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ABSTRACT
Datacenters demand big memory servers for big data. For
blade servers, which disaggregate memory across multiple
blades, we derive technology and architectural models to
estimate communication delay and energy. These models
permit new case studies in refusal scheduling to mitigate
NUMA and improve the energy efficiency of data movement.
Preliminary results show that our model helps researchers
coordinate NUMA mitigation and queueing dynamics. We
find that judiciously permitting NUMA reduces queueing
time, benefiting throughput, latency and energy efficiency
for datacenter workloads like Spark. These findings high-
light blade servers’ strengths and opportunities when build-
ing distributed shared memory machines for data analytics.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures; C.4 [Computer Systems Organiza-
tion]: Performance of Systems—Design studies, Modeling
techniques; B.3 [Hardware]: Memory Structures—Shared
memory

Keywords
NUMA, technology models, energy and delay, blade servers,
scheduling, communication cost

1. INTRODUCTION
Blade servers provision abundant memory in a dense form

factor and their distributed shared memory are well suited to
big data applications. Researchers have prototyped or emu-
lated blade architectures [11, 6] to understand their potential
and to demonstrate key capabilities, such as fine-grained ac-
cess and address translation. Beyond specific designs, how-
ever, researchers must assess sensitivity to technology pa-
rameters and explore server organizations. Unfortunately,
existing experimental methods lack the required flexibility.
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Figure 1: A representative blade architecture with sixteen-
core processors, four-processor blades, and a four-blade
server.

In this paper, we present technology models that enu-
merate communication paths through a blade server and
identify contributors to delay and energy. In addition to
DRAM costs, we account for inter-processor and inter-blade
data transfers. With these models, researchers can explore
scenarios in system organization and data movement, iden-
tifying opportunities and addressing challenges.

One particular challenge is non-uniform memory access
(NUMA). In a blade server, a processor can retrieve data
from memory via several communication paths that intro-
duce multiple levels of NUMA. Conventional wisdom ar-
gues that NUMA harms performance and should be avoided
[19, 2]; prior work has proposed task and data managers
that restrict remote memory access [12, 9, 17, 3]. How-
ever, NUMA might improve performance; a system that se-
lectively permits NUMA might dequeue tasks sooner and
increase throughput. Technology models help researchers
understand the benefits of permitting NUMA and develop
new schedulers that balance latency and throughput.

In §2, we present technology models that enumerate com-
munication paths through a blade server. We deploy this
model for server simulation in two case studies, scheduling
to mitigate NUMA and showing the efficiency of remote data
access over data migration (§3–§5).

2. MODELING COMMUNICATION COST
We derive cost estimates for three types of communication

channels in a blade architecture (e.g., Figure 1): memory
bus, inter-processor links, inter-blade links. By simulating
a server with these estimates, we assess a task’s communi-
cation efficiency. Table 1 summarizes our estimates of com-
munication costs.



Technology DDR3 HT3.1 PCIe 2.0

8 2Gb,x8 PTP PTP

Data Rate 0.2 0.8 0.5

(GB/s per lane)

Lanes x64 x32 x16

Uni-directional B/W 12.8 25.6 8.0

(GB/s)

Transfer Energy 160.0 (@20% util.) 36.0 37.5

(pJ/bit) 70.0 (@100% util.)

Latency (ns) 50-100 100 RT 190 RT

Table 1: Summary of technology models and estimates

Memory Communication. The memory controller is
integrated into the processor die and responds to last-level
cache misses. Memory latency is affected by array latency,
queueing delays, and request scheduling. The controller can
schedule memory requests for a mix of latency, throughput,
and fairness targets. Sophisticated scheduling mitigates row
buffer misses and bank conflicts, which add to memory la-
tency.

DRAMs consume dynamic energy due to precharges, ac-
tivates, reads, and writes. In addition, DDRx interfaces,
which include delay-locked loops and on-die termination,
draw static current regardless of channel utilization. Thus,
high-performance memories are energy-disproportional for
tasks with modest bandwidth demands [13]. 2Gb DDR3
with 8DQs strikes a balance between chip capacity and I/O
width [13] and dissipate approximately 2W per GB. A typ-
ical server has 8GB per channel, 2 channels per processor,
and 4 processors per blade. In total, 64GB of DRAM dissi-
pates 128W.

Inter-Processor Communication. Multiple proces-
sors are integrated into a blade. They share a physical ad-
dress space and can support coherent access to shared mem-
ory. Both the local memory controller and the interconnect
controller observe a last-level cache miss. The latter uses
the memory address to identify and route a memory request
destined for another processor’s controller.

