
improves compression efficiency and reduces memory traffic
[4][8]. The CSR rowidx array counts the number of non-
zero elements in each row, but this array contains redundant
information when matrices have many empty rows. DCSR
introduces a rowptr array to identify non-empty rows and
modifies rowidx to store information only for those rows.
Fig. 1 illustrates the two representations for a 4×4 matrix.

A =

 0 a01 0 a03

0 0 0 0
0 0 0 0
a30 0 0 0

rowidx = (0 2 2 2 3)

colidx = (1 3 0)

value = (a01 a03 a30)

rowidx = (0 2 3)

rowptr = (0 3)

colidx = (1 3 0)

value = (a01 a03 a30)

Fig. 1: Sparse data formats. CSR (left). DCSR (right)

B. Output Stationary SpMM

SpMM can be parallelized for GPU computation. Tiling
partitions the matrix and allows multiple processing elements
to compute on different partitions, impacting data locality and
computation efficiency [9]. When tiles fit in caches, commu-
nication with memory decreases and performance increases.
SpMM kernels that keep tiles of matrix A, B and C in
shared memory are referred to as A-stationary, B-stationary
and output(C)-stationary, respectively. B- and output-stationary

kernels are most common because the sparse matrix A’s mem-
ory footprint is much smaller than the others’ [9]. Algorithm
1 presents a psuedo code for parallel SpMM via an output-
stationary kernel implementation.

In Fig. 2, sparse matrix A is partitioned horizontally and
dense matrix B vertically. Sparse matrix A is stored in row-
major order with CSR format, which aligns with the horizontal
tiling required for output-stationary computation. Dense matrix
B is stored in column-major order, which maximizes data
locality in tile traversals. A and B are partitioned such that
each partition holds multiple rows and columns, respectively.

Output matrix C’s tiles could be computed in either row- or
column-major order. Row-major computation exploits locality
for one strip of A but requires expensive traversal over all
strips of B. In contrast, column-major computation exploits
locality for B and usually performs better due to dense matrix
B’s larger memory footprint. In our implementation, each CTA
in one SM processes a column of C’s tiles by traversing over
strips of sparse A and reusing a single strip from dense B.

A (CSR) B (Dense) C

× ＝

Fig. 2: Output(C)-Stationary SpMM Kernel

Suppose each CTA has Nw warps and each warp has Nt

threads. Row i ∈ [0,M) of A is assigned to warp j = i%Nw.
Each warp’s threads compute on the non-zero elements of its
assigned rows in the sparse matrix A (e.g., when Nw = 32,
warp j = 0 computes on rows 0, 32, 64, ...). Multiplication
of non-zero elements of a sparse matrix’s row happen on
threads of the corresponding warp in parallel. Thread local
registers accumulate partial sums without atomic operations,
an advantage of the output-stationary kernel.

C. SpMM Performance Factors

Load Distribution. Matrix values are often distributed non-
uniformly across rows, constraining utilization and degrading
performance. A CTA cannot release its resources until its
warps become idle, and a warp’s computation completes when
its Nt threads process their values. The longest running warp

in a CTA dictates the critical path. Imbalanced work among
warps leads to cases where a CTA is blocked from accepting
new tasks only because a few warps are still working. This
degrades performance by wasting parallel processing elements.

A warp’s computational load increases with the number of
non-zero elements nnzR in each assigned row R. If nnzR
exceeds the number of threads Nt, the warp’s computation
proceeds iteratively until all non-zeros are processed. When a
warp with Nt threads processes row R, the maximum number
of non-zeros assigned to a thread is

⌈
nnzR
Nt

⌉
; we refer to this

measure as warp load. For example, consider a warp with 32
threads that compute on two rows with 33 and 64 non-zeros.
The warp load for both rows is two (=

⌈
33
32

⌉
=
⌈
64
32

⌉
), but

thread utilization differs. In the second iteration, the warp for
the row with 33 non-zeros utilizes only one thread whereas the
warp for the row with 64 non-zeros utilizes 32 threads. Poor
utilization translates into unexploited opportunities for higher
throughput.

Memory Bandwidth Demand. SpMM is memory-bound.
During the execution of an output-stationary kernel, each
thread multiplies a non-zero in sparse matrix A with the
corresponding value in dense matrix B. Because non-zeros
are non-uniformly distributed in A, memory requests for B’s
matrix elements are irregular and span a variable number of
cache lines. Rather than the number of non-zeros, it is the
location of those non-zeros within a row that determines the
cache lines a warp must fetch from dense matrix B. Given two
rows with the same number of non-zeros, a warp may fetch a
significantly different number of cache lines.

Suppose each 128B cache line holds 32 consecutive ele-
ments of a column in B. If a warp performs multiplication
for 32 consecutive non-zeros in a row of A, it can obtain
the corresponding 32 elements from B’s column, stored in
column-major order, by loading a single cache line. In contrast,
if a warp performs multiplication for 32 sparse non-zeros
distributed across columns (e.g., columns 0, 32, 64, etc.),
it must obtain the corresponding 32 elements from B by
loading 32 different cache lines. Thus, the locations of non-
zero elements within A’s rows define access patterns in B’s
columns, impacting performance through data locality and
cache effectiveness.

III. DATA PERMUTATION POLICIES

Permutations re-order sparse matrix rows to improve load
distribution and data locality. We propose row permutation
techniques to improve SpMM performance on GPUs yet
preserve the CSR representation of the sparse matrix. Row
permutations happen offline or the cost is amortized as one
sparse matrix is likely to be used several times.

A. Load Balancing Permutations

We re-order rows of the CSR matrix to reduce load vari-
ation across parallel warps within a CTA, thereby improving
utilization. Prior studies categorize rows based on the number
of non-zeros and use different SpMV kernels for each category
[10]. In contrast, we re-order rows to better align the non-zero

distribution with a single output-stationary kernel, avoiding the
costs of invoking multiple kernels.

