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Abstract

Diverse software and heterogeneous hardware pose new challenges
in systems and architecture management. Managers benefit from
improving introspective capabilities, which provide data across a
spectrum of platforms, from software and datacenter profilers to per-
formance counters and canary circuits. Despite this wealth of data,
management has become more difficult as sophisticated decisions are
demanded.

To address these challenges, we present modeling strategies for
integrated hardware-software analysis. These strategies include (i)
identifying shared software behavior; (ii) quantifying that behavior
in a portable, microarchitecture-independent manner; (iii) infer-
ring generalized trends with statistical regression models; and (iv)
automatically constructing/updating these models as new software
profiles are obtained.

Models produced by these strategies are accurate for general
SPEC2006 applications with median errors of 8-10%. Predicted
and actual performance are strongly correlated with coefficients
of ρ > 0.9. Moreover, when we exploit application semantics and
domain-specific software parameters, model accuracy improves and
model complexity falls. In a case study for sparse linear algebra,
we present models with 5% median error and new capabilities in
coordinated hardware-software tuning.

1. Introduction

Hardware management is the art of linking data to decisions. But
forging this link is increasingly difficult. Across a spectrum of com-
puting platforms, decisions must be made with increasingly sparse
data. Not every node can be profiled yet datacenter managers must
navigate diverse hardware-software interactions. Not every configu-
ration can be profiled yet adaptive chips must navigate performance
and power trade-offs.

Our ability to collect data has advanced significantly at all scales,
from software and datacenter profilers to performance counters and
canary circuits. But even as introspection has supplied more data,
the decisions demanded of hardware managers have become more
complicated. Datacenters must allocate and schedule software while
navigating heterogeneity and contention. Architectures must adapt
operating parameters and structural resources to dynamic application
behavior.

All of these decisions require linking data to expectations of per-
formance and closing the data-to-decision gap. But because many of
these decisions involve diverse software on heterogeneous hardware,
prior efforts that separate application analysis and architectural op-
timization are insufficient. Instead, we must reason about software,
hardware, and their interactions in a coordinated fashion.

To integrate hardware-software analysis yet keep costs tractable,
we present strategies to share profiled behavior (§2). First, we break
an application into shards and profile microarchitecture-independent
measures of behavior. Given profiles, we construct models that
predict performance as a function of software behavior and hardware

parameters. Finally, because the number of parameters explodes
in an integrated hardware-software space, an automated heuristic
constructs the model.

We demonstrate this strategy in two settings. In the general and
more difficult setting, we measure detailed software behavior for
arbitrary applications and infer a model. Models in the second,
domain-specific setting exploits programmer-level knobs in tunable
codes. In both settings, we link hardware-software interactions to
performance. Thus, we make the following contributions:
• Laying a foundation for system management, we construct pre-

dictive models for hardware-software interactions. But software
behavior is dynamic, exhibits high variance, and introduces an un-
wieldy number of parameters. We present a heuristic that automat-
ically builds and updates regression models as software behavior
is profiled. (§3)

• Inferred models interpolate and extrapolate performance for di-
verse hardware-software interactions. Median errors are 8-10%.
Predicted and actual performance are strongly correlated with
coefficients of ρ > 0.9. (§4)

• Given domain knowledge, software behavior is captured more
concisely. Domain-specific software parameters produce smaller,
more accurate models. In a case study for sparse linear algebra,
we show accurate models for highly irregular performance topolo-
gies and demonstrate their application to coordinated hardware-
software tuning. (§5)

Collectively, these results lay the foundation for understanding di-
verse software on heterogeneous hardware. By linking sparse data
to performance predictions, we enable future work in control mecha-
nisms for reconfigurable architectures and allocation mechanisms for
heterogeneous datacenters.

2. Sharing – Principles and Strategies

Capturing hardware-software performance is made difficult by highly
variable software behavior. To address this challenge, we infer shared
behavior and construct integrated models with four strategies.

2.1. Shard-level Profiles

Models are most effective when inferred from diverse data. To in-
crease diversity, we break an application into shards, each with an
equal number of instructions. When collected for short shards, pro-
files detect fine-grained phase behavior. In contrast, monolithic
application profiles (e.g., average instruction mix) obscure intra-
application diversity.

This diversity is needed when sharing profiles between applica-
tions. Suppose we have profiled several applications and are given a
new one. Profiles of monolithic application behavior are useful only
if the new application resembles a previously observed one. This
constraint is too restrictive to meaningfully share profiled insights.

Relaxing this similarity constraint, fine-grained shards in the new
application may resemble disparate shards from others. As illustrated
in Figure 1, profiles from relevant shards can be drawn from several
applications to capture partial similarities. Sharding increases the



Figure 1: Reflecting partial similarity, a new application might be un-
derstood in terms of shards drawn from several previously
profiled applications.

Figure 2: Portable, microarchitecture-independent characteristics
that are profiled for architectures A, B, and C are applica-
ble to new architecture D.

value of an application’s profile since part of it is likely relevant for
other applications of interest.

In contrast to related work [35], our approach to sharding is agnos-
tic to underlying phase behavior. We simply ensure that shards are
shorter than phases so that intra-application diversity is preserved. A
short, pre-determined shard length is sufficient. Forgoing sophisti-
cated phase analysis simplifies the mechanics of profiling software
characteristics.

2.2. Portable Characteristics

We measure application characteristics that are portable and inde-
pendent of the microarchitecture [14, 36]. For example, data re-use
distance is a portable measure while cache miss rate is not. Such
portability is important when profiling tunable codes on reconfig-
urable cache architectures. We cannot profile every code on every
cache configuration [43].

