
Spatiotemporal Strategies for Long-Term FPGA
Resource Management

Atefeh Mehrabi
Duke University

atefeh.mehrabi@duke.edu

Daniel J. Sorin
Duke University

sorin@ee.duke.edu

Benjamin C. Lee
University of Pennsylvania

leebcc@seas.upenn.edu

Abstract—The deployment of increasingly large and capable
FPGAs has motivated mechanisms for sharing them, but system
support for FPGAs is not yet mature. Traditional scheduling al-
gorithms do not account for the unique characteristics of FPGAs,
leading to infeasible or inefficient allocations. We propose a novel
scheduling policy, called Spatiotemporal FPGA Scheduling, that
overcomes these challenges to achieve long-term target alloca-
tions by tracking and correcting deviations from targets across
management time periods. Compared to traditional algorithms,
Spatiotemporal FPGA Scheduling produces allocations that are
up to 32% closer to targets, improves average throughput by up
to 44%, and improves average FPGA utilization by up to 23%.

Index Terms—FPGA, resource management, scheduling, spa-
tial sharing, temporal sharing, partial reconfiguration

I. INTRODUCTION

The deployment of increasingly large, capable FPGAs has
motivated mechanisms for sharing them. First, vendors en-
able FPGA virtualization to increase efficiency and amortize
capital costs. Hardware-based virtualization supports running
multiple, concurrent applications by partitioning an FPGA’s
physical resources into slots [1], [2], [3], [4]. Using one or
more slots to define a virtual FPGA is efficient when an
application demands only a fraction of the FPGA.

Second, modern FPGAs support partial reconfiguration
(PR), which programs a subset of the FPGA’s resources. One
FPGA slot can be re-programmed while applications on other
slots run uninterrupted [1], [2], [5], [4], [6], [7], [8]. Partial
reconfiguration improves flexibility as slots can be allocated
to applications on demand, and it is faster than programming
the entire FPGA [9].

Challenges in FPGA Management. Despite recent ad-
vances, efficient and responsive FPGA management remains
difficult even for a single FPGA. Applications often under-
utilize slots and other applications cannot derive utility from
slots’ excess resources. Virtualization enables spatial sharing
but falls short of its promised efficiency because fine-grained
resources are organized into coarse-grained slots. Resources
are often stranded in slots because FPGA demands and allo-
cations are defined in terms of minimum, indivisible bundles.

Partial reconfiguration facilitates temporal sharing but only
up to a point. Unlike in general-purpose processors, context
switches in FPGAs are slow and unwieldy [10], [11]. The
FPGA must checkpoint the running application and incur the
costs of extracting internal hardware state distributed across
CLBs, BRAMs, and DSPs [9]. The FPGA can instead wait

for the running application to arrive at some minimal state
with fewer elements to store [12]. Nonetheless, transition costs
preclude frequent preemptive scheduling.

These challenges hinder our goal: efficiently allocating a
shared FPGA’s resources to meet the system’s desired target
allocations. Target allocations could be dictated by priorities
associated with workload importance or entitlements associ-
ated with external factors (e.g., users’ financial contributions
to a shared system). In this paper, without loss of generality,
our target allocations are based on max-min fairness.

We propose Spatiotemporal FPGA Scheduling (STFS) to
consistently achieve target allocations in virtualized, multi-
tenant FPGAs. Aware of FPGA characteristics, the policy
favors providing logical shares when possible and exploits
temporal scheduling when necessary due to gaps between
logical shares and physically feasible ones. Within short time
periods, STFS allows deviations from logical shares in the spa-
tial domain when these deviations favor throughput, improve
utilization, or avoid preemption. STFS adjusts future shares
to compensate for past deviations from logical shares such
that each application achieves its target allocation, on average,
across time. In sum, we make the following contributions.

• We survey FPGA technology to identify current lim-
itations and emerging capabilities. We identify unique
FPGA characteristics that impact their management.

• We propose STFS, which tolerates short-term deviations
from target allocations to improve throughput and utiliza-
tion. It achieves long-term target allocations by tracking
historical decisions and compensating for past deviations.

• We demonstrate STFS’s ability to respond to system
dynamics such as application arrivals and departures.

We consider multiple applications that seek to instantiate
accelerators on a shared FPGA. For each application, a
stream of tasks arrive over time. Think of tasks as requests
for each pre-implemented accelerator service. We are mo-
tivated by clouds that deploy FPGAs [13], [14] and offer
pre-implemented accelerators as services to users’ virtual
machines [13], [15], [16].

System throughput increases with the number of tasks
served from each application. The FPGA hosts multiple ac-
celerators simultaneously and must manage shared resources.
Allocation and scheduling refer to management decisions
made in space and time, respectively. Informally, we use
allocation and scheduling interchangeably because STFS takes



an integrated spatiotemporal approach to pursue throughput for
accelerated tasks on shared FPGAs.