Plain Sort. We sort rows by warp load before assigning
computation. This technique clusters rows with similar num-
bers of non-zeros and increases the likelihood of balanced
work across a CTA’s warps. Although this technique does not
guarantee fully balanced loads, it improves load balance across
groups of consecutive rows.

Flipped Sort. We follow the same logic as Plain Sort with
one difference. After every Nw=32 rows, the assignment order
of rows to warps is flipped to avoid assigning the largest load
in each subset of Nw rows to the first warp. Although this
technique does not guarantee fully balanced loads, it reduces
the likelihood of one warp consistently receiving higher loads
and improves load balance across groups of consecutive rows.

Longest Processing Time (LPT) Sort: We assign rows
to minimize the longest running warp’s load. First, we sort
rows in decreasing order of warp load. Then, we assign each
row to the warp with the smallest load thus far. This greedy
assignment minimizes maximum warp load, which defines
how long a CTA is busy.

B. Cache-Aware Permutations

Rows with the same number of non-zeros could differ
significantly in the distribution of those non-zeros, which
determines cache access patterns for dense matrix B. When
each collection of 32 contiguous columns in sparse matrix A’s
row holds at least one non-zero, the SpMM kernel must read
the corresponding cache line for dense matrix B. Cache-aware
sort strategies aim to improve cache performance by increasing
locality and re-use for read cache lines.

First, we translate matrix A’s sparsity patterns into matrix
B’s cache access patterns. We construct a bit mask for each
sparse matrix row. If the i-th block of 32 contiguous columns
in the row contains at least one non-zero, b[i] = 1 in the mask
and the i-th cache line from matrix B’s column is required.
Otherwise, b[i] = 0. A sparse matrix with N columns produces
a mask with

⌈
N
32

⌉
bits.

Second, we measure data re-use between pairs of rows,
which will be multiplied with the same column of B, by
assessing their masks’ similarities. Similar masks correlate
with higher re-use as the computation observes fewer 0-1 and
1-0 transitions, which indicate a non-cached block of B is read
and a cached block is not re-used, respectively. We measure
similarity with the Hamming distance (i.e., XOR) between
two rows’ masks. The following row permutation strategies
maximize similarity to improve locality.

Warp-Aware Sort. To increase intra-warp data re-use, we
re-order rows to minimize distances between adjacent rows in
each warp. Adjacent rows are located 32 rows away from each
other in the sparse matrix because rows are striped across
the Nw = 32 warps of the CTA during load assignment. We
initialize the sorted matrix such that the first 32 rows are
those from the original matrix with the lowest warp load.
The next 32 rows are those from the original matrix that
minimizes Hamming distance to a previously sorted row

located 32 rows earlier (i.e. row[i] is selected to minimize
the distance from row[i-32]). This incremental assignment of
rows from the original matrix to the sorted matrix continues
until every row has been added. At the end, each warp has
been assigned rows with similar access patterns to dense
matrix B.

CTA-Aware Sort. To increase inter-warp data re-use, we
re-order rows to minimize distances between adjacent rows
in the matrix. Adjacent rows are processed in parallel by
the CTA’s warps. We re-order rows to create clusters of
Nw = 32 consecutive rows, corresponding to parallel work
groups, with similar cache access patterns. We incrementally
add rows to clusters, selecting the row from the original
matrix most similar to the previously added row in the sorted
matrix. Because clusters of consecutive rows in the matrix
are assigned to parallel warps, minimizing Hamming distance
between adjacent rows increases the likelihood that cache lines
requested by one warp are re-used by another warp running
at the same time.

We are not the first to study SpMM locality. Section VI pro-
vides a detailed discussion of related work but two particular
studies are noteworthy here. First, Pichel et al. improves local-
ity by measuring and minimizing global accumulate distance,
a count of aligned cache lines between two rows [11]. Our
approach is comparatively finer-grained. It further accounts
for the likelihood of requesting non-cached blocks or evicting
recently cached blocks and minimizes the distance in these
measures for two rows that are likely to be executed within a
short time frame.

Second, Jiang et al. improves locality by re-ordering rows
in a CSR matrix using the ratio of identical non-zero columns
to the total non-zero columns as a measure of similarity
between rows [12]. Again, our approach differs in granularity,
tracking columns at coarser cache block granularity and
assessing row similarity with more detailed re-use statistics
rather than column patterns.

C. Hybrid Permutations

Hybrid strategies combine benefits from load balancing and
cache-aware sort.

Hybrid-1 Sort adjusts load balancing strategies by consid-
ering data locality. When several rows have equal warp loads,
we use locality to break ties rather than simply picking the
first of these rows. We break ties by selecting the row with
the smallest distance to the adjacent row, balancing load while
increasing data re-use across a CTA’s parallel warps.

Hybrid-2 Sort adjusts cache-aware strategies by consider-
ing warp load balance. When several rows are equally similar
to the previously added row’s bit mask, we break ties based
on secondary considerations. We consider three variants. First,
Hybrid-2.1 uses CTA-aware Sort and breaks ties based on warp
load. Second, Hybrid-2.2 uses CTA-aware Sort and breaks
ties based on distances between intra-warp bit masks. Third,

5 10 15 20 25

Number of Rows in Sparse Matrix (K)

1

10

100

0.1

0.01

0.001

0.0001

S
p

ee
d

u
p

 (
1

 =
 c

u
S

P
A

R
S

E
)

(a) GV100

5 10 15 20 25

Number of Rows in Sparse Matrix (K)

1

10

100

0.1

S
p

ee
d

u
p

 (
1
 =

 c
u

S
P

A
R

S
E

)

(b) 2080 Ti

Fig. 3: Speedup of C-stationary SpMM baseline kernel with
original CSR ordering against NVIDIA cuSPARSE.

