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Automatic Performance Tuning of Sparse Matrix Kernels

Problem Context
Sparse kernel performance depends on both
the matrix and hardware platform.

Challenges in tuning sparse code
Typical uniprocessor performance < 10% peak
Indirect, irregular memory accesses

High bandwidth requirements, poor instruction mix
Hard complexi .

is
Microprocessor yzrevfurmance difficult to model
Widening processor-memary gap; deep memory hierarchies
Performance depends on architecture, kernel, and matrix
Goal: Automatic tuning of sparse kernels
Choose best data structure and implementation for given
kernel, sparse matrix, and machine
Matrix known only at run-time (in general)
Evaluate code against architecture-specific upper bounds

Example: Choosing a Block Size
The SPARSITY system (Im & Yelick, 1999)
applies the methodology to y=Ax.

Consider sparse matrix-vector multiply (SpMxV)

Implementation space
Set of r x ¢ block sizes
Fill in explicit zeros
Search
Off-line benchmarking (once per architecture)

Measure Dense Performance (r,c), in Mflop/s, of dense matrix in
sparse r x ¢ format

Run-time estimation (when matrix is known)
Estimate Fill Ratio (r,c): (# stored non-zeros) / (# true non-zeros)
Choose r x ¢ to maximize

Estimated Performance (r,c) = -2ense Performance (r,c)
il Ratio (r,c)

q 30 L)
(685 e non-zer0s) + (363 expic zeros) = 1071 1z

Filling in zeros —True non-zeros (®)
and explicit zeros (e); fill ratio=1.5.
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Splitting and reordering — (Left) Speedup after splitting a matrix (possibly after reordering) into a blocked
part and an unblocked part to avoid fill. (Middle, right) Dense blocks can be created by a judicious
reordering —on matrix 17, we used a traveling salesman problem formulation due to Pinar (1997).

ATAx Performance (utra-solars]

Approach to Automatic Tuning
For each kernel, identify and generate a space of
implementations, and search for the best one.

BeBOP: Current and Future Work
Understanding the impact on higher-level
kernels, algorithms, and applications.

Performance Summary: Web Subgraph (1M x 14, 3.14 ) anium 2-900. nel Cv7.0]
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Implementation space
Conceptually, the set of “interesting” implementations

2050

Design and implementation of a library based on the Sparse

D d ke 1 and input
A BLAS; new heuristics for efficiently choosing optimizations. a,
May vary: instruction mix and order, memory access patterns, ) L i
data structures and precisions, mathematical formulation, ... Study of performance implications for higher-level m .
Search using models and experiments algorithms (e.g., block Lanczos) z a, (ak X)
k=1

New sparse kernels (e.g., powers Ak, triple product RART)
Integrating with applications (e.g., DOE SciDAC codes)
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Either off-line, on-line, or combination

Successful examples
Dense linear algebra: ATLAS/PHiPAC
Signal processing: FFTW; SPIRAL
MPI collective operations (Vadhiyar & Dongarra, 2001)

WebBase- 1M (MMD) Sparse AA"x, ATAx— (Left) A can be brought through the memory hierarchy
only once: for each column a, of A, compute a dot product followed by a vector
scale (“axpy”). (Right) This cache optimized implementation can be naturally

combined with register blocking.
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WebBase-1M (naural) | WebBase-1M (RCM)
mau (ordering)

Further automation: generating implementation generators
Application matrices: Web connectivity matrix—Speeding up SpMxV for a web

Using bounds to evaluate current and future architectures
subgraph (left) using register blocking and reordering (right) on a 900 MHz Itanium 2.