II. EMERGING FIELD PROGRAMMABLE GATE ARRAYS

FPGAs are evolving in response to their emerging role in
high-performance systems. They can now communicate with
host processors via cache-coherent shared memory [17], [18],
which mitigates a communication bottleneck [19] and encour-
ages the design of fine-grained accelerators [20] This section
surveys recent advances in FPGAs and the next discusses how
technology constraints impact run-time management.

A. Reconfigurable Logic and Slots

An FPGA is a pool of connected, reconfigurable logic
elements: look-up tables (LUTs), flip-flops (FFs), block RAMs
(BRAMs), digital signal processors (DSPs), and routing re-
sources. An FPGA organizes its logic elements in columns
such that each column contains one type of logic (e.g.
DSP) [7], [21]. In commercial FPGAs, such as the Xilinx
Zynq, columns may not repeat with a consistent pattern. Verti-
cally aligned reconfigurable cells are typically homogeneous,
except where I/O blocks are located, but horizontally aligned
ones are not. FPGA regions with the same number of rows
and columns may differ in the number of LUTs, FFs, etc.

Slots. An FPGA’s pool of logic may be partitioned into
a number of reconfigurable regions, called slots, to support
multi-tenancy. A slot is a rectangular region containing some
fraction of the FPGA’s logic [7]. The specific number of recon-
figurable resources in a slot depends on its size and location
within the FPGA. Each slot can be reconfigured independently
to implement multiple accelerators on an FPGA [22].

Static slot sizes permit ahead-of-time compilation [5], es-
pecially when FPGA needs are well established (e.g., pre-
implemented accelerator libraries) or can be anticipated as
tasks flow through queues (e.g., OpenCL work groups) [9].
However, static slot sizing presents challenges in a setting
with diverse accelerators. Larger slots risk poor utilization and
unexploited concurrency when accelerators are small. Smaller
slots may require combining multiple slots, when accelerators
are large, which is not easily supported by EDA tools [23] and
complicates FPGA mappings.

Shell. A portion of the FPGA is reserved for the shell,
which provides infrastructure for communicating with system
components [24], [23], [25]. The shell consumes 20-50% of
its logic and reduces its capacity for accelerators [23], [26].

B. Compilation and Reconfiguration

Accelerator design might start by compiling a design written
in a high-level language into a hardware description at the
register-transfer level [27], [28]. Next, the hardware descrip-
tion is synthesized into a netlist. Finally, the netlist is mapped
to the FPGA’s physical hardware by placing logic and rout-
ing interconnect. The resulting bitstream encodes information
necessary to program and prepare the FPGA for execution.

Instantiating an accelerator on an FPGA requires time
for synthesis, place-and-route, and programming. Synthesis

requires minutes to generate a netlist whereas place-and-route
could require hours to map the netlist to the fabric [5], [29],
[30]. These costs are typically incurred offline, amortized
over long periods of computation, and rarely impact online
performance [5].

Programming the FPGA with a bitstream requires tens to
hundreds of milliseconds [21], [7], a relatively small cost but
one that directly impacts allocation responsiveness. Program-
ming time decreases with the bandwidth of the configuration
port (i.e., ICAP). Emerging non-volatile or stacked memories
might expand the FPGA’s bitstream caches and reduce its
demand for bandwidth. Programming time increases with
bitstream size. Partial reconfiguration can reduce bitstream size
by targeting only a subset of the FPGA’s slots [31], [9].

Partial reconfiguration modifies the accelerator in an FPGA
slot without interrupting other running accelerators and with-
out affecting the shell. Designers can reconfigure at scales
as large as the entire FPGA or as small as an individual
resource (e.g., LUT). Finer granularities increase flexibility
and utilization but impose architectural costs. Xilinx FPGAs
can reconfigure slots and address regions as small as one
element wide and one clock region tall [21], [7].

III. MANAGEMENT CHALLENGES FOR SHARED FPGAS

Shared systems amortize hardware costs over more users
and power costs over more computation. Yet strategic users
require incentives, often rooted in promised shares calculated
from some sort of agreement (e.g., priorities, entitlements,...)
if they are to forgo private systems in favor of shared systems.

Shared FPGAs present yet another setting where meeting
target allocations is critical but conventional policies are
insufficient. Virtualization and partial reconfiguration provide
mechanisms for sharing FPGAs but not managing them. One
might think policies for other computing resources (e.g., pro-
cessor cores, cache and memory) could be simply deployed for
FPGA resources. But our review of existing allocation policies
reveals limits given the unique characteristics of FPGAs.

Specifically, one-shot policies have been used to divide
resources in chip multiprocessors and data centers [32], [33],
[34], [35], [36]. Such policies pursue target allocations with
repeated, independent allocation decisions in each time period.
Allocations are independent such that decisions in the present
have no effect on those in the future. Examples of such policies
focused on fairness include max-min, dominant resource [35],
and resource elasticity fairness [34].

However, applying one-shot policies for FPGA management
is challenging. Policies may calculate and prescribe logical
allocations that require infeasible or inefficient physical allo-
cations due to unique FPGA characteristics. In this section, we
describe constraints that arise from FPGAs’ utility functions,
restrictive slots, and context switches.