0 500 1000 1500 2000

Sparse Matrix ID

0

250

500

750

1000

1250

G
F

L
O

P
s/

se
c

C-stationary with original CSR ordering

cuSPARSE

(a) GV100

0 500 1000 1500 2000

Sparse Matrix ID

0

250

500

750

G
F

L
O

P
s/

se
c

C-stationary with original CSR ordering

cuSPARSE

(b) 2080 Ti

Fig. 4: Throughput of C-stationary SpMM baseline kernel with
original CSR ordering against NVIDIA cuSPARSE over 1,688
matrices.

Hybrid-2.3 uses Warp-aware Sort and breaks ties based on
warp load.

IV. ASSESSING PERFORMANCE POTENTIAL

Dataset. We measure SpMM execution time, before and
after permutations, for 1,688 matrices from the SparseSuite
Matrix Collection that include multiple categories and diverse
sparsity patterns from real problems [13]. We exclude matrices
that are from duplicate categories, are non-square, or have
more than 30K rows, to fit the dense matrices B and C with
the same dimensions as A in GPU main memory.

Platform. We perform single-precision SpMM on two
GPUs. First, the NVIDIA Tesla GV100 has 5,120 FP32

-14 -12 -10 -8 -6 -4 -2 0

Log(density)

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

S
p

ee
d

u
p

(a)

0 5 10 15 20 25 30 35

Number of Rows in Sparse Matrix (K)

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

S
p

ee
d

u
p

(b)
Speedup

0

10

20

30

40

50

60

70

F
re

q
u

en
cy

 P
er

ce
n

ta
g

e
(%

)

[0
.6 -

0.8]

[0
.8 -

1]

[1
 -

1.2]

[1
.2 -

1.4]

[1
.4 -

1.6]

[1
.6 -

3.6]

(c)

Fig. 5: Speedup after a load balancing permutation (LPT Sort) compared to original CSR on GV100. (a) plotted over density,
(b) plotted over matrix size, (c) histogram of speedup values.

-14 -12 -10 -8 -6 -4 -2 0

Log(density)

0.2

0.6

1.0

1.4

1.8

2.2

S
p

ee
d

u
p

(a)

0 5 10 15 20 25 30 35

Number of Rows in Sparse Matrix (K)

0.2

0.6

1.0

1.4

1.8

2.2

S
p

ee
d

u
p

(b)

Speedup

0

10

20

30

40

50

60

F
re

q
u

en
cy

 P
er

ce
n

ta
g

e
(%

)

[0
.2 -

0.4]

[0
.4 -

0.6]

[0
.6 -

0.8]

[0
.8 -

1]

[1
 -

1.2]

[1
.2 -

1.4]

[1
.4 -

1.6]

[1
.6 -

2.4]

(c)
Fig. 6: Speedup after a cache-aware permutation (Warp-aware Sort) compared to original CSR on GV100. (a) plotted over
density, (b) plotted over matrix size, (c) histogram of speedup values.

CUDA cores operating at 1.53 GHz. It has up to 96 KB
of shared memory per SM, 6 MB L2 cache, and 16 GB
HBM2 main memory with a 4 Kb bus providing 870 GB/s
of bandwidth. Second, the NVIDIA RTX 2080 Ti has 4,352
FP32 CUDA cores operating at 1.35 GHz. It has a 5.5 MB
L2 cache and an 11 GB GDDR6 main memory with a 352 b
memory bus providing 616 GB/s bandwidth. We compile our
CUDA codes with nvcc in CUDAToolkit v10.2 with the -o3
compiler flag.

Baseline. We use the C-stationary SpMM implementa-
tion [9], because it outperforms the state-of-the-art baseline,
the NVIDIA cuSPARSE library [14]. The cuSPARSE library
is a general sparse linear algebra library suite with a so-
phisticated API. We try both modes that cuSPARSE offers
for SpMM with CSR and compare our C-stationary baseline
against the better performing one. Other recent work has also
used fixed-function SpMM implementations which outperform
cuSPARSE [9] [12]. Fig. 3 indicates that our C-stationary
SpMM outperforms cuSPARSE by 1.67-1.89×, on average,
for our matrices and GPUs. Fig. 4 also reports raw throughput,
in GFLOPs, for the two SpMM implementations.

A. Performance Determinants

Fig. 5 evaluates performance for one representative load-
balancing permutation technique, reporting speedups on the
GV100 from LPT Sort. Each point corresponds to one sparse
matrix. In Fig. 5(a), matrices are ordered by their densities
(x-axis) and speedups are reported relative to SpMM on the
original CSR matrix (y-axis). Fig. 5(b), however, reports the
speedups relative to the matrices’ number of rows (x-axis).
LPT Sort balances warp load and improves performance by
up to 3.5×. But LPT is counterproductive for several matrices,

harming performance by 0.8× in the worst case. Fig. 5(c)
indicates more than 17% of matrices are harmed by LPT Sort.

Warp Load Distinct Cache Lines
of matrix B

6
2

3
2

2

3
4

3
2

4
2

4

3
3
2
4
2

6

6

6

warp 0
warp 1
warp 2

warp 3
warp 2

warp 1
warp 2
warp 3
warp 0
warp 1

warp 0
warp 3

warp 0
warp 1
warp 2
warp 3

warp 0
warp 1
warp 2

warp 3
warp 2

warp 1
warp 2
warp 3
warp 0
warp 1

warp 0
warp 3

warp 0
warp 1
warp 2
warp 3

Warp Load Distinct Cache Lines
of matrix B

14
4

4
4

2

3
3

3
3

2
3

4

2
2
2
2
2

10

7

7

Fig. 7: Example. CSR original order (top). LPT sorted CSR
(bottom).