A remote memory request may require one or two hops,
which introduces latency and energy costs in addition to
those from DRAM. The interconnect uses serial, point-to-
point links for high data rate and low latency. We use Hy-
perTransport (HT) for the inter-processor connection [5].
HT transmitter logic requires 18ns to encode contents and
add headers. Packet transmission and link interface circuitry
adds 14ns. Receiver logic requires another 18ns. In total, the
packetized request requires 50ns to reach a remote memory
controller. With round-trip overheads and DRAM access
delay, remote data access requires at least 150ns.

To assess energy costs, we examine serial links and their
interfaces. A serial link requires serializer/deserializer (SerDes)
circuitry at its endpoints to convert data between parallel
and serial interfaces. This circuitry determines the energy
cost per bit transferred. How this cost translates into system
power depends on the number of processors, the number of
links between them, and the data rates of those links [4].

HT links connect two processors with 16 lanes, each im-
plemented with paired serial links for differential signaling.
Bi-directional communication requires two paired links since

a serial link is unidirectional. Thus, 16 lanes requires 64
links and 128 SerDes. Each SerDes consumes 10pJ per bit
transferred and can transfer up to 6.4Gb per second [7]. We
estimate power by multiplying the number of interfaces, the
transfer rate and the cost per transfer – power is 8.2W per
path and a server with five paths dissipates up to 40W.

Inter-Blade Communication. Blades share an address
space and communicate via a backplane interconnect. Bridges
and switches perform address translation and route mem-
ory requests to the appropriate blade [6, 18]. We describe a
blade architecture in which a processor can access a remote
blade’s memory with load/store instructions via PCIe. The
memory controller, PCIe root complex, and non-transparent
bridges (NTBs) are all integrated into the processor die [6].
Each inter-blade connection begins and ends with an NTB
bridge or switch. A typical 64b PCIe transmission requires
240ns of which 50ns is attributed to DRAM [5]; the remain-
ing 190ns is the round trip PCIe link transmission delay.

Inter-blade communication also depends on the number of
HT hops. For example, six PCIe links connect twelve NTBs
in Figure 1. A memory request may traverse HT to reach
the correct bridge and traverse PCIe to reach the correct
blade. We calculate the expected HT delays on sending and
receiving blades, incurred in addition to PCIe and DRAM
latencies. With round-trip overheads, accessing data on a
remote blade may require 410ns, including 50ns for DRAM,
190ns for PCIe, and 170ns for expected HT delay.

Energy costs increase with blade connectivity. In our ex-
ample, each uni-directional connection is 16 lanes-wide and
a bi-directional connection requires 32 lanes that dissipate
4.8W. Each lane dissipates 150mW and transfers data at
0.5GB/s [8]; energy cost is 37.5pJ/bit. Bridge logic and
SerDes circuitry dissipate an additional 2.5W. In total, an
inter-blade link dissipates 10W for 32 lanes and two bridges.

We consider connectivity between 4 blades, each with 4
processors and integrated bridges. These NTBs support
back-to-back PCIe connections between pairs of blades. A
fully-connected network requires 6 connections and 12 NTBs,
which in total dissipate up to 60W.

In summary, our technology models are accurate and con-
sistent with prior measurements. Memory estimates use
DRAM specifications [15]. Inter-Processor estimates use
HT technology parameters [5] to calculate latency from packet
processing and transmission. Estimates align with NUMA
measurements [2]. Inter-processor power numbers (40W at
peak and 10-20W at typical utilization) are consistent with
industry measurements [1]. Inter-Blade estimates are con-
sistent with emulation parameters for disaggregated memory
[10]. Power estimates are derived from PCIe bridge and link
specifications [16, 7].

3. CASE STUDIES IN MANAGING NUMA
We illustrate opportunities for parameterized design and

management with two case studies that deploy our technol-
ogy models. First, we adapt queueing policies to the costs
of varied communication paths. Second, we compare the
energy efficiency of remote execution against migration.

Execution Model. Run-time systems rely on task queues
to produce parallelism while preserving a programming model’s
clean abstractions (e.g., MapReduce, Spark, GraphLab). The
task at the head of the queue is likely to find its data al-
ready in main memory because of caching or pre-fetching.
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Figure 2: Refusal policies and queue management.

For example, Spark caches data from the current iteration
of a machine learning kernel to ensure its availability for the
next one.

However, non-deterministic queueing complicates the co-
ordination of task scheduling and data placement; the data
placement mechanism cannot predict which core will become
available at a certain time. A lack of coordination exposes
NUMA in blade servers. Tasks must navigate multiple lev-
els of NUMA and still guarantee service quality. We look
beyond the bimodal locality classification (e.g., local versus
remote) and examine distance to data when scheduling tasks
with NUMA.

Refusal Scheduling. We draw inspiration from delay
scheduling [20], which improves storage locality for MapRe-
duce tasks. Our case studies present policies that dictate
whether a queued task should refuse execution on an avail-
able core due to NUMA.