A. Step-function Utility

A bitstream is specifically compiled for RTL on a particular
slot. An application derives utility and runs its bitstream
successfully only on the slot it has been compiled for. The



host slot must provide enough reconfigurable resources to meet
the compiled application’s demand. Otherwise the application
derives no utility.

Suppose 3 applications each demand 3 slots, but the FPGA
has only 6 slots. Imagine a one-shot policy that targets max-
min fair allocations. Max-min divides resources fairly among
the 3 applications with identical weights and assigns 2 slots
to each application. When these logical shares are mapped to
physical slots, no application can instantiate its accelerator and
derive utility.1

The FPGA’s step-function utility contrasts with those for
processor cores, cache, memory, and communication band-
width. For these conventional resources, which are invariably
time multiplexed, applications derive partial utility even when
allocations are smaller than demands without further effort
[34]. Prevalent policies, such as max-min or resource elastic-

ity fairness for conventional resources, assume partial utilities
when calculating applications’ shares of scarce resources.
FPGAs, which do not easily produce partial utilities, must
look beyond traditional policies.

B. Restrictive FPGA Slots

The practicality of logical allocations depends on how phys-
ical resources are organized into slots, which raises several
difficulties. First, policies’ logical allocations are fractional and
often calculated to arbitrary levels of precision [35], [34], but
FPGAs’ physical resources are organized into fixed size slots.
This mismatch leads either to wasted resources within a single
slot or awkward partitions across multiple slots.

Second, designing the FPGA with a few large slots leads
to poor utilization when accelerators are small. Rounding
fractional allocations or using one-shot allocation policies
for indivisible goods [36] under-utilizes slots and strands
resources. Recovering these resources requires dividing a slot
for multiple accelerators, but such division requires merging
designs into a single bitstream, preventing independent partial
reconfiguration of colocated accelerators.

Third, designing the FPGA with many small slots might
leave some slots unallocated due to mapping constraints.
Small slots might be combined for large accelerators but, to
avoid routing complexity, current tools combine only adjacent
slots [23], [37].

Finally, an FPGA’s slots are not fungible due to the
heterogeneous layout of reconfigurable resources across the
fabric’s columns. Resources (e.g., LUTs) can be distributed
differently in different slots, which means an accelerator’s
bitstream targets a specific slot and multiple bitstreams are
required to target different slots [23]. Accelerators cannot
easily migrate from one slot to another at run-time with
standard toolflows [38], [37].

1One could imagine deriving partial utilities from allocations smaller
than demands, either by (a) partitioning the design into phases and time
multiplexing slots, or (b) making smaller accelerators that fit the slot size (e.g.,
by parameter tuning [28]). These options, however, have serious drawbacks.

Algorithm 1 Simplified STFS Algorithm

1: S → total number of FPGA slots
2: Sidle → number of idle slots
3: n → number of apps
4: D[i] → number of slots demanded by app i, i∈[1, n]
5: success[i] → success rate for app i
6: CurrAlloc[i]→ number of slots currently allocated to app

i
7: TotalAlloc[i] → sum of slots allocated to app i
8: AvgAlloc[i] → mean of slots allocated to app i
9: TargetAlloc[i] → logical share for app i

10: interval = 0
11: TotalAlloc[i] = 0 for all i
12: for each time interval do
13: interval++
14: Sidle = S
15: *update AvgAlloc[i] and success[i] for all i*
16: CurrentAlloc[i] = 0 for all i
17: while Sidle > Min{D[i]|i∈[1, n]} do
18: next ← i with smallest success[i]
19: if Sidle > D[next] then
20: CurrAlloc[next] += D[next]
21: TotalAlloc[next] += D[next]
22: AvgAlloc[next] = TotalAlloc[next] / interval
23: success[next] = AvgAlloc[next] / TargetAl-

loc[next]
24: Sidle -= D[next]
25: else
26: *don’t choose i again in this interval*

C. Expensive Context Switches

Context switches are very expensive because the compu-
tation’s state—distributed across fine-grained LUTs, RAMs,
etc.—must be extracted, saved, and restored [39]. The FPGA
can extract state using scan chains, which instrument all
memory elements via a shift register mode, but this requires
milliseconds [10], [40], [11]. It can save state using direct
memory accesses, but this requires logic for the DMA en-
gine [41]. To reduce the amount of state that must be extracted,
context switches can wait for task-specific consistency points
(e.g., OpenCL work groups) [12], [9]. Moreover, only one
FPGA slot can be reconfigured at a time. Because context
switches are so expensive for FPGAs, prior work on schedul-
ing processor cores and memory bandwidth [42], [43] does
not translate easily to reconfigurable fabrics.