At the system-level, portability is needed to navigate increasing
heterogeneity. The Google-wide Profiler samples application behav-
ior across many datacenter nodes [39] . And future node managers
must anticipate heterogeneous hardware demand in the form of di-
verse resource containers [2, 17, 19], contention [30], or big/small
cores [38]. Thus, software profiles will be collected from increasingly
diverse platforms.

Portable measures of software are needed when sharing profiles
between architectures. Figure 2 shows how profiles collected for
different shards and architectures might provide insight for a new
application on a new architecture. While these links might be found
explicitly, perhaps with distance calculations and clustering, the costs
of doing so are prohibitive given the number of dimensions in an
integrated hardware-software space. Implicitly inferring these links
is more tractable.

2.3. Statistical Inference

To infer these links, we extend related work in predictive modeling.
Previous models predict performance as a function of parameters
from the processor design space. Sampled measurements from the
space are used to train neural networks [11, 21, 22] or fit regression
models [26, 27]. These efforts infer hardware performance for design
space exploration.

In this paper, inferred performance also accounts for software
behavior and lays a foundation for run-time decisions. Let z be
performance. And let x = (x1, . . . ,xp) and y = (y1, . . . ,yq) be sets of
p hardware parameters and q software characteristics. By sparsely
profiling hardware-software interactions, a model can be inferred
to predict z = F(x,y)+ ε with some approximation error ε . With
statistical regression, we construct an integrated hardware-software
model.

2.4. Automated Modeling

Unfortunately, an integrated hardware-software space is unwieldy.
To infer a model, we must navigate a space of hardware and soft-
ware parameters, several non-linear transformations on them, and
a combinatorially increasing number of interactions between them.
In prior work, users manually specified hardware-only models. But
specifying hardware-software models is complicated by the sheer
number of variables and requires additional guidance.

We present a heuristic to search for effective model specifications,
which are defined by variables, transformations, and interactions.
We encode model specifications as genetic sequences, which evolve
toward better fits. Unlike stepwise regression, which considers only
one term at a time, crossovers and mutation in genetic algorithms
support a rapid search of possible models. Moreover, the heuristic
accommodates new data by updating the model specification and
fitting new regression coefficients. This capability supports dynamic
run-time environments with evolving software profiles.

3. Generalized Hardware-Software Models

Accommodating dynamic software behavior is difficult for two rea-
sons. First, software characteristics have high variance and long tails
(i.e., infrequent instances of large values), which models have diffi-
culty capturing. Second, profilers have little control over the software
behavior used for training.

Nonetheless, modeling software behavior is critically important.
Behavior differs dramatically between application phases and be-
tween different applications. These differences are exploited by
many of the most innovative heterogeneous systems and adaptive
architectures. The viability of these innovations depends on linking
software dynamics to system and architecture preferences.

Consider a system with diverse software that requests computation
from heterogeneous hardware. The space of software behavior is
large. Moreover, it is sparsely and non-uniformly populated by real
applications. As applications run, models have the difficult task
of generalizing trends by profiling software behavior that it cannot
precisely sample and manipulate. In comparison, hardware modeling
is easier since simulators allow architects to sample uniformly from
a cleanly defined design space.

3.1. Inference and Software Behavior

Regression is the starting point for our models. Suppose we have in-
dependent variables x = (x1, . . . ,xp) for software and y = (y1, . . . ,yq)
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Figure 3: Each shard reports the sum of its re-use distances for 256B
data cache blocks. (a) Histogram for this sum-of-distances
(x) shows long tail of outliers across SPEC2006 shards. (b)
Transforming x→ x1/5 stabilizes variance.

for hardware. And we have a dependent variable z for performance.
A basic regression fits z = β0 +β1x1 +β2x2 + . . .+βp+qyq + ε by
finding β ’s to minimize error given x, y, and z from training data.

In practice, more sophisticated models are needed. Users must
determine which independent variables to include (xi or y j), how
these variables are transformed to accommodate non-linear trends
(S(xi)), and which variables interact to affect performance (xiy j). In
each of these decisions, software characteristics introduce new chal-
lenges that we address with an automated heuristic for constructing
and updating models.

Choosing Variables. In some cases, the impact of software behav-
ior is clear from domain knowledge. For example, rare floating-point
divides are not strong predictors of performance. But more generally,
we cannot always anticipate the precise mix of applications in a sys-
tem and determining the best software predictors of performance is
complicated.

Further affecting the choice of variables are strong relationships
between software characteristics. For example, consider measures of
locality. Temporal locality measures time between two consecutive
accesses to a cache block. And spatial locality is the quotient of
two measures for temporal locality at different block sizes. From an
architect’s perspective, this link is clear and both locality measures
should be modeled.

However, from a statistician’s perspective, these locality measures
are linearly dependent and highly correlated. Such subtle collinearity,
which prevents solvers from fitting a model, is common amongst
software variables. Although we use domain expertise to eliminate
obvious cases of collinearity, many are not easily discovered until
model construction. For this reason, the modeling heuristic must
also check for and eliminate collinear variables as it dynamically and
automatically seeks a mix of variables with high predictive ability.

Transforming Variables. Once chosen for the model, variables
benefit from non-linear transformations that provide flexibility and
mitigate the high variance in software behavior, which is particularly
important since we cannot explicitly control training samples from
the space of software behavior.

To illustrate challenges posed by behavioral asymmetry, Figure
3(a) plots a histogram of temporal locality for SPEC2006 shards. We
measure a shard’s locality as the sum of all re-use distances within
it.1 While most profiles report small sum-of-distances, many profiles
report much larger ones. Outliers are an order of magnitude larger
than the common case; sum-of-distances at 5E+4 are most common
but sum-of-distances at 5E+5 are observed. Such tails are typical in
software.

