Automatic Performance Tuning of Sparse Matrix Kernels

Berkeley Benchmarking and OPtimization Group

Richard Vuduc Eun-Jin Im James Demmel Katherine Yelick Attila Gyulassy Chris Hsu Shoaib Kamil Benjamin Lee Hyun-Jin Moon Raiesh Nishtala

Problem Context

Sparse kernel performance depends on both the matrix and hardware platform.

Challenges in tuning sparse code

Typical uniprocessor performance < 10% peak Indirect, irregular memory accesses High bandwidth requirements, poor instruction mix

Hardware complexity is increasing

Hardware complexity is increasing

Microprocessor performance difficult to model

Widening processor-memory gap; deep memory hierarchies

Performance depends on architecture, kernel, and matrix

Goal: Automatic tuning of sparse kernels

Choose best data structure and implementation for given kernel, sparse matrix, and machine

Matrix known only at run-time (in general)

Evaluate code against architecture-specific upper bounds

Observations

Performance depends *strongly* on both the matrix and hardware platform.

Sparse matrix example—A 6x6 blocked storage format appears to be the most natural choice for this matrix for a sparse matrix-vector multiply (SpMxV) implementation...

Architecture dependence—Sixteen $r \times c$ blocked compressed sparse row implementations of SpMxV, each color coded by performance (Mflop/s) and labeled by speedup over the unblocked (1 x 1) code for the sparse matrix above on two platforms: 333 MHz Ultra 21 (left) and 800 MHz Itanium (right). The best block size is not altougs 6x61

Approach to Automatic Tuning

For each kernel, *identify and generate* a space of implementations, and *search* for the best one.

Implementation space

- Conceptually, the set of "interesting" implementations
- Depends on kernel and input
- May vary: instruction mix and order, memory access patterns, data structures and precisions, mathematical formulation, ...

Search using models and experiments

Either off-line, on-line, or combination

Successful examples

- Dense linear algebra: ATLAS/PHiPAC
- Signal processing: FFTW; SPIRAL
- MPI collective operations (Vadhiyar & Dongarra, 2001)

Example: Choosing a Block Size

The Sparsity system (Im & Yelick, 1999) applies the methodology to y=Ax.

- Consider sparse matrix-vector multiply (SpMxV)
- Implementation space
 - Set of r x c block sizes
 - Fill in explicit zeros

Search

- Off-line benchmarking (once per architecture)
 Measure Dense Performance (r,c), in Mflop/s, of dense matrix in
- Run-time estimation (when matrix is known)
- Estimate Fill Ratio (r,c): (# stored non-zeros) / (# true non-zeros)

 Choose r x c to maximize

Estimated Performance $(r, c) = \frac{Dense\ Performance\ (r, c)}{Fill\ Ratio\ (r, c)}$

Filling in zeros — True non-zeros (•) and explicit zeros (•); fill ratio=1.5.

Off-line benchmarking — Performance (Mflop/s) for a dense matrix in sparse format on four architectures (clockwise from upper-left): Ultra 2i-333, Pentium III-500, Power3-375, Itanium-800. Performance is a strong function of the hardware platform.

Experimental results—Performance (Mflop/s) on a set of 44 benchmark matrices from a variety of applications. Speedups of 2.5x are possible. ISC'021

Exploiting Matrix Structure

Additional techniques for y=Ax, sparse triangular solve, and $A^{T}Ax$.

Sparse matrix-vector multiply

Register-level blocking (up to 2.5x speedups)

Symmetry (up to 2x speedup)

Diagonals, bands (up to 2.2x)

Splitting for variable block structure (1.3x – 1.7x)

Reordering to create dense blocks + splitting (up to 2x)

Cache blocking (1.5x-5x)

Multiple vectors (2-7x)

And combinations...

Sparse triangular solve

Hybrid sparse/dense data structure (1.2x-1.8x)

Higher-level sparse kernels

 $\bullet AA^Tx$, A^TAx (1.2—4.2x)

 RAR^{T} , $A^{k}x$, ...

Multiple vectors—Significant speedups are possible when multiplying by several vectors (800 MHz Itanium; DGEMM n=k=2000, m=32).

Cache blocking—Performance on a Pentium 4 for information retrieval and linear programming matrices, with up to 5x speedups.

Splitting and reordering—(Left) Speedup after splitting a matrix (possibly after reordering) into a blocked part and an unblocked part to avoid fill. (Middle, right) Dense blocks can be created by a judicious reordering—on matrix 17, we used a traveling salesman problem formulation due to Pinar (1997).

Sparse triangular solve—(Top-left) Triangular factors from sparse LU often have a large dense trailing triangle. (Top-right) The matrix can be partitioned into sparse $(L_{left,D})$ and dense $(L_{left,D})$ parts. (Bottom) Performance improvements from register blocking the sparse part, and calling a tuned vendor BLAS routine (IRSM) for the dense solve step. |ICS/POHLL (02)

BeBOP: Current and Future Work

Understanding the impact on higher-level kernels, algorithms, and applications.

- Design and implementation of a library based on the Sparse BLAS; new heuristics for efficiently choosing optimizations.
 Study of performance implications for higher-level
- algorithms (e.g., block Lanczos)

 New sparse kernels (e.g., powers A^k , triple product RAR^T)
- Integrating with applications (*e.g.*, DOE SciDAC codes)
 Further automation: generating implementation generators
- Using bounds to evaluate current and future architectures

Application matrices: Web connectivity matrix—Speeding up SpMxV for a web subgraph (*left*) using register blocking and reordering (*right*) on a 900 MHz Itanium 2.

Sparse AA^Tx , $A^TAx - (Left)$ A can be brought through the memory hierarchy only once: for each column a_{ξ} of A, compute a dot product followed by a vector scale ("axpy"). (Right) This cache optimized implementation can be naturally combined with register blocking.