We diagnose that load balancing permutations can harm
performance by degrading data locality. Fig. 7(top) presents
sparse matrix A with a diagonal non-zero pattern. Square
cells in each row represent 32 consecutive matrix columns
corresponding to one cache line of the dense matrix B during
SpMM. Colored cells include a non-zero element. Horizontal
red lines set hypothetical boundaries on rows that are sequen-

0.55
0.65
0.75
0.85
0.95
1.05
1.15
1.25
1.35

S
p

ee
d

u
p

D
C
SR

Pla
in

 S
or

t

Flip
pe

d
Sor

t

LPT S
or

t

W
ar

p-
aw

ar
e

C
TA

-a
w

ar
e

H
yb

rid
-1

H
yb

rid
-2

.1

H
yb

rid
-2

.2

H
yb

rid
-2

.3

O
ra

cl
e

0.55
0.65
0.75
0.85
0.95
1.05
1.15
1.25
1.35

S
p

ee
d

u
p

D
C
SR

Pla
in

 S
or

t

Flip
pe

d
Sor

t

LPT S
or

t

W
ar

p-
aw

ar
e

C
TA

-a
w

ar
e

H
yb

rid
-1

H
yb

rid
-2

.1

H
yb

rid
-2

.2

H
yb

rid
-2

.3

O
ra

cl
e

Fig. 8: Box plot for SpMM speedup distribution of different CSR based permutations. GV100 (left). 2080Ti (right)

tially assigned to warps within the CTA (i.e., first row of each
boundary is assigned to warp0 in CTA). Numbers on the right
indicate warp load and the number of distinct cache lines from
matrix B requested by the CTA.

In Fig. 7 (bottom), LPT Sort improves load balance across
warps 0-3 by changing their warp load from 12, 13, 10, 10 in
the original matrix (top) to 12, 11, 11, 11 in the sorted matrix
(bottom). But this permutation increases the distance between
rows with common cache lines (i.e., rows with colored cells
in identical columns). As a result, the CTA computes on these
rows at different times and misses the opportunity to re-use
cached data. The number of distinct cache lines requested
within each boundary increases after LPT sort, and the total
number of distinct cache lines requested from dense matrix
increases from 24 with original CSR to 38 with LPT sorted
CSR.

Fig. 6 reports performance after a representative cache-
aware permutation. Warp-aware Sort accounts for data locality
and improves performance by up to 2.3×, but it harms
performance for over 20% of matrices and by 0.3× in the
worst cases as seen in Fig. 6(c). Fig. 7 reveals how re-ordering
rows for better data locality could imbalance load and harm
performance.

In sum, significant opportunities exist to improve perfor-
mance by permuting matrix rows, but a considerable number
of matrices may suffer slowdowns if the wrong permutation is
chosen. Figs. 5-6 suggest there is no clear relationship between
any single generic metric, such as matrix size or density,
with permutation speedups. We cannot trivially determine
which matrices will benefit from a permutation technique.
Diversity in matrix sparsity, complex trade-offs between load
distribution and data re-use, and several sort techniques make
finding the proper permutation for each matrix a challenge.

In the rest of this section, we analyze the performance
for varied permutation techniques. We evaluate combinations
of multiple techniques to overcome disadvantages of using
one permutation alone. In Section V, we provide a predictive
model that associates permutation techniques’ performance
with features that describe matrix sparsity, enabling intelligent
selection of the best technique for each matrix.

B. Performance Distributions

We measure speedup after each permutation for all 1,688
matrices on two different GPUs: the GV100 and 2080 Ti.
A permutation technique’s performance depends on sparsity

patterns and varies across matrices. Fig. 8 uses box plots to
visualize the performance distribution across sparse matrices
for each technique. The bottom and top of the box indicate the
first and third quartile, respectively. The middle line indicates
the second quartile (i.e., the median). Table. I reports summary
statistics.

TABLE I: Performance summary of various permutation tech-
niques over 1,688 datasets on GV100 and 2080Ti.

GV100 Speedup 2080Ti Speedup
Permutation Max Mean Min Max Mean Min
DCSR 13.4× 0.85× 0.5× 20.2× 1.15× 0.7×
Plain Sort 4.1× 1.02× 0.6× 2.5× 1.0× 0.7×
Flipped Sort 3.9× 1.04× 0.8× 2.4× 1.06× 0.7×
LPT Sort 3.5× 1.10× 0.8× 1.9× 1.06× 0.6×
Warp-aware Sort 2.3× 1.07× 0.3× 2× 0.99× 0.3×
CTA-aware Sort 3.9× 1.01× 0.3× 2.2× 1.0× 0.7×
Hybrid-1 Sort 4.2× 1.0× 0.3× 2.4× 1.06× 0.5×
Hybrid-2.1 Sort 4.1× 1.10× 0.4× 2.3× 0.99× 0.7×
Hybrid-2.2 Sort 4.1× 1.09× 0.3× 2.3× 1.0× 0.6×
Hybrid-2.3 Sort 2.4× 0.97× 0.25× 2.1× 1.06× 0.3×
Oracle 13.5× 1.4× 1× 20.2× 1.37× 1×

No single permutation technique works well for all matrices.
Each technique benefits only a subset of matrices, but those
benefits are substantial. Most techniques report median values
near one, the result of offering a nearly even mix of speedups
and slowdowns across 1,688 sparse matrices. For instance,
DCSR improves performance by up 13.4× and 20.2× on the
GV100 and 2080 Ti, respectively. But its speedup is less than
0.85× and 0.98× for 75% of matrices on the GV100 and 2080
Ti. LPT, Warp-aware, and hybrid permutations on the GV100
and LPT and hybrid permutations on the 2080 Ti report larger
medians and third quartiles, indicating versatility and greater
applicability across diverse matrices.