Because this heteroscedasticity (i.e., non-constant variance) breaks

1Re-use distance is the number of instructions separating two consecutive accesses to
the same data block.

underlying regression assumptions, we apply variance stabilizing
transformations. Rather than use x, we use x1/n in the model.2

With such a transformation, our measure of locality exhibits more
symmetry and less variance around the mean as shown in Figure 3(b).

Transformations also provide flexibility to capture non-linear or
non-monotonic trends. We can use splines that divide a variable
into pieces and fit different cubic polynomials to each piece [18].
For example, S(x) = β0 +β1x+β2x2 +β3x3 +β4(x−a)3

++β5(x−
b)3

++β6(x− c)3
+ splits x into pieces delimited by three inflections at

a, b, and c. Since (x−a)+ = max(x−a, 0), β4 has an effect only if x
is greater than a. In this way, different coefficients are fit to different
parts of the space.

These transformations require decisions, such as the exponent in
variance stabilization or the number of inflections in splines. The
right choice depends on the training data. But since this data evolves
in dynamic systems, our modeling heuristic searches the space of
transformations and applies the best one automatically.

Specifying Interactions. Lastly, variables interact to affect the
predicted value. For example, the performance impact of branch
prediction is larger in deeper pipelines because the price of wrong-
path execution is higher. Pairwise hardware-software interactions are
particularly important since they are a fundamental determinant of
performance.

Regression captures such interactions with a product term. In z =
β0+β1x+β2y+β3xy+ε , the interaction between x and y is captured
by coefficient β3. Note the partial derivative δ z/δx1 = β1 +β3x2.
Given p variables and t possible transformations on those variables,
there are

(p×t
2
)

possible pairwise interactions. These possibilities are
explored and evaluated by the modeling heuristic.

3.2. Accommodating System Dynamics

Training models in dynamic systems is difficult. Because we add
software behavior to the model and rely on real applications for sparse
profiles, we have little control over training data. Some software
behavior may be well represented while others are not. And, in
systems with run-time profiling, new software behavior requires
model updates.

We describe the modeling process for a large system with diverse
architectures and applications. As software runs, sparse run-time
profiling collects hardware-software interactions and their effect on
performance (e.g., Google-wide Profiler [39]). And in the future,
these profiles may be collected on heterogeneous platforms with
big/small cores [38], differentiated virtual machines [2], or diverse
servers in federated clouds. As data accrues, the model is updated.

An Inductive Analysis. To describe system and model dynamics,
we take an inductive approach. In the inductive hypothesis, the
system is in steady state. Architectures and applications from spaces
H and S have been sparsely profiled. And this data has trained an
accurate model M for the integrated H/S space. In practice, this
hypothesis holds because models can be boot-strapped with data
from benchmark suites.

In the inductive step, the system is perturbed by a new architecture
or application.3 Suppose software space S is perturbed by a new
application +s. Since the application runs on at least one architecture,
there exists a profile with microarchitecture-independent software

2n≥1 and statistics packages, like ladder in Stata, help identify the best power
transformation.

3We use the words “architecture” to represent a hardware environment. A new
architecture could arise from new hardware, virtual machines, or contention conditions.
Similarly, a new application could arise from new jobs, input data, or code optimizations.
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behavior x+s, hardware parameters y, and performance z. With this
data, we check the existing model’s accuracy, comparing measured
performance z against a prediction M(x+s,y).

If predicted performance is accurate, the new application likely
shares behavior with already observed software. A sufficiently accu-
rate model will have errors for +s that are competitive with those for
applications in S. And, in practice, the desired accuracy depends on
how predictions are used. For example, median errors less than 10-
15% may be sufficient to make coarse-grained resource allocations.

Input: Profiles PS
Output: Regression Model M
foreach Generation g≤G do

foreach Model m∈g do
foreach Software s∈S do

Split Ps data into training Ts, validation Vs
Fit m using {P−s,Ts}×w
Set software fitness fs as m’s accuracy on Vs

end
Set model fitness fm as (∑s∈S fs)/|S|

end
Populate N% of g+1 with g’s N% best models
Populate (100-N)% of g+1 with crossovers, mutations

end

3.3. Updating System Models

An inaccurate prediction may suggest that the new application is
poorly served by existing regression coefficients and/or model speci-
fications. However, the error could also be an outlier. To determine
whether to trigger a model update, more data is needed. Profiling
+s, or variants of it, on a few more architectures would provide addi-
tional insight. In practice, we find 10-20 additional data points are
sufficient.

Exactly when additional profiles are obtained determines model
responsiveness. A model might be updated immediately by invoking
profilers for +s on various hardware. Alternatively, because large
systems invoke profilers periodically and selectively, a model might
be updated only after a sufficient number of additional profiles has
accrued. This latter scenario would introduce hysteresis into system
models.

To update the model, we insert the new application and its profiles
into S. With profiles Ps for each application s∈S, we invoke a heuristic
to re-specify and perform a weighted fit of the model. This heuristic
chooses new variables, transformations, and interactions. To ensure
model updates accommodate all profiled applications, the inner loop
evaluates the fit of a candidate model for every application ( fs,s∈S),
which then determines average model fitness ( fm).

3.4. Genetic Search

The heuristic’s outer loops implement a genetic search, in which the
best models propagate into the next generation while the others are
subject to crossovers and mutations. Each model is described by a
chromosome that encodes variables, transformations, and interac-
tions.

Each gene encodes a variable. If the genetic value for xi is 0, the
variable is excluded. If the value is 1, 2, or 3, we add xi with a linear,
quadratic, or cubic transformation. And if the genetic value is 4, we
apply a piecewise-cubic transformation with three inflection points.

