

Inferred Models for Dynamic and Sparse Hardware-Software Spaces

Weidan Wu, Benjamin C. Lee Duke University

Trends in Management & Diversity

- Increasingly Sophisticated Management
 - Allocate resources, schedule applications, ...
 - Understand HW-SW interactions
- Increasingly Diverse HW & SW
 - Heterogeneous cores, VMs, contention, ...
 - Diverse clients, jobs, tasks, ...

Mapping Software to Hardware

– Management space explosion (M x N)

12/9/2012

Profilers Support Management

- But profile sparsity increases with diversity

12/9/2012

Inference with Sparse Profiles

Outline

- Introduction
- Inferred Performance Models
- Generalized Models
- Specialized Models
- Conclusions

Inferred Performance Models

– Models, predictions support management

12/9/2012

Integrated HW & SW Analysis

- Lays a foundation for run-time management
- Increases diversity among sparse samples
- Prior work separates HW & SW

New Challenges

- Larger space, greater sparsity
 - Data re-usability is critical
 - 30 parameters \rightarrow 5E+15 points
- Less structured training data
 - SW profiles from arbitrary, real shards
 - HW profiles from defined, simulated design space

Principles and Strategies

- Enhance data re-usability
 - Shard-level profiles
 - Portable characteristics (μ -arch independent)
- Automate modeling
 - Genetic algorithm
 - Mitigate space explosion

Shard-level Profiles

- Shards: short dynamic instruction segments
- Re-use data among applications
 - New shards resemble existing ones
 - Monolithic profiles only useful when entire application resembles existing one

Shard-level Profiles

- Shards are sparse, randomly sampled segments of 10M instructions
- Shards from diverse applications complement each other, reducing profiling costs
- Shards expose intra-application diversity

Portable Characteristics

- Re-use data among microarchitectures
 - Microarchitecture-independent measures
 - Ex: instruction mix versus cache miss rate
 - Existing SW profiles relevant for new HW

Sharing Supports Inference

• Shards enhances data re-use across SW

• Portability enhances data re-use across HW

• Inferred models require less training data due to enhanced re-use

Statistical Inference

 $Y = X^{T} \times \beta + \epsilon$ CPI ALUS, cache size, ... mem instr freq regression coefficients $\begin{bmatrix} 1.21\\0.89\\\vdots\\2.36\\0.71 \end{bmatrix} \begin{bmatrix} 2 & 128... & 0.39\\4 & 64 & \cdots & 0.27\\\vdots & \vdots\\6 & 256... & 0.36 \end{bmatrix} \begin{bmatrix} \beta_{1}\\\beta_{2}\\\vdots\\\beta_{p} \end{bmatrix}$

- X includes non-linear kernel transformations
 Ex: log(cache size)
- X includes pair-wise interactions
 - Ex: ALU instructions, units

Space of Model Specifications

- Many kernel transformations
 - log, power, cubic spline, exponential, sqrt...
 - 30 parameters, 5 kernels \rightarrow 5³⁰ model specs
- Many parameter interactions
 - Hardware and software interact

$$-\binom{30}{2} = 435$$
 pairwise interactions $\rightarrow 2^{435}$ specs

Automatic Model Construction

- Model specification encoded as genes
- Mutation, crossover search models
- Selection evolves model toward higher accuracy

Automatic Model Updates

- New data updates model specification
- Algorithm changes kernels, interactions, fit

Outline

- Introduction
- Inferred Performance Models
- Generalized Models
- Specialized Models
- Conclusions

Generalized Models

- Diverse SW as applications enter/leave system
 Ex: democratized datacenter computing
- Heterogeneous HW as architectures tuned
 Ex: big/small cores, VMs, contention, ...
- Profiled data collected as SW runs on HW
- Models update to accommodate dynamics

Inductive Hypothesis

- System in steady state

12/9/2012

- Accurate model is trained M(H,S)
- Manager uses model predictions

Inductive Step

- System is perturbed with new SW or HW
- Profile new SW-HW, check prediction

Model Updates

- Poor prediction triggers model update
 - Collect a few profiles for new SW (e.g., 10-20)
 - Update kernels, interactions, fit

Integrated HW & SW Space

- Hardware Space (17 parameters)
 - Pipeline parameters \rightarrow e.g. width, rob size
 - Cache parameters \rightarrow e.g., cache size, associativity
 - Functional unit \rightarrow e.g., ALU count
- Software Space (13 parameters)
 - Instruction mix
 - Locality \rightarrow e.g., re-use distance
 - ILP \rightarrow e.g., producer-consumer distance

Steady State Interpolation

- Train model with sparse HW-SW profiles
- Interpolate for HW-SW pairs not profiles

INTERPOLATE

Perturbed Extrapolation

Train model with sparse HW-SW profiles
Extrapolate for new SW and new HW

- Predict app *n* from *n*-1 apps
- Also supports SW variants (compiler opt, data inputs)

Relative Accuracy

- Accurate interpolation, extrapolation

– Correlation coefficient > 0.9

Outline

- Introduction
- Inferred Performance Models
- Generalized Models
- Specialized Models
- Conclusions

Specialized Models

- Generality is expensive
 - Requires many SW characteristics (e.g., 13)
- With domain knowledge, SW behavior expressed at higher level
 - Reduces number of SW characteristics
 - Reduces profiling cost
 - Increases model accuracy

Sparse Matrix-Vector Multiply

- Compute y=Ax+b when A is sparse, blocked
- SW space \rightarrow block row, block column, fill ratio - HW space \rightarrow cache

SpMV Model Accuracy

- Models irregular performance caused by fill ratios

Performance Topology (nasasrb.hb, Mflop/s) Baseline Arch (Observed)

True performance

8 0.79 0.89 0.95 0.93 0.86 0.84 0.87 24 7 0.80 0.91 0.97 0.94 0.87 0.98 0.82 0.82 22 6 1.54 1.74 1.35 1.70 1.00 20 plock row 4 0.90 1.05 0.91 0.89 0.87 18 0.98 0.97 1.37 1.39 0.95 16 3 1.57 1.86 1.42 1.85 1.05 14 2 1.43 1.74 1.41 1.80 1.09 12 1 1.00 1.59 1.74 1.07 2 3 5 7 8 1 4 6 block column

Performance Topology (nasasrb.hb, Mflop/s)

Baseline Arch (Predicted)

Predictive performance

12/9/2012

Also in the paper...

- Shard-level prediction
 - Basis of application prediction
- Genetic algorithm evaluation
 Convergence versus model accuracy
- Coordinated optimization for SpMV

 Optimize HW and software
 - Optimize performance and power

Conclusions

- Present framework to close data-to-decision gap
- Infer performance from huge, sparse data
- Automate modeling in dynamic managers
- Apply domain knowledge for concise models

Inferred Models for Dynamic and Sparse Hardware-Software Spaces

Weidan Wu, Benjamin C. Lee Duke University