We analyze the upper bound on performance achievable
when an oracle identifies the best technique for each matrix.
Fig. 8 and Table I report the oracular performance distribution
across matrices. The median speedups are 1.15× and 1.09×,
and 75% of the matrices report a speedup greater than 1.05×
and 1.04× on the GV100 and 2080 Ti, respectively. The
oracle’s performance is superior to all individual permutation
techniques, indicating advantages of combining multiple per-
mutation techniques and selecting the right permutation for
each matrix. The original CSR order is also considered by
the oracle. Note that the oracle is 1.37-1.4× faster than our
baseline SpMM with original CSR. It is also 2.31-2.65× faster
than cuSPARSE, on average.

37%

18%
14%

10%

6%
6%

9% Warp-aware
LPT
DCSR
Hybrid-2.1
Flipped
Hybrid-2.2
Others

38%

17%
14%

10%

8%

15% Hybrid-2.3
LPT
DCSR
Hybrid-1
Flipped
Others

Fig. 9: Summary of the chances of different permutation
policies to provide the best performance over 1,688 matrices.
GV100 (top). 2080Ti (bottom)

C. Oracular Performance

The oracular analysis motivates a portfolio of permutation
techniques to support diverse matrices. Fig. 9 indicates how
often a technique is most preferred for each of 1,688 matrices.
On the GV100, Warp-aware Sort is most popular, and 37% of
matrices benefit most from this permutation. But a mix of six
techniques are required to ensure that 90% of matrices are
supported by their most preferred technique.

Fig. 10 illustrates how oracular performance increases with
the number of permutation techniques available. When an
oracle can choose between two permutations (including the
original matrix), SpMM performance improves by 33% on
average. The two best permutations are DCSR and Hybrid-
2.1 Sort, which uses CTA-aware Sort and breaks ties based
on distances between intra-warp rows. When the oracle can
choose between even more permutation techniques, SpMM
performance improves further. The analysis indicates dimin-
ishing marginal returns when five techniques are available.
Thus, flexibility and choice benefit SpMM performance across
diverse matrices.

While oracular performance gains are considerable, select-
ing the most preferred technique for each matrix prior to
execution is non-trivial. In Section V, we propose predictors
that associate permutation performance with sparsity features
to produce an efficient permutation choice for each matrix.

V. OPTIMIZING PERMUTATION TECHNIQUES

Picking the right permutation technique for each matrix,
rather than using a single technique for all matrices, is crucial
for performance. The challenge is predicting the most suitable
technique for a given matrix. First, we select features that
summarize matrix sparsity characteristics effectively and show
that these features are associated with performance from per-
mutation techniques. Second, we design a model that predicts
the best permutation technique for a matrix given its sparsity
features.

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Permutations

1.00

1.10

1.20

1.30

1.40

A
v
er

a
g
e

S
p

ee
d

u
p

{ Hybrid-2.1 }

{ DCSR, Hybrid-2.1 }
{ DCSR, LPT, Warp-aware }

Fig. 10: Oracular Speedup on GV100

TABLE II: Sparse Matrix Feature Set

Feature Definition
Matrix
nrow number of rows
ncol number of columns
density nnz × [nrow × ncol]

−1

nnz-per-row number of non-zero elements (minimum,
mean, and maximum across rows)

nnz-blocks-per-row number of blocks of Nw consecutive
columns with at least one non-zero (mini-
mum, mean, and maximum across rows)

Load Balance

warp load accumulated warp load (
⌈

nnzR
Nt

⌉
) for all

rows assigned to a warp (minimum, mean,
and maximum across warps)

Data Locality
same-cache-lines number of requests for same cache line of

dense matrix B (minimum, mean, and maxi-
mum across cache lines)

distinct-cache-lines-per-
warp

number of distinct cache lines requested per
warp (minimum, mean, and maximum across
warps)

total-cache-lines-per-warp number of cache lines (distinct or not) re-
quested per warp (minimum, mean, and max-
imum across warps)

adjacent-vector-distance distance between bit masks for adjacent rows
(minimum, mean, and maximum across adja-
cent rows)

A. Sparsity Features

We identify sets of features, for a sparse matrix, that predict
the most suitable permutation technique for the (D)CSR matrix
format. These features reflect insights from our performance
analysis and capture sparsity patterns that affect load balance
and data locality. These features also span the hardware-
software interface, enabling predictors that account for inter-
actions between the sparse matrix, parallel workers, and cache
organization.

Table II lists features that describe the matrix, measure
load balance, and measure data locality. Most features are
expanded to describe three summary statistics (e.g., minimum,
mean, maximum) to produce a full set of twenty-four features.
These features can be quantified, offline and efficiently, by
examining matrix structure. First, matrix features quantify the
distribution of non-zero elements and include measures such
as the number of rows and average number of non-zeros per
row. Second, load balance and data locality features describe
SpMM interactions with the underlying GPU. These features
include platform parameters such as the number of warps and
the cache line size.

Together, these features supply information to predict the
row permutation that performs best. For instance, if the warp
load features across warps indicate a fairly balanced load (e.g.,
similar values for minimum and maximum warp load), the
CSR matrix’s original sparsity pattern offers little potential
performance gain for load balancing permutation techniques
to exploit and cache-aware permutation techniques may be
more beneficial.

B. Optimizing Performance

We construct models to solve a classification problem, in
which sparse matrix features map to the permutation technique
that minimizes execution time. We consider the twenty-four
features in Table II. Fig. 10 indicates diminishing marginal
returns beyond three permutation techniques and we consider
four classes: DCSR, LPT, Warp-Aware, and the original CSR
matrix order. This fourth class is required because some
matrices see only slowdowns from row permutations, and
keeping the original order is preferred. Note that our model
imposes no limit on the number of classes.