Instruction Mix
x1 # Control
x2 # Taken Branches
x3 # Float ALU
x4 # Float Mul/Div
x5 # Integer Mul/Div
x6 # Integer ALU
x7 # Memory
Memory – Temporal Locality
x8 average re-use distance for 64B d-cache blocks
x9 average re-use distance for 64B i-cache blocks
Instruction-Level Parallelism
x10 # of instructions between floating-point ALU

and its consumer
x11 # of instructions between floating-point multiply

and its consumer
x12 # of instructions between integer multiply

and its consumer
x13 Average basic block size

# instructions / # branches

Table 1: Software characteristics that are microarchitecture-
independent and profiled for 10M-instruction shards.

Pipeline Parameter
y1 Width 1 :: 2x :: 8
y2 Load/Store queue 11 :: 5+ :: 38

Physical registers 86 :: 42+ :: 300
Instruction queue 22 :: 10+ :: 72
Reorder buffer 64 :: 32+ :: 224

Cache
y3 L1 Associativity 1 :: 2x :: 8

L2 Associativity 2 :: 2x :: 8
y4 MSHR 1 2 4 6 8
y5 Data cache size (KB) 16 :: 2x :: 128
y6 Instruction cache size (KB) 16 :: 2x :: 128
y7 L2 cache size (KB) 256 :: 2x :: 4096
y8 L2 latency (cy) 6 :: 2+ :: 14
Functional Unit Number
y9 Integer ALU 1 :: 1+ :: 4
y10 Integer Mult/Div 1, 2
y11 Float ALU 1 :: 1+ :: 3
y12 Float Mult 1, 2
y13 Cache Read/Write Port 1 :: 1+ :: 4

Table 2: Hardware parameters that include extreme designs so that
models infer interior points more accurately.

The chromosome also encodes interactions, specifying a pair of
numbers i− j for interaction xix j . Given p variables and t transforma-
tions on them,

(p×t
2
)

interactions are possible interactions. Because
we cannot statically specify a chromosome long enough to accommo-
date so many interactions, we dynamically expand/shrink its length
as the search runs.

The genetic search starts with a random population of models,
which evolves with crossovers and mutations. With evolving chro-
mosomes, the heuristic quickly covers a large space of model spec-
ifications. Models may be affected by three crossover operators:
(C1) single variable randomly exchanged between two chromosomes,
(C2) interaction randomly exchanged between two chromosomes,
(C3) interaction randomly created using single variables from two
chromosomes.

We further consider two mutation operators: (M1) interaction ran-
domly changed for a chromosome, (M2) single variable randomly
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Software Parameters Hardware Parameters
un-used y12
linear x6,x8,x9 y3,y4,y8,y10
poly, degree 2 x1,x4,x5,x7,x10 y1,y6

x11,x12,x13
spline, 3 knots x2,x3,x6 y2,y7,y9,y11,y13

Table 3: Transformations after 20 genetic search generations.

changed for a chromosome. Each crossover occurs with 12.5% prob-
ability and each mutation occurs with 5% probability, which we find
experimentally effective.

4. Evaluating Generalized Models

We evaluate the effectiveness of the modeling heuristic, illustrating
its convergence and describing the nature of the produced model. We
further demonstrate accuracy, both in steady state and after updates,
for integrated hardware-software performance prediction.

4.1. Experimental Methodology

To define an integrated hardware-software space, we consider a spec-
trum of microarchitectures and key measures of software behavior.
We sparsely sample application-architecture profiles to train models.

Software Parameters. We break SPEC2006 applications into
shards of 10M dynamic instructions. For each shard, we profile
portable measures of software behavior as listed in Table 1. In the
datapath, these characteristics capture instruction mix. They also cap-
ture instruction-level parallelism via the number of instructions that
separate producer and consumer instructions. In the cache hierarchy,
the profile captures locality by measuring the number of instructions
separating two consecutive accesses to the same data block [40].

These characteristics primarily capture processor-bound workload
behavior. Other workloads may require memory or I/O characteris-
tics. For memory-bound workloads, such parameters might include
memory hierarchy latencies, memory channel bandwidth, application
concurrency, and memory request burstiness. Similar strategies apply
for I/O-bound workloads.

Hardware Parameters. Applications are profiled on the diverse
microarchitectures listed in Table 2. Such hardware diversity may
manifest physically in an implemented design, or manifest logically
during run-time as partitioning schemes or contention for shared
resources. To collect profiles, these microarchitectures must support
introspective performance counters.

We embed such counters into Gem5 [1], extending the simulator
to profile software behavior during the commit pipeline stage, which
ensures that software behavior is independent of the out-of-order
microarchitecture. Gem5 simulates the Alpha instruction set and we
cross-compiled the following SPEC2006 applications: astar, bwaves,
bzip2, gemsFDTD, hmmer, omnetpp, sjeng.

Just as large system profilers selectively profile hardware-software
pairs [39], we sample the integrated hardware-software space to
produce profiles. With profiled data and R statistics libraries, the
modeling heuristic fits a regression model [18]. For performance, we
parallelize the genetic search with R libraries doMC and Multicore,
which automatically fork and join R threads.

4.2. Automated Modeling

An initial collection of random models may produce a few with
reasonable accuracy. And as these models evolve toward better
specifications, errors fall. In practice, useful models begin appearing

Figure 4: Frequency of interactions in the 50 best models after 20
generations of a genetic search. Interactions are shown be-
tween software parameters (lower-left), software-hardware
parameters (upper-left), and hardware parameters (upper-
right). Matrix is symmetric and we show upper triangle with-
out loss of generality.

Figure 5: Accuracy improves genetic algorithm evolves for 20 gener-
ations. Median errors summed for 7 applications used by a
genetic algorithm.

after only a few generations. We see diminishing marginal benefits to
accuracy as the search approaches 20 generations. Figure 5 illustrates
the benefit to our heuristic’s measure of accuracy: sum of median
errors for applications of interest.