IV. SPATIOTEMPORAL FPGA SCHEDULING

Spatiotemporal FPGA Scheduling (STFS) is an iterative,
interval-based scheduling algorithm that uses past success in
maintaining target allocations to guide current allocations.
The system defines the target allocation (logical share) for
each application. Without loss of generality, max-min fairness
defines our targets. STFS defines success rate to measure



CurrAlloc AvgAlloc Success Rate

Time A B C A B C A B C Sidle
Final
Allocation

T0

0 0 0 0 0 0 0 0 0 6

A, A, A, B
1 0 0 1 0 0 0.5 0 0 5
1 3 0 1 3 0 0.5 1.5 0 2
2 3 0 2 3 0 1 1.5 0 1
3 3 0 3 3 0 1.5 1.5 0 0

T1

0 0 0 1.5 1.5 0 0.75 0.75 0 6

A, A, C0 0 4 1.5 1.5 2 0.75 0.75 1 2
1 0 4 2 1.5 2 1 0.75 1 1
2 0 4 3 1.5 2 1.5 0.75 1 0

TABLE I: STFS schedules A, B, C with demands 1, 3, 4 slots
on six FPGA slots. Iterative updates for two intervals.

how closely an application’s physical allocations of slots
across time match its logical share.

Success Rate =
Average # Allocated Slots in Prior Intervals

Target Slot Allocation

Applications with lower success rates have been treated more
unfairly with respect to their target allocation in the past and
are prioritized for future scheduling. The algorithm seeks to
ensure applications receive target allocations in the long run.

A. Scheduling Algorithm

Algorithm 1 presents STFS. In each interval, each slot is
allocated to only one application and some applications may
be allocated multiple slots. If a task completes well before
the end of an interval, the accelerator may complete multiple
tasks. If a task is incomplete at the end of an interval, the task
is permitted to complete and avoid preemption.

In each interval, STFS iteratively selects the application with
the next highest priority (Line 18). The selected application
will map one instance of its accelerator if the number of
idle FPGA slots suffices (Line 19). Otherwise, it will be
skipped. Then, the algorithm updates the count of remaining
slots as well as applications’ average allocations, success
rates, and priorities (Lines 20-24). When all slots are used
or remaining slots are insufficient for any application, the
algorithm terminates and accelerators are instantiated in slots.

When the application with the highest priority does not fit in
the remaining idle slots, STFS selects the application with the
next highest priority that fits (if any). This allocation, while
unfair with respect to target allocations in the moment, im-
proves throughput and avoids under-utilization. The deviation
from target allocations for the skipped application is reflected
in its lower success rate and is compensated in future intervals.

The algorithm addresses two challenges in FPGA schedul-
ing. First, it uses non-preemptive scheduling to avoid frequent
context switches. Second, STFS reconfigures at regular inter-
vals and reallocates all slots together, allowing the scheduler
to optimize the mix of colocated applications. In contrast,
releasing and re-allocating slots at irregular intervals (e.g. as
heterogeneous tasks complete) would increase the likelihood
of idle slots as slots cannot be used until there are a sufficient
number of slots to meet an application’s demand.

B. Example Operation

Suppose the FPGA is partitioned into 6 identical slots, and
3 applications (A, B, C) demand 1, 3, and 4 slots, respectively.
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Fig. 1: STFS schedules A, B, C with demands 1, 3, 4 on six
FPGA slots. Slot allocations for five intervals.
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Fig. 2: STFS integrates with FPGA compilation and program-
ming flow.

Without loss of generality, suppose each application’s target
allocation is 2 slots. For the first two iterations, Table I shows
allocations, available resources, and success rates. In each row,
the application with the smallest success rate (bold) has the
highest priority for allocation.

In interval T0, applications have identical priorities. A and
then B are granted resources in order. C has the next highest
priority and requires 4 slots, but only 2 idle slots remain.
Here, STFS deviates from target allocations and allocates the
remaining slots to A rather than leaving them idle. C carries
its deficit from T0 into T1 via its low success rate. In T1,
C is the first task to receive allocations. After C and then A
receive slots, B has the next highest priority but does not fit
into remaining slots. As in T0, A receives these slots rather
than leaving them idle.

Figure 1 illustrates slot usage over time and highlights a
new scenario in T4. B’s priority has increased due to multiple
deviations from target allocations in past intervals, making it
eligible to receive two consecutive allocations in one interval.

C. FPGA Compilation and Programming

Figure 2 shows how STFS is integrated into the FPGA’s
compilation flow and our software toolchain.

Initializer. Initialization configures parameters in Algo-
rithm 1. In the space domain, parameters include the size,
shape, location, and total number of reconfigurable slots. In the
time domain, interval length is the key parameter. The interval
should be long enough to amortize the latency of partial recon-
figuration, which can be modeled as Ps × S/Pt where Ps is a
slot’s bitstream size, S is the number of allocated slots, and Pt

is the configuration port throughput [9], [21]. Initialization also
includes a reference one-shot policy (e.g., max-min fairness)



or numerical values that specify applications’ target allocations
against which success rates are calculated.