We approach this classification problem in two steps. First,
we predict execution time of permutation classes using at-
tributes of the sparse matrix in Table II (regression). We
construct a neural network with four execution time outputs,
one for each permutation technique. The network uses two
fully connected hidden layers with 64 and 32 neurons with
L2 regularization. Second, given the predicted execution times,
we select the permutation technique that minimizes execution
time as the preferred choice (classification).

Figs. 5-6 indicate no clear linear relationship between
features, such as density, and speedups from permutation tech-
niques. Neural networks can describe non-linear relationships
and interactions between features, making them attractive
models for modeling SpMM performance, but other models
might be suitable as well.

We classify in two steps because predicting raw execution
time might be desirable. But also we evaluate our predictor
by directly training a classifier on the same set of sparsity
features to classify each matrix in a permutation class. Instead
of regression values for executions times, we use softmax in
the output layer and select the permutation class with highest
probability as the classification result. This approach achieves
average speedups within 4-5% of the oracle’s.

C. Training

We implement our predictor with the Keras library and run
it with the Tensorflow backend on an x86 machine. We use
80% of the 1,688 matrices to train the model and 20% to test.
The loss function is mean absolute percentage error.

Fig. 11 shows how often each of the top four permutation
techniques is most preferred by a sparse matrix on the GV100
and Ti 2080 within our training set. The population distribution
of matrices among these four permutation classes is highly
imbalanced. Therefore, a normal training procedure with equal
importance for all samples from the training set is likely to
lead us to a biased model.

49%

29.2%

15.5%

6.2%

LPT Sort
Warp-aware
DCSR
CSR

55.9%
22.2%

14.9%

6.9%

Hybrid-2.3
Hybrid-1
DCSR
CSR

Fig. 11: Summary of the chances of four permutation policies
to provide the best performance over training set on GV100
(top) and Ti 2080 (bottom).

To avoid bias, we assign a set of weights to classes that
are inversely proportional to class population in Fig. 11. For
instance, as the population of the LPT class is 1.7× the
population of the Warp-aware class, the weight assigned to
Warp-aware is 1.7× larger than LPT’s. Weights define the
value of each sample during training and are accounted for in
the loss function. Minority classes’ information is preserved
due to their their greater weights in the loss function. Such
weighting is common when training with imbalanced data.

D. Accuracy

For each matrix in the test set, we evaluate four predicted
execution times corresponding to the four candidate permuta-
tion techniques (i.e., CSR, DCSR, LPT, and Warp-aware on
the GV100). Each prediction incurs an error compared to true
execution time. We use absolute error percentage
(True Value - Predicted Value

True Value × 100) to quantify model accuracy.
Fig. 12 summarizes regression accuracy by plotting an

empirical cumulative distribution function. The x-axis presents
error and the y-axis presents how often predictions achieve
less than that error. Fewer than 30% of matrices report errors
below 2% and approximately 70% report errors below 10%.
Although predictions are inaccurate for a considerable number
of matrices, the regression stage is intended to support the
following optimization stage, which finds the best permutation
technique for each matrix. As long as execution time predic-
tions are relatively accurate, they may be sufficient for our
optimization problem.

To evaluate optimization effectiveness, Fig. 13 presents
classification results in a confusion matrix. Rows and columns
correspond to optimal and predicted classes, respectively. Each
sparse matrix is accounted for in the row for its optimal class
and column that our model predicts for it. Each cell reports two
values—the number of matrices assigned to it and the average
performance loss for those matrices. Loss is the difference
between model- and oracle-selected permutation. Note the
the test set has 24, 57, 100, and 157 matrices for classes
CSR, DCSR, Warp-aware, and LPT. If all matrices were

Maximum Prediction Error(%)

0

20

40

60

80

100

F
re

q
u

en
cy

 (
%

) CSR
DCSR
Warp-aware Sort
LPT Sort

2 4 6 8 10 12 14 16 18 20 50 100 >100

Fig. 12: Cumulative distribution of absolute errors on predicted execution time for each of the 4 classes. 70% of our predictions
report errors below 10%.

10

0%

0

0%

9

5.1%

5

13.4%

0

0%

51

0%

6

69%

0

0%

0

0%

1

3.7%

58

0%

41

8.1%

4

3.9%

1

43.8%

17

7.8%

135

0% 0

25

50

75

100

125

CSR DCSR Warp-aware LPT

CSR

DCSR

Warp-aware

LPT

Predicted Class

O
ra

cl
e

O
pt

im
al

 C
la

ss

Fig. 13: Confusion matrix for classification using our predictor
model on GV100.

perfectly classified, only the diagonal cells in the confusion
matrix would hold non-zero values. The confusion matrix
shows 82% of matrices are classified correctly using regression
predictions. For example, 135 of the 157 LPT matrices are
classified correctly while 4, 1, and 17 of its matrices are
mistakenly classified under CSR, DCSR, and Warp-aware, re-
spectively. However, even this analysis is conservative because
the classifier may select a sub-optimal technique yet achieve
a large fraction of the optimal technique’s performance gain.
Cells with high performance loss include very few samples.
Although our model classifies one matrix originally from
LPT class as DCSR class, incurring a 43% performance loss,
most mis-classifications incur less than 10% performance loss
relative to oracular performance.

Our proposed classifier performs nearly as well as an oracle.
The neural network selects the permutation technique and
improves the test set’s performance by 1.37×, on average,
over using the original matrix representation. An oracle that
chooses the right technique for each matrix could improve
performance by up to 1.41× on the GV100. Training our pre-
dictor on the Ti 2080 also achieved average gains within 4% of
oracle gains. However, these averages obscure performance for
individual matrices and we must also evaluate the performance
distribution.