Comparison with Manual Modeling. A research assistant with
no prior experience in regression requires nearly ten months to pro-
duce an integrated hardware-software model by hand. Much of this
time is spent identifying variables, transformations and interactions.

Moreover, a manually specified model is susceptible to human
biases, which limit the number of candidate models he considers.
Automatically derived models benefit from a comprehensive search.
We find that model errors from genetic search are 10% lower than
those from hand-tuning.

Modeling Time. The speed of parallelized and automated genetic
search significantly reduces the time to find and fit an accurate model.
As long as the heuristic’s three nested loops are ordered to minimize
data movement, we find that twelve processor cores provide a 9×
speedup.

Moreover, the genetic algorithm’s inner loop is embarrassingly
parallel. Statistical computation for each candidate model in a gener-
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ation is independent; a generation with n models could benefit from
n-way parallelism.

With such speed, the search can evaluate one generation every 20
minutes. In practice, we expect even faster training times. As the
search begins with more effective models in the starting population,
fewer generations are required. And each generation is evaluated
more quickly as more cores provide greater parallelism.

Parameter Significance. System analysts benefit, not only from
speed and accuracy, but also from an additional source of insight as
the genetic search identifies determinants of performance. The search
begins with a population of random models. But as models evolve,
the population increasingly prefers certain variables, transformations,
and interactions.

Some parameters, such as those that support out-of-order execution
(y2), have complex relationships with performance that require sophis-
ticated spline transformations. Other parameters, such as the number
of floating-point multiplies (y12) is less significant and dropped from
the model. Consider a genetic algorithm evolved for more than 20
generations using SPEC 2006 shard profiles. After the search con-
verges, we examine the best models and Table 3 presents common
transformations.

In practice, hardware-software interactions are sophisticated and
span many different parameters. However, the model accommodates
only pairwise interactions. The genetic search must use many such
pairs to capture the desired effect. Specifically, the two-dimensional
histogram of Figure 4 indicates how often a particular pairwise inter-
action appears in the 50 best models. After 20 generations, the best
models still exhibit considerable diversity in its choice of pairwise
interactions.

4.3. Accuracy in Steady State – Interpolation
We evaluate model accuracy in two scenarios. In the first, the system
is in steady state. An integrated hardware-software space has been
sparsely profiled to construct a model that interpolates performance.
As illustrated in Figure 6(a), interpolation lends itself to accurate
models. For every prediction made, we have likely profiled similar
hardware for another application or profiled similar software for
another architecture.

Interpolation Accuracy. To evaluate interpolation accuracy, we
train and validate a model. First, we randomly sample architec-
tures. For each architecture, we randomly sample applications. The
number of samples is many orders of magnitude smaller than the
cross-product of applications and architectures. With these sparse
samples, the automated heuristic produces a model. On average, each
of 7 applications is profiled on 360 architectures.

We assess accuracy in two ways. First, we examine the distribu-
tion of prediction errors with boxplots, which show the median and
quartiles computed over the validation data. Second, we consider the
correlation between predicted and true performance, which is a better
measure of accuracy in the context of optimization. For example,
correlation is important in hill climbing heuristics that use models to
find higher performance.

Training data is randomly selected from application-architecture
pairs. Validation data is select randomly and independently of the
training data. Validation against 140 separately profiled application-
architecture pairs illustrates the effectiveness of our automated mod-
eling heuristic. The resulting model has low median errors of 5% in
Figure 7(a) and high correlation coefficients of ρ>0.9 in Figure 8(a).

Reduced Profiling Costs. Not only is the integrated hardware-
software model accurate, it requires less data to train when com-

pared against prior approaches in regression and neural networks
[21, 26]. Previously, each application would require its own architec-
tural model and 400-800 architectural profiles to train it.

With our integrated approach, we require fewer architectural sam-
ples per application to construct a single model shared by all appli-
cations. Shared software behavior reduces the number of required
profiles. If applications s1 and s2 exhibit similar software behavior,
each benefits from the other’s architectural profiles. By exploiting
such shared behavior, profiling costs per application falls by 2−4×.
Cost reductions are even greater (20-40×) when existing profiles are
used to extrapolate new application or architecture performance.

4.4. Accuracy after Updates – Extrapolation

Shared shard behavior is the basis for extrapolation and the second
modeling scenario. In this scenario, the system is perturbed by a
new architecture, new application, or both. By exploiting similar
behavior in existing profiles, models can be updated inexpensively to
extrapolate performance as illustrated in Figure 6(b-d).

Extrapolation for Shards. We first evaluate the notion of shard
similarity by extrapolating individual shard performance. Profiles of
shards from n−1 applications train a model, which is used to predict
the performance of shards from application n. Each SPEC2006
application takes a turn as application n; the other n−1 applications
train.

Accurate shard-level predictions indicate exploitable relation-
ships across application shards. For example, astar shard per-
formance is predicted accurately by sparse shard profiles from
{bwaves, . . . ,sjeng}. We validate against 300 separately profiled
shards for each application. Figure 10 shows low median errors of
8%. Moreover, predictions correlate with true performance values;
ρ≥0.9.

Extrapolation for Applications/Architectures. Automatic
model updates further enhance accuracy when the system is per-
turbed by a new application and/or architecture. As illustrated in
Figure 6(d), a system in steady state has sampled shard profiles from
n−1 applications on diverse architectures. These profiles produce an
accurate hardware-software model for interpolation. When perturbed
by application n, the model is updated (§3.2–§3.4).

