Richard Vuduc
Eun-Jin Im
James Demmel
Katherine Yelick

Attila Gyulassy
Chris Hsu
Shoaib Kamil

Benjamin Lee

Berkeley Benchmarking and OPtimization Group
bebop.cs.berkeley.edu

Hyun-Jin Moon

Automatic Performance Tuning of Sparse Matrix Kernels

Problem Context
Sparse kernel performance depends on both
the matrix and hardware platform.

Challenges in tuning sparse code
Typical uniprocessor performance < 10% peak
Indirect, irregular memory accesses

High bandwidth requirements, poor instruction mix
Hard complexi .

is
Microprocessor yzrevfurmance difficult to model
Widening processor-memary gap; deep memory hierarchies
Performance depends on architecture, kernel, and matrix
Goal: Automatic tuning of sparse kernels
Choose best data structure and implementation for given
kernel, sparse matrix, and machine
Matrix known only at run-time (in general)
Evaluate code against architecture-specific upper bounds

Example: Choosing a Block Size
The SPARSITY system (Im & Yelick, 1999)
applies the methodology to y=Ax.

Consider sparse matrix-vector multiply (SpMxV)

Implementation space
Set of r x ¢ block sizes
Fill in explicit zeros
Search
Off-line benchmarking (once per architecture)

Measure Dense Performance (r,c), in Mflop/s, of dense matrix in
sparse r x ¢ format

Run-time estimation (when matrix is known)
Estimate Fill Ratio (r,c): (# stored non-zeros) / (# true non-zeros)
Choose r x ¢ to maximize

Estimated Performance (r,c) = -2ense Performance (r,c)
il Ratio (r,c)

q 30 L)
(685 e non-zer0s) + (363 expic zeros) = 1071 1z

Filling in zeros —True non-zeros (®)
and explicit zeros (e); fill ratio=1.5.

Rajesh Nishtala

Observations Off-line benchmarking —Performance (Mflop/s) for a dense matrix Experimental results—Performance (Mflop/s) on a set of 44 benchmark
in sparse format on four architectures (clockwise from upper-left): matrices from a variety of applications. Speedups of 2.5x are possible.
Perfgrmance depends Strongly on both the Ultra 2i-333, Pentium I11-500, Power3-375, Itanium-800. Performance is [SC’02]
matrix and hardware platform. a strong function of the hardware platform.
= Exploiting Matrix Structure . kil ector 15 Gtz i 01
N N Additional techniques for y=Ax, sparse ol L, X b,
S < . T o =
| - triangular solve, and ATAx. ™~ 20% of Lyt Lugne A X, b,
\ 1% non-zeros
A =N ¥
. 1 Sparse. matrlx-vecto.r multiply Y L =b, Srereaesi
- Register-level blocking (up to 2.5x speedups) Y .
S t to 2: di t =) b,=b,—L,X, -~ Sparse matvec
Sparse matrix example—A 6x6 blocked storage format appears to y.'mme 157 (W tlo 2 el) T - sed - 5= S S (e =5 - ~
be the most natural choice for this matrix for a sparse matrix- Diagonals, bands (up to 2.2x) o ﬂ J . TTT ﬁ f . LgenseXo =by Dense solve
vector multiply (SpMxV) implementation... Splitting for variable block structure (1.3x—1.7x) e TT? Tl ‘Sparse Trangular Solve: Perlormance Summary —— [ufra-solari]
Itanium: 3x1 Reordering to create dense blocks + splitting (up to 2x) B S — R
o Cache blocking (1.5x—5x) Multiple vectors—Significant speedups are Cache blocking—Performance on a Pentium 4 - BN Seitchto-Dense (S20)
- Multiple vectors (2—7x) possible when multiplying by several vectors for information retrieval and linear & & L e umper bound
And combinations... (800 MHz Itanium; DGEMM n=k=2000, m=32). programming matrices, with up to 5x speedups. i i 4 PAPlupperbound
.
Sparse triangular solve B s :
o Hybrid sparse/dense data structure (1.2x—1.8x) ‘ O A i
X ol e 2 <
Higher-level sparse kernels] Au 25 l
AATx, ATAx (12—4.2x) x % Gense mempius vangs exd1 raefskyd goodwin Ihrlo
RART, Ak, « p e
e | i - - Sparse triangular solve— (Top-left) Triangular factors from
. » . . b ol ol sparse LU often have a large dense trailing triangle. (Top-right)
Archi pe Sixteen r x ¢ blocked compressed sparse e - N | The matrix can be partitioned into sparse (Ly, L,;) and dense
row implementations of SpMxV, each color coded by performance P S L, (Liense) parts. (Bottom) Performance improvements from register
(Mflop/s) and labeled by speedup over the unblocked (1 x 1) code [[i blocking the sparse part, and calling a tuned vendor BLAS
for the sparse matrix ab(?ve on two platform;: 3?3 MHz Ultra 2i (left) B T S | [g g routine (TRSM) for the dense solve step. [ICS/POHLL 02]
and 800 MHz Itanium (right). The best block size is not always 6x6! et — = = = = < E = = = = o

Splitting and reordering — (Left) Speedup after splitting a matrix (possibly after reordering) into a blocked
part and an unblocked part to avoid fill. (Middle, right) Dense blocks can be created by a judicious
reordering —on matrix 17, we used a traveling salesman problem formulation due to Pinar (1997).

ATAx Performance (utra-solars]

Approach to Automatic Tuning
For each kernel, identify and generate a space of
implementations, and search for the best one.

BeBOP: Current and Future Work
Understanding the impact on higher-level
kernels, algorithms, and applications.

Performance Summary: Web Subgraph (1M x 14, 3.14) anium 2-900. nel Cv7.0]
00

Implementation space
Conceptually, the set of “interesting” implementations

2050

Design and implementation of a library based on the Sparse

D d ke 1 and input
A BLAS; new heuristics for efficiently choosing optimizations. a,
May vary: instruction mix and order, memory access patterns,) L i
data structures and precisions, mathematical formulation, ... Study of performance implications for higher-level m .
Search using models and experiments algorithms (e.g., block Lanczos) z a, (ak X)
k=1

New sparse kernels (e.g., powers Ak, triple product RART)
Integrating with applications (e.g., DOE SciDAC codes)

12 3 4 5 6 7 B 9 1011121315 17 21 25 27 28 36 40 44

Either off-line, on-line, or combination

Successful examples
Dense linear algebra: ATLAS/PHiPAC
Signal processing: FFTW; SPIRAL
MPI collective operations (Vadhiyar & Dongarra, 2001)

WebBase- 1M (MMD) Sparse AA"x, ATAx— (Left) A can be brought through the memory hierarchy
only once: for each column a, of A, compute a dot product followed by a vector
scale (“axpy”). (Right) This cache optimized implementation can be naturally

combined with register blocking.

o
WebBase-1M (naural) | WebBase-1M (RCM)
mau (ordering)

Further automation: generating implementation generators
Application matrices: Web connectivity matrix—Speeding up SpMxV for a web

Using bounds to evaluate current and future architectures
subgraph (left) using register blocking and reordering (right) on a 900 MHz Itanium 2.