Fig. 14 presents the distribution of losses on matrices in
the test set. Loss is zero when the model and oracle select
the same permutation, is modest when the model selects a
sub-optimal permutation that performs well, and is high when
the model selects the wrong permutation strategy entirely and

Maximum Performance Loss(%)

60

70

80

90

100

F
re

q
u

en
cy

 (
%

)

2 4 6 8 10 12 14 16 18 20 50 100 >100

Fig. 14: Histogram of performance loss due to mis-
classification compared to oracle choice

causes a significant loss. The figure characterizes losses across
tested matrices in a histogram. Over 86% of tested matrices
perform within 4% of oracular performance and over 90% of
them within 10%. On average, matrices perform within 3.8%
of oracular performance.

Using our sparsity feature set, our predictor achieves high
accuracy with a simple network architecture, which results in
fast training. Inference to predict the best permutation strategy
for each matrix in the test set also happens in real-time.
High accuracy, low cost, and considerable gains, compared
to blindly using one permutation for all matrices, strongly
motivate using our prediction technique to select the right
permutation for each matrix’s unique sparsity pattern.

E. Sensitivity

Model Features. Prior approaches model the effect of
different sparse matrix representations using only matrix char-
acteristics and neglecting platform parameters [15] [16]. In
contrast, we model the effect of matrix row permutations, for a
given representation, and require additional features. We train
our model twice, once with our matrix features alone and again
with the complete feature set.

The model trained with only matrix characteristics selects
techniques that improve performance by only 1.10× and
incurs 31% performance losses relative to the oracle. The
model trained with the complete feature set selects techniques
that improve performance by 1.37× and incurs only 3.8%
performance loss. Considering both hardware and software
parameters, such as load balance and data locality, is crucial
for classifying permutation techniques.

Neural Network Topology. The neural network’s hyper-
parameters affect model accuracy and learning rate. A full
exploration of the predictor’s topology space, such as the
number of hidden layers and the number of neurons in
each layer, is beyond this study’s scope. But we do assess
model sensitivity to hyperparameters and use rules-of-thumb to
constrain the hyperparameter space. We begin with one hidden

Neural Network Topology

0
2
4
6
8

10
12

A
v
er

a
g
e

P
er

fo
rm

a
n

ce
 L

o
ss

 (
%

)

(4
,0

,0
)

(8
,0

,0
)

(1
6
,0

,0
)

(3
2
,0

,0
)

(6
4
,0

,0
)

(8
,4

,0
)

(1
6
,8

,0
)

(3
2
,1

6
,0

)

(6
4
,3

2
,0

)

(1
6
,8

,4
)

(3
2
,1

6
,8

)

(6
4
,3

2
,1

6
)

Fig. 15: Sensitivity of predictor accuracy to neural network
topology. Topology (a,b,c) represents 3 hidden layers with a,
b, and c neurons.

layer and examine the effects from more neurons and/or more
layers on prediction accuracy using L2 regularization. Fig. 15
reports average performance loss relative to an oracle. Adding
a second layer improves accuracy, but adding a third did not.
Given these outcomes, we use two hidden layers with 64 and
32 neurons, respectively, to obtain accurate predictions with
relatively few parameters.

VI. RELATED WORK

Matrix Permutations. Reordering sparse matrix rows or
columns improves efficiency and bandwidth [17] [18] [19].
Examples include classical techniques like Approximate Min-
imum Degree [19], Reverse Cuthill–McKee [17] [20], and
METIS [18] for SpMV on CPUs. Pichel et al. define distance
functions between matrix rows/columns [21] [22] and find a
graph traversal that minimizes the distance between adjacent
rows, outperforming classical reordering approaches. Pichel
et al. also extend reordering to GPUs [11], outperforming all
classic reordering techniques. Our cache-aware strategies are
inspired by Pichel et al.

Our approach differs from prior work. First, we define a
different distance metric, modeling not only the likelihood of
re-using a cached block but also the event of requesting a non-
cached block or evicting a recently cached block. Second, we
consider code structure and thread organization in our SpMM
kernel, reordering rows to minimize differences between rows
that are likely to compute close in time.

Jiang et al. cluster and reorder rows to improve locality
[12], measuring similarity based on the ratio between identical
non-zero columns to all non-zero columns among two rows.
Unfortunately, two pairs of rows with the same ratio can differ
significantly in the number of reused cache lines. The ratio
also misses locality when non-zero columns are not identical
yet belong to the same cache block, each of which holds 32
columns. We address this problem with bit vectors that track
access patterns for cache blocks. Finally, prior studies do not
account for GPU load and cannot meet the needs of diverse
matrices when no single permutation technique is best suited
for all matrices. We are the first to develop a broad set of
permutation techniques for GPUs.

Sparse Linear Algebra. How kernels are mapped to par-
allel processing elements influences load balance and data re-
use. Load balance can be improved by distributing non-zeros

over elements more effectively [23] [24] [25] or selecting an
optimal kernel given the number of non-zeros in rows [10].
Different sparse matrices have varied preferences for code
structure, incurring the costs of parameter tuning and kernel
switching; we do not tune SpMM code in this paper.

Sparse Matrix Format. Data structure and matrix format
impact performance and storage requirements. CSR is most
common but alternatives have been proposed [26] [27]. Some
data formats are particularly efficient for matrices with specific
sparsity patterns (e.g., diagonal, symmetric) [28] [29] [30].
Alternative formats and kernels can outperform CSR and
the output-stationary kernel for some matrices, but they of-
ten suffer from significant pre-processing time or additional
metadata storage. Furthermore, as many standard libraries and
kernels are implemented for CSR, using other formats incurs
additional overheads for online conversion. Unlike prior work,
we do not modify matrix format or kernel implementation,
avoiding matrix conversion costs.

Machine Learning. Machine learning methods can select
matrix data structures using sparsity features. Decision trees
use sparsity features to choose between COO, ELL, CSR, and
HYB representations [16]. Support vector machines use sim-
pler features yet account for non-linear performance topologies
[15]. CNNs treat sparsity patterns as images and predict the
best data structure [31] [32].