To predict application performance, we predict the performance
of its constituent shards and aggregate their contributions to the
application. The performance for most shards can be extrapolated
accurately. A few inaccurate shard predictions have a small effect on
the end-to-end prediction since an application contains many 10M
instruction shards.

We first consider systems perturbed by variants of existing appli-
cations, which perform the same fundamental computation but differ
in code structure or input data. These differences alter the dynamic
instruction stream, significantly affecting both performance and the
underlying microarchitecture-independent characteristics we profile.
For example, we find the choice of back-end compiler optimizations
affect performance by up to 60%; mean effect is 26%.

Consider a system perturbed by applications with code optimiza-
tions (-O1,-O3) or input data (-v1,-v2,-v3) that differ from those
in existing profiles. For these software variants, updated models
accurately predict performance for 150 application-architecture pairs.
Median errors are 8% in Figure 7(b). Correlation coefficients ρ≥0.9
in Figure 8(b).

Beyond the common perturbations of varying software, systems
may also encounter fundamentally new software. In such scenarios,

6



Figure 6: Shaded HW-SW pairs are profiled. Pair p denotes a prediction. (a) Interpolation for previously observed hardware and software. (b)-(d)
Extrapolation after updates for new hardware, new software, or both.

Figure 7: Distributions of performance prediction error when (a) interpolating in steady state, (b) extrapolating for new software variant, (c)
extrapolating for new hardware/software.

Figure 8: Correlation between predicted and true performance when (a) interpolating in steady state, (b) extrapolating for new software variant,
(c) extrapolating for new hardware/software.

Figure 9: Extrapolation for bwaves suffers from significant differences in software behavior and performance. (a) illustrates the difference
between training data mean and bwaves/sjeng mean for various software characteristics; x-axis refers to Table 2. (b) plots CPI
distribution for all applications excluding bwaves and (c) plots a very different CPI distribution for bwaves.
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Figure 10: Error distribution when predicting shard performance.
Model is trained and validated with separate, randomly
sampled shards.

extrapolation reaches further beyond the already profiled space. To as-
sess accuracy, each SPEC2006 application takes a turn as application
n; the other n−1 train.

We predict the performance of application n for 140 new
application-architecture pairs. While inherently more difficult than
interpolation, extrapolation with updated models captures perfor-
mance trends with low median errors of 6% in Figure 7(b) and strong
correlations between predicted and true values; ρ≥0.9 in Figure 8(b).

4.5. Outliers

Extrapolation is more difficult when already profiled software be-
havior does not cover those in the target application. For example,
compare performance extrapolation for sjeng and bwaves. Software
behavior in sjeng is very similar to that in the n−1 other applications.
In contrast, bwaves exhibits very different behavior.

Figure 9 quantifies this difference. For each software characteristic
of Table 1, we take the mean value observed for a given application
and subtract the mean value observed for its training applications.
If this difference is zero, application n behaves like the other n−1
applications. However, if this difference is large, the training data is
not representative of the target application.

Figure 9(a) indicates that, while sjeng differences are modest,
bwaves is not well represented by its training data. Compared to train-
ing applications, bwaves has far more taken branches and floating-
point operations. And it has far fewer integer and memory operations.

Such large behavioral differences translate into performance dif-
ferences. Figure 9(b-c) show CPI histograms for bwaves’ shards
versus those in all the other applications. While performance of other
applications’ shards are clustered around CPI=1, bwaves CPI exhibits
much greater variance and bimodal behavior around CPI = 0.5 and
1.0. Even model updates cannot accommodate this difference in
performance distribution.

However, these challenges are not fundamental and, in an avenue
for future work, training data can be augmented to better cover the
space of software behavior. Synthetic benchmarks provide explicit
control on software behavior and enable uniform profiling across the
software space [23]. If synthetic benchmarks were used, they would
need to be coordinated with real application profiles.

5. Domain-Specific Models
To model performance from instruction-level software behavior, §3–
§4 develop an extensive methodology to accommodate generality.
This generality is expensive. Capturing performance requires many
measures of software behavior that then require automated model-
ing heuristics. Identifying determinants of performance is difficult
without application semantics.

A =

 a00 a01 0 0 0 0
a10 a11 0 0 a14 a15
0 0 a22 0 a24 a25
0 0 0 a33 a34 a35


b_row_start = (0 2 4); b_col_idx = (0 4 2 4)

b_value = (a00 a01 a10 a11 0 0 a14 a15 a22 0 0 a33 a24 a25 a34 a35)

Figure 11: BCSR with 2×2 blocks. 2×2 blocks are stored contigu-
ously in b_value. The first column index of entry (1,1)
in each 2×2 block is stored in b_col_idx. Pointers to
block row starting positions in b_col_idx are stored in
b_row_start.

Given domain knowledge, however, we can express software be-
havior more concisely. Rather than analyze individual instructions,
we can analyze the behavior of libraries and algorithms. This ap-
proach is gaining traction in a number of domains, such as signal
processing [37], linear algebra [3, 44], and program sketching [42].
From these diverse domain-specific program generators, we choose
sparse matrix-vector multiply (SpMV [44]) for a case study.

5.1. Sparse Matrix-Vector Multiply (SpMV)

SPMV poses interesting challenges for integrated hardware-software
models. Its performance trends are non-monotonic and its hardware-
software interactions are sophisticated. We capture these subtleties
while exploiting program-level software characteristics that keep
model complexity modest.

Sparse matrix-vector multiply (SpMV) computes v = v+Au when
most elements in A are zero. We refer to u and v as the source
and destination vectors, respectively. SpMV performance tuning is
complicated by irregularity and variation in the best choice of sparse
matrix data structure and code transformation across matrices and
machines.