Mapper. Given a set of applications (e.g., datacenter ac-
celeration services), the Mapper generates a set of possible
application mixes and FPGA mappings, accounting for FPGA
capacity and mapping constraints. For example, in Figure 1,
6 slots could be used to host either 6 type-A accelerators or
2 type-A and 1 type-C accelerator, etc.

Each colocated mix can be mapped to FPGA slots in
multiple ways. When accelerator A and C share 6 slots, in
theory, A could occupy any 2 slots on the FPGA and leave 4
slots for C, creating

(
6
2

)
= 15 logical mappings. In practice,

however, a feasible mapping requires 2 and 4 adjacent slots
for A and C, respectively (Figure 1 at T1). The Mapper picks a
feasible mapping for compilation. Any other feasible mapping
with similar application mix exploits bitstream relocation at
runtime and does not require re-compilation [37], [44].

Compiler. The compiler produces bitstream(s) for the ac-
celerator(s) and the logic that integrates them with the rest of
the FPGA. For every mapping, the compiler produces a full
bitstream, which programs the entire FPGA. The compiler also
produces partial bitstreams for individual accelerators within
each application mix.

Accelerator compilation can start directly from the task’s
RTL or use high-level synthesis (HLS) tools to automatically
generate RTL for a task written in a high-level language (e.g.,
C/C++). Vivado HLS generates accelerator IPs wrapped with
AXI interconnects and assigns address spaces to memory-
mapped control planes [23]. Vivado Design Suite integrates
the accelerators with the rest of the FPGA.

Multiple application mixes are compiled and their bit-
streams are cached for run-time deployment, as in prior
works [5]. Compiling application mixes is practical for several
reasons. First, for libraries of cloud accelerators, data center
operators know applications well in advance, allowing them to
compile accelerators offline and load cached bitstreams based
on users’ online demands. Second, compilation for multiple
application mixes is highly parallelizable. Third, research in
FPGA place-and-route and programming has reduced com-
pilation latency significantly× [45], [46], [47] or produced
strategies to hide the latency [29], [48].

Programmer. When STFS re-allocates slots to applications,
the FPGA is reprogrammed with a bitstream from the cache.
Xilinx tools use embedded software drivers to boot the board
with required settings and establish communication channels
between the shell and hardware accelerators [49], [50].

V. EVALUATION

Platform. We evaluate STFS on a Xilinx Zedboard
XC7Z020 from the Zynq-7000 SoC family. We create one
column with S∈[3, 6, 12] vertically aligned slots on a portion
of the programmable logic. Because our device requires 1.1
ms to configure all slots, we set the allocation interval to be
1.1 seconds and thus ensure reconfiguration overhead is less
than 0.1%.

Benchmark S = 3 S = 6 S = 12

AES 1 1 2
BFS 1 1 1
SHA 1 1 2
SPMV 1 2 3
GSM 1 2 4
FFT 2 3 5
SORT 3 5 10
VITERBI 3 5 10

TABLE II: Benchmarks and their demands for slots. FPGA
is organized into 3, 6, and 12 slots. Slots under S=3 contains
(BRAM, DSP, FF, LUT) = (30, 40, 20800, 10400). Slots under
S=6 and S=12 are 2 and 4 times smaller, respectively.

Workloads. We evaluate STFS with benchmarks that ex-
hibit diverse resource demands and run-to-completion times.
Table II lists eight benchmarks from two suites used in prior
FPGA accelerator studies, MachSuite [52] and CHStone [5].
We combine benchmarks to create two workloads. The micro-
workload includes AES, GSM, FFT, and VITERBI. This small
subset of accelerators allows us to visualize, understand, and
evaluate detailed allocation dynamics for each accelerator.
The full-workload includes all accelerators. The workload
generates a stream of computational tasks for each accelerated
application. Table II details the number of slots demanded by
each benchmark under different slot sizes. Note that FPGA and
accelerator sizes do not affect our evaluation, which focuses
on how diverse accelerators share an FPGA.

Baselines. We compare against variants of round-robin:
Plain Round-Robin (PRR), Relaxed Round-Robin (RRR), and
Deficit Round-Robin (DRR). PRR has been used in prior
FPGA work [20] but RRR and DRR have not.

“Plain Round-Robin (PRR)” is the traditional ordering
policy. In the current interval, allocation begins with the
application that did not receive its allocation in the previous
interval. Allocation proceeds in order until an application’s de-
mand exceeds remaining capacity. This variant strictly follows
round-robin order even if resources remain unallocated.

“Relaxed Round-Robin (RRR)” is a policy we created to
improve Plain Round-Robin. If the next application in round-
robin order cannot fit its request within the remaining slots,
those slots will be allocated to the next application that can
fit. In each interval, RRR first allocates for applications that
did not receive resources when it was their round-robin turn
due to capacity constraints. RRR then continues in round-robin
order. Thus, RRR improves resource utilization at the cost of
temporarily violating round-robin order.