We are the first to predict the effects of row permutations for
a given data structure, CSR. We use richer input features and
less complex models to capture hardware-software interactions
on the GPU. Simpler, fully-connected networks with only two
hidden layers are sufficient for selecting row permutation tech-
niques. Our features are easily calculated and avoid overheads
associated with converting matrices into images for input into
CNNs. Our model requires less parameter tuning and less
training data, and it is faster in training.

VII. CONCLUSION

We design sparse matrix row permutations that improve
load balance, data re-use, or both for SpMM computation on
GPUs. We propose a heterogeneous permutation strategy to
choose the best performing permutation for each matrix given
its sparsity pattern. The strategy offers significant performance
gains compared to using a single permutation for all matrices.
We develop a predictive model that finds the best permutation
for each matrix using its sparsity features and achieves 96%
of oracle gains.

ACKNOWLEDGMENT

We thank Jason Clemons and Iuri Frosio for their insight-
ful feedback on machine learning methods. This work was
supported in part by the National Science Foundation grants
CCF-2002737 and CNS-1822085.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
Templates for the solution of algebraic eigenvalue problems: a practical
guide. SIAM, 2000.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 25, pp. 1097–1105, 2012.

[4] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in IEEE International Symposium on Parallel
and Distributed Processing. IEEE, 2008, pp. 1–11.

[5] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), 2016, pp. 367–379.

[6] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation,
Tech. Rep., 2008.

[7] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of the ACM/IEEE Conference on
Supercomputing. IEEE, 1999, pp. 30–30.

[8] C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim, S. E. Kurt,
I. Nisa, S. Sabhlok, Ü. V. Çatalyürek, S. Parthasarathy, and P. Sa-
dayappan, “Efficient sparse-matrix multi-vector product on GPUs,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2018, pp. 66–79.

[9] D. Fujiki, N. Chatterjee, D. Lee, and M. O’Connor, “Near-memory data
transformation for efficient sparse matrix multi-vector multiplication,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–17.

[10] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on GPUs for graph
applications,” in Proceedings of the International Conference for High
performance Computing, Networking, Storage and Analysis, 2014, pp.
781–792.

[11] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodrı́guez, “Optimiza-
tion of sparse matrix–vector multiplication using reordering techniques
on GPUs,” Microprocessors and Microsystems, vol. 36, no. 2, pp. 65–77,
2012.

[12] P. Jiang, C. Hong, and G. Agrawal, “A novel data transformation
and execution strategy for accelerating sparse matrix multiplication on
GPUs,” in Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2020, pp. 376–388.

[13] T. A. Davis and Y. Hu, “The University of Florida sparse matrix col-
lection,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[14] “The API reference guide for cuSPARSE, the CUDA sparse matrix
library,” https://docs.nvidia.com/cuda/archive/10.2/cusparse/index.html.

[15] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix format selec-
tion with multiclass SVM for SpMV on GPU,” in 45th International
Conference on Parallel Processing (ICPP). IEEE, 2016, pp. 496–505.

[16] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan,
“Automatic selection of sparse matrix representation on GPUs,” in
Proceedings of the 29th ACM on International Conference on Super-
computing. ACM, 2015, pp. 99–108.

[17] E. Cuthill, “Several strategies for reducing the bandwidth of matrices,” in
Sparse Matrices and Their Applications. Springer, 1972, pp. 157–166.

[18] G. Karypis and V. Kumar, “A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices,” University of Minnesota, Department of Computer
Science and Engineering, Army HPC Research Center, Minneapolis,
MN, 1998.

[19] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum
degree ordering algorithm,” SIAM Journal on Matrix Analysis and
Applications, vol. 17, no. 4, pp. 886–905, 1996.

[20] E.-J. Im and K. A. Yelick, “Optimizing sparse matrix vector multipli-
cation on SMPs,” in PPSC, 1999.

[21] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, “Improving
the locality of the sparse matrix-vector product on shared memory
multiprocessors,” in 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing. IEEE, 2004, pp. 66–71.

[22] J. C. Pichel, D. E. Singh, and J. Carretero, “Reordering algorithms for
increasing locality on multicore processors,” in 10th IEEE International
Conference on High Performance Computing and Communications.
IEEE, 2008, pp. 123–130.

[23] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2016, p. 58.

[24] Y. Liu and B. Schmidt, “Lightspmv: Faster CSR-based sparse matrix-
vector multiplication on cuda-enabled GPUs,” in 26th International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2015, pp. 82–89.

[25] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2014, pp. 769–780.

[26] M. Maggioni and T. Berger-Wolf, “Optimization techniques for sparse
matrix–vector multiplication on GPUs,” Journal of Parallel and Dis-
tributed Computing, vol. 93, pp. 66–86, 2016.

[27] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, and Z. Shao, “Optimization of
sparse matrix-vector multiplication with variant CSR on GPUs,” in 17th
International Conference on Parallel and Distributed Systems. IEEE,
2011, pp. 165–172.

[28] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing, Networking, Storage and
Analysis, 2009, pp. 1–11.

[29] J. Godwin, J. Holewinski, and P. Sadayappan, “High-performance sparse
matrix-vector multiplication on GPUs for structured grid computations,”
in Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units. ACM, 2012, pp. 47–56.

[30] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning
of sparse matrix-vector multiply on GPUs,” in ACM Sigplan Notices,
vol. 45, no. 5. ACM, 2010, pp. 115–126.

[31] J. C. Pichel and B. Pateiro-López, “A new approach for sparse matrix
classification based on deep learning techniques,” in International Con-
ference on Cluster Computing (CLUSTER). IEEE, 2018, pp. 46–54.

[32] J. C. Pichel and B. Pateiro-López, “Sparse matrix classification on
imbalanced datasets using convolutional neural networks,” IEEE Access,
vol. 7, pp. 82 377–82 389, 2019.