A particularly effective transformation improves locality by orga-
nizing a sparse matrix into r×c sub-blocks. Blocks with at least one
non-zero are stored. The multiply proceeds block by block, re-using
c source elements and streaming through r destination elements in a
row-major matrix.

5.2. SpMV Hardware-Software Interactions

Choosing a matrix block size requires navigating sophisticated trade-
offs between hardware and software. Sparse matrices store non-zero
values with row and column pointers that map each value to a location
in the matrix. Index overheads are reduced in a blocked compressed
format since indices point to matrix blocks instead of individual
matrix values (Figure 11).

However, this reduction is offset by explicit zeros which must be
stored to create dense blocks of the same size; Figure 11 stores four
such zeros. The fill ratio is the number of stored values (original non-
zeros plus filled zeros) in a blocked matrix divided by the original
number of non-zeros. Fill increases the number of unnecessary
floating-point operations.

The precise balance of blocking’s costs and benefits depends on
input data, block size, and cache architecture. Sparser matrices and
larger block sizes require more filled zeros to produce dense structure.
And as density improves spatial locality, SpMV benefits from larger
cache lines.

There exists an optimal balance between fill and locality. But we
must strike this balance in an irregular performance topology. Rather
than profile the cross-product of sparse matrix patterns, block sizes,
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Matrix Dimension Non-Zeros Sparsity
1 3dtube 45330 1629474 7.93E-04
2 bayer02 13935 63679 3.28E-04
3 bcsstk35 30237 740200 8.10E-04
4 bmw7st 141347 3740507 1.87E-04
5 crystk02 13965 491274 2.52E-03
6 memplus 17758 126150 4.00E-04
7 nasasrb 54870 1366097 4.54E-04
8 olafu 16146 515651 1.98E-03
9 pwtk 217918 5926171 1.25E-04
10 raefsky3 21200 1488768 3.31E-03
11 venkat01 62424 1717792 4.41E-04

Table 4: Sparse matrices. N is dimension in a square matrix. Sparsity
is number of non-zero elements divided by N2.

SpMV
x1 brow, block row 1 :: 1+ :: 8
x2 bcol, block column 1 :: 1+ :: 8
x3 fR, fill ratio function of brow,bcol,matrix
Cache Architecture
y1 lsize, line size 16B :: 2x :: 128B
y2 dsize, data size 4KB :: 2x :: 256KB
y3 dways, data ways 1 :: 2x :: ::8
y4 drepl, data repl LRU, NMRU, RND
y5 isize, inst size 2KB :: 2x :: 128KB
y6 iways, inst ways 1 :: 2x :: ::8
y7 irepl, inst repl LRU, NMRU, RND

Table 5: Hardware-software space, which includes software block
sizes and hardware cache parameters.

and cache architectures, we infer models that accurately capture these
complex relationships for coordinated optimization.

5.3. Accuracy for Coordinated Optimization

Software and Hardware Space. The integrated hardware-software
space spans matrices, block sizes, and cache architectures. Table 4
lists matrices drawn from various application domains [34]. SpMV
for each matrix has 64 variants with block sizes from 1×1 to 8×8,
each with a corresponding fill ratio. These codes are generated
automatically by OSKI [44].

Given the diversity in matrices and data structures, we evaluate
a reconfigurable architecture that can accommodate them. To accu-
rately assess core and cache reconfigurability, we use a simulator for
a 400MHz Tensilica Xtensa processor, supplemented with CACTI
and Micron to estimate cache and memory power [31, 33]. Because
SpMV is memory-intensive, we focus on the cache (Table 5).

Non-monotonic Performance. Performance in this integrated
hardware-software space is highly irregular.4 Matrix blocking has a
direct but discontinuous performance impact. Locality and perfor-
mance increase with block size. But the largest blocks require the
greatest number of filled zeros and produce diminishing marginal
returns.

Figure 12 illustrates this irregularity in an example matrix, raefsky3.
8 block rows maximize performance but 6 or 7 block rows are only
as effective as 2. For block columns, 1, 4, and 8 are equally effective,
which reflects inherent dense sub-structure that arises in multiples of
4. A poorly chosen block size increases the fill ratio, which can harm
performance (e.g., fR > 1.25).

4Performance is true floating-point operations per second. The numerator excludes
operations on filled zeros. The denominator includes reduced execution time from
blocking.

Figure 12: SpMV blocking parameters and performance. Data in-
cludes 400 samples drawn from integrated SpMV-cache
space for raefsky3. Average Mflop/s is reported for all sam-
ples at each parameter value.

Figure 13: Cache architecture and performance trends. Data in-
cludes 400 samples drawn from integrated SpMV-cache
space for raefsky3. Average Mflop/s is reported for all sam-
ples at each parameter value.
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Figure 14: Distributions of (a) performance and (b) power prediction error. Matrix numbers refer to Table 4.

Figure 15: (a) Profiled and (b) predicted performance topologies. Colormap illustrates Mflop/s and numbers in each cell indicate speedup over
1×1 code. Data shown for a representative matrix nasasrb.

Figure 16: (a) Performance and (b) energy efficiency optimization. Matrix numbers refer to Table 4.
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These blocking effects interact with cache structure, as shown in
Figure 13. A larger cache line amortizes off-chip latency over a larger
number of bytes to increase streaming bandwidth. Ideally, matrix
values would not be cached since they are never re-used. But in a
highly associative cache, matrix blocks occupy cache lines longer as
they must travel down the LRU stack.

SpMV-Cache Modeling Accuracy. We train and validate a model
for these complex performance effects. First, we randomly sample
combinations of matrix block sizes and cache architectures. With
these sparse samples, we fit regression models that predict perfor-
mance and power using SpMV specific software parameters.