Figure 2 illustrates refusal scheduling. Arriving tasks en-
ter a queue. When a core becomes available, the sched-
uler determines this core’s proximity to data required by
the next task (e.g., address of task’s vertex given an graph
in distributed memory). The scheduler’s refusal policy se-
lectively refuses and permits NUMA. Refusing tasks enter
a high-priority retrial queue. Queues prioritize tasks with
earlier arrival times for FIFO fairness. A refusal limit is
used to avoid starvation. We consider four refusal policies
for multiple NUMA levels (e.g., Figure 1).

• Local Execution (Local). Task runs on processor for
which its data is local. Otherwise, task refuses.
• Inter-Processor 1-Hop Execution (IP-1). Task fa-

vors local execution. It also accepts 1-hop inter-processor
communication.
• Inter-processor 2-Hop Execution (IP-2). Task prefers

running on blade for which its data is local. It refuses
inter-blade communication.
• Inter-blade Execution (IB). Task executes on any avail-

able core. It favors cores closer to its data.

A refusal policy balances queueing and service time. The
optimal policy depends on distance to data, sensitivity to
NUMA, server utilization, as well as performance and effi-

Bandwidth Penalty
# Name MI/CI,MB/s HT-1 PCIe

Apache Spark

S1 Word count MI 264 1.17x 1.67x
S2 Logistic regression MI 242 1.17x 1.60x
S3 Pagerank MI 276 1.22x 1.76x
S4 Transitive closure MI 235 1.19x 1.62x
S5 Alternating least MI 231 1.16x 1.55x

squares
S6 K-means MI 283 1.22x 1.76x
S7 Pi CI 21 1.01x 1.04x

Phoenix MapReduce

M8 Word count MI 111 1.10x 1.33x
M9 Histogram CI 42 1.02x 1.05x
M10 String match CI 28 1.04x 1.12x
M11 Linear regression CI 7 1.0x 1.0x

Parsec

P12 Facesim EMI 2159 1.39x 2.46x
P13 Dedup CI 50 1.09x 1.19x
P14 Bodytrack CI 35 1.02x 1.06x
P15 Vips CI 23 1.01x 1.04x
P16 Ferret CI 73 1.04x 1.18x
P17 Raytrace CI 19 1.02x 1.06x
P18 Swaptions CI 5 1.00x 1.00x
P19 Streamclusters CI 4 1.00x 1.00x
P20 Blackscholes CI 3 1.00x 1.00x

Table 2: Benchmarks, their demand for remote memory
bandwidth (Extremely Memory-Intensive, Memory Inten-
sive, Compute Intensive) and latency penalties from NUMA.

ciency goals.

4. EXPERIMENTAL METHODOLOGY
We link multiple simulators to coordinate the study of

NUMA and queueing dynamics. Processor/memory simula-
tion quantify task sensitivity to NUMA. Queueing simula-
tion quantifies system latency and throughput.

Processor Simulation. We use Marssx86 and DRAM-
Sim2 for processor and memory respectively. We simulate
a 4-way OoO core (2GHz) with 128KB iCache and dCache,
2M L2 cache, and DDR3 with a 667MHz bus. Each bench-
mark is simulated on the region of interest for 200 million
instructions; the results are shown in Table 2. When access-
ing remote memory, we add inter-processor and inter-blade
latencies according to the technology models in §2. We focus
on communication for heap data, assume that local mem-
ory holds code and stack. The simulator identifies address
regions for code, stack, and heap to distinguish remote re-
quests from local ones.

Queueing Simulation. We implement a discrete event
simulator, modeled after BigHouse [14], to evaluate schedul-
ing policies and queueing dynamics within a blade server
(e.g., Figure 1). The queueing simulator uses service times
from processor simulations, which account for NUMA, to
estimate response times in G/G/k queues. It tracks each
task and reports summary statistics for service quality (e.g.,
95th percentile response time). We implement the Local,
IP-1, IP-2 and IB policies and simulate them for hundreds
of millions of tasks. We assume the data distribution and de-
mand is uniformly and randomly distributed among a blade
server’s processors.

Benchmarks. Table 2 summarizes tasks’ bandwidth de-
mands, which correlates with NUMA-induced performance
penalties. EMI tasks must execute on cores with data in
local memory; these tasks would otherwise saturate inter-
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Figure 3: (a) Throughput for varied benchmarks indexed in Table 2. (b, c) 95th percentile response times normalized to IB
policy, which permits all NUMA, under high and low server load.

connect bandwidth. The remaining workloads are amenable
to a mix of local and remote execution.

5. EVALUATION
We use our models and simulators to evaluate case studies

in NUMA mitigation. We find that the optimal refusal pol-
icy varies according to a task’s memory intensity and system
utilization. In addition, we discover that permitting fine-
grained NUMA is more energy-efficient than coarse-grained
page migration.