“Deficit Round-Robin (DRR)” has been used in packet
scheduling [53], [54] but not FPGAs. For each application,
DRR maintains a deficit counter that tracks accumulated de-
viations between actual and target allocations. DRR initializes
the counter to zero, increments the counter by the application’s
target allocation at the beginning of each time interval, and
decrements the counter based on the number of allocated
slots. Resources are allocated in round-robin order and an
application receives allocations only if its counter value is
greater than its request for slots. If an application requests but



Prior Work Multi-Tenancy Dynamic Reconfiguration Scheduling Policy Scheduling Limitation
ViTAL [30] yes yes simple matching between requests and capacity lacks spatiotemporal fairness
OPTIMUS [20] yes no round-robin lacks spatial fairness
Vaishnav et al. [9] yes yes Jain Index lacks temporal fairness
AmorphOS [5] yes yes equal partitioning of IO and bandwidth lacks spatiotemporal fairness
Coyote [39] yes yes round-robin lacks spatial fairness
Blaze [51] yes no first-come-first-serve lacks spatiotemporal fairness
Fahmy et al. [3] yes yes no policy, rejects requests when FPGA resources are unavailable lacks spatiotemporal fairness

TABLE III: Prior work on virtualizing shared FPGAs neglect schedulers that allocate according to targets in space and time.
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Fig. 3: Average slot allocations on FPGA with six slots. STFS
schedules micro-workload, which includes AES. Demand for
one accelerator instance of AES is 1 slot.

does not receive slots due to capacity and counter constraints,
it carries unused counters into future intervals.

Round-robin is a natural baseline for allocating resources
across time. Indeed, prior work provides few better alter-
natives. Many existing systems have deployed single-tenant
FPGAs [55], [13]. Table III also indicates that prior studies in
virtualizing shared FPGAs have neglected the spatiotemporal
scheduling question. Their schedulers do not consistently sat-
isfy allocation targets, neglect wasted slots, and incur preemp-
tion costs. Ours is the first to allocate FPGA slots, permitting
short-term deviations yet achieving long-term targets.

A. Aligning with Target Allocations

Long-term Allocations. Figure 3 shows the average slot
allocations for one benchmark, AES, while STFS is scheduling
micro-workload. The target is 1.5 slots per application, and the
figure shows that allocations may temporarily deviate from the
target in the short term (see spikes in early intervals), but STFS
tracks these deviations to guide future allocations and ensure
average allocations align with the target in the long term.

Figure 4 summarizes slot allocation over time for micro-
workload. RRR, which has no memory of past allocations,
produces large deviations between the realized and target
allocations. Large accelerators, like VITERBI, dominate and
receive considerably more slots over time. PRR, not shown,
has similar allocation dynamics but performs worse. DRR’s
allocations more closely align with target allocations when
compared to PRR and RRR, but still incur unbalanced success
rates from 86% to 100%. STFS’s allocations achieve 100%
success rates for all applications, with better slot utilization
and faster convergence.

Figure 5 repeats the analysis for full-workload and presents
similar outcomes. The target is 0.75 slots for each of eight
accelerators. STFS successfully and quickly converges to this
target for all accelerators. In contrast, other policies suffer
from spatially unfair allocations with unbalanced success rates

relative to target allocations. These other policies also require
more time to converge to targets or waste resources.

Figure 6 demonstrates average success rates among ap-
plications within full-workload. STFS outperforms baselines
by converging to target allocations. Its success rates are on
average 32%, 17%, and 9% higher than those from PRR, RRR,
and DRR, respectively. Even DRR, the best of the baselines,
cannot align its allocations with targets.

Short- versus Long-Term Allocations. There exists a
trade-off between strictly enforcing allocation targets in every
time interval and flexibly aligning with targets across many
time intervals, the strategy pursued by STFS. Figure 7 explores
this trade-off by constraining how often STFS is permitted to
deviate from a logical share. When no deviations from targets
are permitted in the short term, allocations are poorly aligned
with targets in the long term. Physically feasible allocations
differ from logically prescribed ones by 10% to 15%. More-
over, some FPGA slots must remain unallocated. In contrast,
when deviations are permitted, STFS exploits this flexibility
by tracking history and compensating applications across time
for any short-term deviations from the target allocation. Long-
term allocations approach their targets, deviations fall to zero,
and slot utilization increases by up to 13%.

Effects of Accelerator Size. The policy’s perspective on
fairness determines its sensitivity to accelerator size. STFS
allocates fairly with respect to target allocations, ensuring each
application receives the targeted number of slots across time.
This fairness concept is robust to differences in applications’
demands for FPGA slots; larger demands simply lead to less
frequent allocations across time. In contrast, round-robin vari-
ants allocate fairly with respect to turns on the FPGA, ensuring
each application dequeues and computes on the FPGA at
regular intervals. Applications that demand more slots will
receive more slots across time and strategic users might be
incentivized to design larger accelerators. We detail these
effects by examining how FPGA slots are divided between
accelerators with varied FPGA demands.

