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Trends in Management & Diversity

* Increasingly Sophisticated Management
— Allocate resources, schedule applications, ...
— Understand HW-SW interactions

* Increasingly Diverse HW & SW
— Heterogeneous cores, VMs, contention, ...
— Diverse clients, jobs, tasks, ...
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Mapping Software to Hardware
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— Management space explosion (M x N)

Duke Architecture




Profilers Support Management

HW-> System Management Space
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Sparse
Samples

— But profile sparsity increases with diversity
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Inference with Sparse Profiles
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Outline

* Inferred Performance Models
» Generalized Models
 Specialized Models

* Conclusions
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Inferred Performance Models

— Models, predictions support management

HW-> System Management Space
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Integrated HW & SW Analysis

— Lays a foundation for run-time management
— Increases diversity among sparse samples
— Prior work separates HW & SW
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New Challenges

 Larger space, greater sparsity
— Data re-usability is critical
— 30 parameters - 5E+15 points

* Less structured training data
— SW profiles from arbitrary, real shards
— HW profiles from defined, simulated design space
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Principles and Strategies

* Enhance data re-usability
— Shard-level profiles
— Portable characteristics (u-arch independent)

« Automate modeling
— Genetic algorithm
— Mitigate space explosion
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Shard-level Profiles

 Shards: short dynamic instruction segments

* Re-use data among applications
— New shards resemble existing ones

— Monolithic profiles only useful when entire
application resembles existing one

Profiled Applications

App 1l A Shard

App 2

App 3 |

App 4 New Application
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Shard-level Profiles

 Shards are sparse, randomly sampled segments
of 10M instructions

 Shards from diverse applications complement
each other, reducing profiling costs

 Shards expose intra-application diversity
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Portable Characteristics

» Re-use data among microarchitectures
— Microarchitecture-independent measures
— EX: Instruction mix versus cache miss rate
— Existing SW profiles relevant for new HW

Profiled Microarchitecture

App 1l

App 2 App 1

App 3 New Microarchitecture
App 4
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Sharing Supports Inference

 Shards enhances data re-use across SW
 Portability enhances data re-use across HW

* Inferred models require less training data due
to enhanced re-use
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Statistical Inference

Y = X7 X B + €
CPI ALUs, cache size, ... mem instr freq  regression coefficients
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X Includes non-linear kernel transformations
— EX: log(cache size)

« X includes pair-wise interactions
— Ex: ALU instructions, units
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Space of Model Specifications

* Many kernel transformations
— log, power, cubic spline, exponential, sqrt...
— 30 parameters, 5 kernels = 53°model specs

* Many parameter interactions
— Hardware and software interact

— (320) = 435 pairwise interactions = 243> specs
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Automatic Model Construction

Model
(kernels,
Interactions)

Genetic
Algorithm

Training
Data

— Model specification encoded as genes
— Mutation, crossover search models
— Selection evolves model toward higher accuracy

Duke Architecture



Automatic Model Updates

New
Training
Data Genetic Model
Algorithm (kernels,
J Interactions)
Old
Model

— New data updates model specification
— Algorithm changes kernels, interactions, fit
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Generalized Models

* Diverse SW as applications enter/leave system
— EX: democratized datacenter computing

» Heterogeneous HW as architectures tuned

— Ex: big/small cores, VMs, contention, ...

* Profiled data collected as SW runs on HW

* Models update to accommodate dynamics
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Inductive Hypothesis

— System In steady state
— Accurate model is trained M(H,S)
— Manager uses model predictions
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Inductive Step

— System is perturbed with new SW or HW
— Profile new SW-HW, check prediction
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Model Updates

 Poor prediction triggers model update
— Collect a few profiles for new SW (e.g., 10-20)
— Update kernels, interactions, fit

New
Data Genetic (Rernel
2a Algorithm .
Interactions)
Old
Model
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Integrated HW & SW Space

« Hardware Space (17 parameters)
— Pipeline parameters = e.g. width, rob size
— Cache parameters = e.g., cache size, associativity
— Functional unit - e.g., ALU count

« Software Space (13 parameters)
— Instruction mix
— Locality - e.g., re-use distance
— ILP - e.g., producer-consumer distance
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Steady State Interpolation

— Train model with sparse HW-SW profiles
— Interpolate for HW-SW pairs not profiles
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Perturbed Extrapolation

— Train model with sparse HW-SW profiles
— Extrapolate for new SW and new HW
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— Predict app n from n-1 apps
— Also supports SW variants (compiler opt, data inputs)
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Relative Accuracy

— Accurate interpolation, extrapolation

— Correlation coefficient > 0.9
4— 4

W
w

—

predicted (CPI)
- N

predicted (CPI)
N

1 2 3 4 0 1 2 3 4
observed (CPI) observed (CPI)

Duke Architecture

OO
o




Outline

» Specialized Models
« Conclusions

Duke Architecture



Specialized Models

* Generality Is expensive
— Requires many SW characteristics (e.g,. 13)

» With domain knowledge, SW behavior
expressed at higher level

— Reduces number of SW characteristics
— Reduces profiling cost
— Increases model accuracy
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Sparse Matrix-Vector Multiply
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— Compute y=Ax+b when A is sparse, blocked
— SW space - block row, block column, fill ratio
— HW space - cache
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SpMV Model Accuracy

— Models irregular performance caused by fill ratios

Performance Topology (nasasrb.hb, Mflop/s) Performance Topology (nasasrb.hb, Mflop/s)
Baseline Arch (Observed) Baseline Arch (Predicted)

block row
block row

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
block column

block column

True performance Predictive performance
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Also in the paper...

 Shard-level prediction
— Basis of application prediction

» Genetic algorithm evaluation
— Convergence versus model accuracy

 Coordinated optimization for SpMV
— Optimize HW and software
— Optimize performance and power
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Conclusions

* Present framework to close data-to-decision gap
* Infer performance from huge, sparse data
« Automate modeling in dynamic managers

» Apply domain knowledge for concise models
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