Throughput. We analyze throughput by (1) simulating
a task and quantifying its performance under three commu-
nication scenarios—local, inter-processor, and inter-blade;
(2) quantifying the maximum sustainable throughput for the
task stream on a blade node. We find that avoiding NUMA
reduces task service time and increases throughput.

Figure 3(a) shows how throughput improves as the refusal
policy permits more NUMA. A policy that favors local ex-
ecution will lower service time and increase service. This
effect is most pronounced for memory-intensive workloads
(S1-S6, M8, P12), which suffer more from NUMA penalties.
Ranking policies by increasing throughput gives: IB, IP-2,
IP-1, Local.

Response Time. Judiciously permitting NUMA reduces
queueing delay and response time. Permissive policies, which
allow execution when a core becomes available regardless of
distance to data, mean less time in arrival and retrial queues.
However, latency is not determined by NUMA policy alone.
Policy interacts with server load and a task’s NUMA sensi-
tivity. We simulate queueing dynamics for highly and lightly
loaded servers; system load increases with task arrival rate.

Figure 3 reports the 95th percentile for response time.
NUMA execution can be beneficial, even when tasks are
memory-intensive (S1-S6, M8, P10) and server load is high.
For example, IP-1 and IP-2 consistently perform better
than Local because they improve tasks’ likelihood of de-
queueing. De-queueing quickly is even more beneficial for
compute-intensive tasks (S7, M9, M11, P13-P20), which
require little data movement. Refusing NUMA execution
does not reduce service time and only increases queueing
time. Therefore, compute-intensive tasks can adopt IB,
which permits load/stores to another blade’s memory, with
little penalty.

When the server is lightly loaded, many cores are avail-
able, queueing time is less important, and service time dom-
inates response time (Figure 3(c)). Refusing NUMA execu-

tion only marginally improves response time. Local outper-
forms IB and IP-2 by less than 20% for memory-intensive
tasks and by 2%-5% for compute-intensive ones.

Comparison to Data Migration. Task scheduling poli-
cies that permit NUMA exploit fine-grained load/store ac-
cess to remote memory. Remote access retrieves the data
needed to fill a cache line instead of migrating entire pages
from remote locations into local ones. Although migration is
fast, its energy costs are high. We compare the energy costs
of remote access and data migration. Our results show that
migration energy is 1.5-5.0× greater than that of remote
access for memory-intensive workloads.

Energy cost depends on the amount of data transferred
and the links used. The processor and queueing simulations
report data transferred by remote accesses and tasks that
use each link. To estimate the amount of data migrated, we
multiply the page size (4KB) by the number of unique pages
accessed by a program. Let Dpage denote the amount of data
migrated and Daccess denote the amount of data supplied to
cache lines.

EM = Dpage(2Emem@100 + Elink) + DaccessEmem@20 (1)

Equation 1 estimates page migration energy. Migration ac-
cesses DRAM twice, to read from remote memory and to
write into local memory. These memory transfers may tra-
verse inter-processor and inter-blade links. The cost of trans-
ferring data through DRAM at full bandwidth Emem@100 is
70pJ/bit . The link cost Elink ,based on the expected num-
ber of inter-processor hops, is 110pJ/bit—see Table 1. Fill-
ing cache lines is expensive under low channel utilization
and Emem@20 =110pJ/bit [13].

ER = Daccess(Elink + Emem@20) (2)

Equation (2) estimates the cost of remote memory accesses.
We multiply cache line size (64B) by the number of remote
last-level cache misses to estimate the amount of data ac-
cessed, Daccess.

Energy Efficiency. Figure 4 shows that page migration
energy is 1.5-5.0× that of remote access, which transfers fine-
grained cache lines. However, if migrated data is re-used,
we might expect migration to outperform remote execution.
The break-even points, where Equations 1 and 2 are equal,
are expressed in the number of re-uses.

• Inter-Blade Daccess/Dpage = 2.2×
• Inter-Processor two-hop Daccess/Dpage = 2.9×
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Benchmarks 18-20 are out of scope; baseline energy is too
small for comparison.
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Figure 5: Power for data migration versus remote execution.

• Inter-Processor one-hop Daccess/Dpage = 4.8×
Figure 5 shows that migration dissipates more power than

remote access and is inefficient. Inter-blade accesses increase
task delays by 1.6-1.7×, but reduces communication energy
by 2.0-8.0× relative to migration. Such energy-delay trade-
offs encourage policies that selectively permit NUMA in-
stead of data migration.

6. CONCLUSION
We analyze communication costs in blade servers, deriv-

ing technology models for system simulation. Case studies
that coordinate NUMA mitigation and queue management
illustrate benefits for throughput, response time, and en-
ergy efficiency. Our results motivate further hardware de-
sign space exploration and sophisticated task management
for in-memory computing on blade servers.
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