Figure 8(a) shows that STFS allocates resources less fre-
quently to an accelerator as its resource demands increase.
VITERBI, the largest, demands 5 slots and receives resources
in 3 of 10 intervals. AES, the smallest, demands 1 slot and
receives resources in every interval. Smaller accelerators, like
AES and GSM, can occasionally map multiple instances of
their accelerator to the FPGA. In interval 3, GSM receives 4
slots for 2 instances of its accelerator.

Figures 8(b)-8(d) present corresponding round-robin alloca-
tions. PRR and RRR favor larger accelerators because they
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Fig. 7: (a) Deviations from long-term target allocations and (b)
Slot utilization as constraints on short-term target allocations
are relaxed. STFS schedules full-workload on FPGA with six
slots across 200 time intervals.

allocate accelerator instances evenly across time regardless
of their resource demands. Although VITERBI requires 2.5×
more slots than GSM, both receive allocations in the same
number of intervals. As a result, large accelerators receive
the majority of slots across time. However, PRR and RRR
treat smaller accelerators differently. PRR allocates resources
to smaller accelerators only when their turn arrives whereas
RRR allocates whenever idle resources are insufficient for
the next application in round-robin order. Thus, RRR offers
more frequent allocations to applications with the smallest
demands, such as AES, and achieves greater FPGA utilization
when compared to PRR. With DRR, large accelerators, such as
VITERBI, are granted resources less frequently because their
deficit counters increment at the same rate as all others but
decrement at a faster rate due to the larger number of requested
and allocated slots. Small accelerators, such as AES, have
fewer opportunities to exploit idle FPGA resources because
they must hold a sufficiently large counter value to receive an
allocation. Even when no other accelerators can use idle slots
(e.g., intervals 3, 6, 10), AES lacks the counters needed to
receive slots. Thus, the deficit counter restricts allocations and
limits utilization.

B. Performance

We evaluate system performance in terms of task through-
put, which depends on an accelerator’s runtime and size.
Figure 9 compares throughput from STFS relative to that
from round-robin baselines. One might hypothesize a trade-
off between system performance and allocations that align
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Fig. 8: Slot allocations for micro-workload on an FPGA with six slots and ten time intervals. Demand for one accelerator
instance of {AES, GSM, FFT, VITERBI} is {1, 2, 3, 5} slots.
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Fig. 9: Benchmarks’ throughput from full-workload are nor-
malized to those from baseline policies and averaged across
all 8 benchmarks on FPGA with six slots.

AES BFS SHA SPMV GSM FFT SORT VITERBI AVG
S=3 1 1.97 1 1.33 1 1.25 1 1 1.15
S=12 0.53 0.51 0.51 1.05 1.05 0.75 0.75 0.75 0.71

TABLE IV: Application throughput on FPGA with 3 and 12
slots relative to that of 6 slots using STFS.

with targets, especially if targets are rooted in some fairness
property. But not only does STFS most successfully align
allocations with targets, it also outperforms PRR, RRR, and
DRR by 44%, 19%, and 12%, respectively.

Table IV examines the impact of slot size on these perfor-
mance results. For STFS, it reports each application’s through-
put for FPGAs with 12 slots and 3 slots relative to that with 6
slots. The smaller slots lead to greater intra-slot utilization,
which improves task throughput for applications by up to
1.97×. Larger throughput gains are observed for applications
that waste more resources when using the coarse-grained slots
(i.e., BFS, SPMV, FFT). STFS’s average throughput gain
across applications with 6 slots is 29% higher than STFS with
3 slots. STFS’s throughput gain with 12 slots is 15% higher
than its throughput gain with 6 slots.

C. Resource Utilization

Inter-slot utilization refers to how slots are used across time.
In Figure 8, utilization differs across policies as some slots
are occasionally left unallocated. STFS’s utilization is up to
66% greater than DRR’s when comparing interval by interval.
STFS’s average utilization across time is 13%, 11%, and 16%
greater than DRR’s when the FPGA is configured for 3, 6,
12 slots, respectively. STFS’s average utilization is also 17-
23% greater than PRR’s, which suffers from rigidly following
round-robin order. By tracking history and allocating resources
flexibly across time, STFS tolerates short-term deviations from
logical shares in exchange for resource efficiency.

Intra-slot utilization refers to how reconfigurable elements—
LUTs, FFs, DSP and BRAMs—are used within each slot and
is affected by interactions between accelerator demands for

slots, slot size, and slot orientation. When the FPGA uses
many small slots (e.g., 12), sharing is fine-grained and intra-
slot utilization is high. When the FPGA uses a few large slots
(e.g., 3), small accelerators are allocated many resources that
are left idle. Using small slots improves intra-slot utilization
by up to 31%.

D. Dynamic Workloads

Applications are typically known in advance such that
corresponding bitstreams have been generated and compiled
in advance of their arrival. However, the run-time system must
adjust allocations in response to evolving workload mixes and
demands. STFS adjusts allocations upon application arrival
or departure. Figure 10 considers the arrival of SPMV and
SORT task streams, which join the micro-workload workload
at runtime. In the left, arrivals occur after STFS has converged
to its target allocations. In the right, arrivals occur before STFS
has converged and the effects of temporarily deviating from
allocation targets have not yet been fully compensated.