Such domain-specific parameters encapsulate much more infor-
mation than generic instruction-level profiles. Rather than measure
locality with re-use distances, SpMV block sizes directly quantify
the amount of exploitable locality. Models use fewer, semantic-rich
parameters to greater effect. With 400 sparsely sampled profiles for
training and another 100 for validation, performance and power are
accurately predicted with median errors between 4-6% across 11
matrices. Accuracy is shown in Figure 14.

Moreover, for a representative matrix nasasrb, Figure 15 illustrates
the accuracy of inferred models on an irregular performance topology.
The model accurately captures high performance at the same block
sizes (3×3, 3×6, 6×3, 6×6). The model also captures discontinu-
ities; many block sizes adjacent to 6×6 are worse than not blocking
at all.

Coordinated Optimization. Advances in parameterized code
generators and reconfigurable architectures make navigating an in-
tegrated hardware-software space imperative. In many domains, we
can choose to tune the application, the architecture, or both. We com-
pare these strategies for SpMV, exploiting the tractability of inferred
models.

For SpMV, application tuning identifies the best matrix block size.
Sparse matrices that have dense sub-structure (e.g., matrices 10 and
11) benefit from larger block sizes and modest fill ratios. Because
SpMV is memory-bound, architecture tuning tailors the cache. Larger
cache lines amortize off-chip memory latency. In Figure 16(a), ap-
plication and architecture tuning improve performance by 1.6× and
2.7×, respectively. When tuned together, performance improves by
5.0×.

However, these tuning strategies incur different costs. Application
tuning improves performance while simultaneously reducing energy
as blocking improves locality and reduces the number of expensive
memory accesses. With less data movement, both latency and energy
fall. The optimal block size reduces energy from 17 to 11 nJ/Flop in
Figure 16(b).

In contrast, energy increases to 25 nJ/Flop with architecture tuning.
Larger cache lines increase the number of memory transfers, which
cost 6nJ per 64b double-precision word [31]. This cost is difficult to
justify unless the matrix is blocked to increase spatial locality. With
coordinated tuning, energy per floating-point operation falls by 0.9×
(i.e., 10% reduction) even as performance increases by 5.0×.

Collectively, these results motivate new thinking on efficiency.
Architects cannot afford to ignore application tuning, which increases
performance and reduces energy. For such tuning, inferred models
provide tractability and insight.

6. Related Work

Hardware performance is modeled with statistical regression [26, 28]
or neural nets [21]. Dubach et al. and Khan et al. separately construct

models that predict new applications as a weighted combination of
others by defining canonical machines and software profiles on them
[11, 10, 25]. Instead of profiling each application on a few pieces of
canonical hardware, we embed fundamental measures of software
behavior into an integrated hardware-software model. Alternatively,
analytical models link instruction behavior with pipeline structure
[15, 24] and can help coordinate multiprocessor management [5].

We leverage prior work in microarchitecture-independent software
characteristics to parameterize our model [6, 14, 20, 36]. We en-
counter challenges with variance in real application behavior, which
might be mitigated with synthetic benchmarks controlled to produce
uniform training data [13, 23]. Sampling identifies short, repre-
sentative instruction segments within an application to predict its
overall performance [41, 45]. Alternatively, a robust approach to
experimental design might identify the subset of architectural simu-
lations required to understand performance trends [46]. Like these
prior works, we sample to reduce measurement costs but we do so
uniformly at random. Moreover, our software samples profile behav-
ior of fine-grained shards, which are shorter and more diverse than
coarse-grained application phases.

Hardware-software co-tuning has been applied to dense matrix-
matrix multiply, sparse matrix-vector multiply, and stencil computa-
tion [32]. Instead of exploratory profiling, we construct a model and
reduce co-tuning costs. Similar models would benefit code generators
and optimizers in a variety of application domains, including signal
processing [37], linear algebra[3, 44], sorting [29], and back-end
compilation [8].

Beyond software tuning for specific application domains, prior
work has studied other predictors of software performance, such as
how often particular methods are called and which compiler optimiza-
tions are applied. Chun et al. extract application-specific features
(e.g., method invocation counts) from program analysis to predict
performance but these features do not generalize across different
applications [7]. Dubach et al. identifies more general predictors of
software performance, some of which overlap with ours [9]. Navigat-
ing complex, back-end compiler optimizations is difficult and prior
work has analyzed their impact on software performance [4, 16].

Many of these prior efforts focus entirely on performance variabil-
ity in the software space for a given hardware platform. A notable
exception, Dubach et al. coordinate the choice of compiler optimiza-
tions to the architectural design [12]. Rather than use compiler flags
as predictors of software performance, we rely on sharded application
behavior or domain-specific tuning parameters, allowing us to apply
models beyond optimizing compilers.

7. Conclusions

We demonstrate a model for general applications by relying on shared
behavior across application shards. By inferring performance models
from software characteristics and hardware parameters, we better
understand software preferences for hardware. Moreover, with mod-
eling heuristics, such models can be updated automatically to reflect
system dynamics.

Further accuracy is possible with domain-specific code generators.
As application and architecture designers pursue performance and
efficiency together, we need frameworks that maintain the integrity
of abstraction layers while building new bridges across them. We pre-
serve abstractions by synthesizing descriptors of software structure
(e.g., matrix block size, fill ratio) and understanding their interactions
with underlying hardware.
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There are a number of directions for future work. In future, in-
ferred models will need to accommodate virtual machines, which are
prevalent in large, datacenter systems. We must determine whether
modeling strategies change when hardware resources are virtualized
and shared amongst co-located applications. These strategies may
further extend to memory and I/O systems. Models for such sys-
tems require new parameters to characterize software behavior. By
broadening the system scope, these models can be made even more
relevant for datacenter management and big data computation.
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