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Trends in Management & Diversity 

• Increasingly Sophisticated Management 

– Allocate resources, schedule applications, … 

– Understand HW-SW interactions 
 

• Increasingly Diverse HW & SW 

– Heterogeneous cores, VMs, contention, … 

– Diverse clients, jobs, tasks, … 
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Mapping Software to Hardware 

– Management space explosion (M x N) 

Heterogeneous HW 

Diverse SW 

N 

M 
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A HW-SW Mapping 



Profilers Support Management 

 

 

 

 

 

 

– But profile sparsity increases with diversity 
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Inference with Sparse Profiles 

System Management Space 
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Outline 

• Introduction 

• Inferred Performance Models 

• Generalized Models 

• Specialized Models 

• Conclusions 
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Inferred Performance Models 

– Models, predictions support management 
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Integrated HW & SW Analysis 

– Lays a foundation for run-time management 

– Increases diversity among sparse samples 

– Prior work separates HW & SW 
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New Challenges 

• Larger space, greater sparsity 

– Data re-usability is critical 

– 30 parameters  5E+15 points 
 

• Less structured training data 

– SW profiles from arbitrary, real shards 

– HW profiles from defined, simulated design space 
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Principles and Strategies 

• Enhance data re-usability 

– Shard-level profiles 

– Portable characteristics (μ-arch independent) 

 

• Automate modeling  

– Genetic algorithm 

– Mitigate space explosion 
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• Shards: short dynamic instruction segments 

• Re-use data among applications 

– New shards resemble existing ones 

– Monolithic profiles only useful when entire 

application resembles existing one 

 

 

 

 

 

 

 

Shard-level Profiles 
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Shard-level Profiles 

• Shards are sparse, randomly sampled segments 

of 10M instructions  
 

• Shards from diverse applications complement 

each other, reducing profiling costs 
 

• Shards expose intra-application diversity 
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• Re-use data among microarchitectures 

– Microarchitecture-independent measures 

– Ex: instruction mix versus cache miss rate 

– Existing SW profiles relevant for new HW 

Profiled Microarchitecture

New Microarchitecture
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Sharing Supports Inference 

• Shards enhances data re-use across SW 

 

• Portability enhances data re-use across HW 

 

• Inferred models require less training data due 

to enhanced re-use 
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𝑌        =                   𝑋𝑇                  ×    𝛽   +     𝜖 

      CPI                        ALUs, cache size, … mem instr freq       regression coefficients 
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0.89

⋮
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⋮ ⋮
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⋮
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• X includes non-linear kernel transformations 

– Ex: log(cache size) 

• X includes pair-wise interactions 

– Ex: ALU instructions, units 

 

 

Statistical Inference 
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Space of Model Specifications 

• Many kernel transformations 

– log, power, cubic spline, exponential, sqrt… 

– 30 parameters, 5 kernels  530model specs 
 

• Many parameter interactions 

– Hardware and software interact 

–
30
2

 = 435 pairwise interactions  2435 specs 
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Automatic Model Construction 

 

– Model specification encoded as genes 

– Mutation, crossover search models 

– Selection evolves model toward higher accuracy 
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Automatic Model Updates 

– New data updates model specification 

– Algorithm changes kernels, interactions, fit 
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Outline 

• Introduction 

• Inferred Performance Models 

• Generalized Models 

• Specialized Models 

• Conclusions 
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Generalized Models 

• Diverse SW as applications enter/leave system 

– Ex: democratized datacenter computing 
 

• Heterogeneous HW as architectures tuned 

– Ex: big/small cores, VMs, contention, … 
 

• Profiled data collected as SW runs on HW 
 

• Models update to accommodate dynamics 
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Inductive Hypothesis 

– System in steady state 

– Accurate model is trained M(H,S) 

– Manager uses model predictions 
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Inductive Step 

– System is perturbed with new SW or HW 

– Profile new SW-HW, check prediction 
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Model Updates 

• Poor prediction triggers model update 

– Collect a few profiles for new SW (e.g., 10-20) 

– Update kernels, interactions, fit 
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Integrated HW & SW Space 

• Hardware Space (17 parameters) 

– Pipeline parameters  e.g. width, rob size 

– Cache parameters  e.g., cache size, associativity 

– Functional unit  e.g., ALU count 
 

• Software Space (13 parameters) 

– Instruction mix 

– Locality  e.g., re-use distance 

– ILP  e.g., producer-consumer distance 
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Steady State Interpolation 

– Train model with sparse HW-SW profiles 

– Interpolate for HW-SW pairs not profiles 
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Perturbed Extrapolation  

– Train model with sparse HW-SW profiles 

– Extrapolate for new SW and new HW 
 

 

 

 

 

 

 

– Predict app n from n-1 apps 

– Also supports SW variants (compiler opt, data inputs) 
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Relative Accuracy 

– Accurate interpolation, extrapolation 

– Correlation coefficient > 0.9 
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Specialized Models 

• Generality is expensive 

– Requires many SW characteristics (e.g,. 13) 
 

• With domain knowledge, SW behavior 

expressed at higher level  

– Reduces number of SW characteristics 

– Reduces profiling cost 

– Increases model accuracy 
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Sparse Matrix-Vector Multiply 

– Compute y=Ax+b when A is sparse, blocked 

– SW space  block row, block column, fill ratio 

– HW space  cache 
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SpMV Model Accuracy 

– Models irregular performance caused by fill ratios 
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True performance Predictive performance 



Also in the paper… 

• Shard-level prediction 

– Basis of application prediction 
 

• Genetic algorithm evaluation 

– Convergence versus model accuracy 
 

• Coordinated optimization for SpMV 

– Optimize HW and software 

– Optimize performance and power 
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Conclusions 
 

• Present framework to close data-to-decision gap 
 

• Infer performance from huge, sparse data 
 

• Automate modeling in dynamic managers 
 

• Apply domain knowledge for concise models 
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