STFS responds to arrivals by updating targets and success
rates. Supposing targets are set by max-min fairness, additional
accelerators reduce target allocations from 6/4 = 1.5 slots
to 6/6 = 1 slot. Success rates for arriving accelerators
are initialized to the largest rate (i.e., lowest priority) of
accelerators already in the system, which has two effects. First,
STFS preserves relative priorities for existing accelerators,
which were set by allocations in previous intervals. Second,
arriving accelerators catch up quickly and receive allocations.

Figure 11 considers the departure of the VITERBI task
stream. STFS responds by removing the accelerator from
request queues, updating targets for remaining accelerators,
and allocating slots with success rates calculated from previous
intervals. The target increases from 6/4 = 1.5 slots to 6/3 = 2
slots after departure. From these results, we conclude that
STFS is able to quickly adapt to arrival and departures.

VI. RELATED WORK

FPGA Primitives. FPGAs have been virtualized using
overlays [56], [57], [58], [59], [60], [61], [62], spatial re-
gions [63], task virtualization [64], and context switches [65].
Partitioning resources into slots permit concurrent tasks and
improves utilization [2], [4], [1], [3], [66], [67], [68], [69].
Slots provide mechanisms for sharing but not policies for run-
time management.

Temporal sharing requires dynamic reconfiguration [70],
[71], which is difficult due to context switch costs and complex
preemptive scheduling [2], [5], [72], [73]. Current tools do not
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Fig. 10: Average slot allocations on FPGA with six slots. SPMV and SORT join micro-workload before (left) and after (right)
the system’s allocations have converged to target allocations.
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Fig. 11: Average slot allocations on FPGA with six slots. VITERBI departs from micro-workload before (left) and after (right)
the system’s allocations have converged to target allocations.

support automatic preemption and determining reconfiguration
points for preemption is difficult. Researchers have explored
resource elasticity [9], [20] but, unlike STFS, do not provide
schedulers that manage resources according to targets.

FPGA OS. Operating systems provide infrastructure and
abstractions for virtualization, communication, and manage-
ment [74], [75], [76], [77], [78], [79]. AmorphOS [5] dynam-
ically scales hardware modules and switches between spatial
and temporal sharing. ViTAL [30] provides abstractions for
multi-FPGA acceleration, using bitstream relocation on iden-
tical, small slots [30]. Recent work propose virtualization for
heterogeneous, multi-FPGA systems [80]. STFS’s spatiotem-
poral policies are orthogonal and contribute new management
strategies that could be integrated into these frameworks.

FPGA Scheduling. A rich body of literature has examined
FPGA scheduling. FCFS policies assign resources as tasks
arrive [51], but outcomes can be sensitive to arrival order.
Greedy policies assign tasks to the smallest slot with sufficient
resources [3], [81], but such matching may lead to long wait
times and idle resources. Some tasks may be favored during
scheduling using priority queues [39] and priorities could be
associated with expected acceleration speedups [82]. However,
priorities could conflict with notions of fairness and allocation
targets, which are the focus on our paper.

Fairness in FPGA management has focused on specific
system settings. OPTIMUS schedules tasks with round-robin
to ensure equal time on instantiated FPGA accelerators [20].
OPTIMUS supports temporal scheduling for statically config-
ured FPGAs whereas STFS supports spatiotemporal schedul-
ing and allocation for dynamically reconfigured, virtualized
FPGAs. This spatial dimension allows STFS to reconcile
applications’ resource demands and the system’s allocation
targets. Max-min fairness has been studied for the FPGA’s NIC
and DMA bandwidth [83]. Vaishnav et al. use partial recon-
figuration to dynamically select bigger or smaller accelerators

for a task [9], [23] and pursue fairness in space. In contrast,
STFS pursues fairness or target allocations in space and time,
which is imperative given how FPGA characteristics can lead
to a large gap between a policy’s logically fair allocation and
an FPGA’s physically feasible one.

Non-FPGA Scheduling. Traditional resources do not
present the challenges presented by FPGAs. Offline design
exploration yields efficient colocations for core and cache
configurations [32], but do not accommodate indivisible re-
sources like FPGA slots. Prior work in distributed shared
storage places tenants’ partitions on each node’s available
storage [33], but its fair division assumes a unified pool of
resources and neglects cases where demand exceeds capacity.
In contrast, FPGA resources are bound to particular slots and
applications’ demands for slots often exceed capacity.

VII. CONCLUSION

STFS is a novel allocation policy that fairly shares the
reconfigurable resources of an FPGA between multiple ac-
celerators, via spatial and temporal sharing. Despite the phys-
ical constraints on shared FPGAs, which lead to infeasible
or inefficient allocations using traditional allocation policies,
STFS achieves long-term allocation targets. By permitting
short-term deviations from target allocations and compensating
those over time, STFS’s provides better resource utilization
and performance than round-robin baselines.
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