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Abstract—This paper explores the environmental impact of
the super-linear growth trends for Al from a holistic perspective,
spanning Data, Algorithms, and System Hardware. We character-
ize the carbon footprint of AI computing by examining the model
development cycle across industry-scale machine learning use
cases and, at the same time, considering the life cycle of system
hardware. Taking a step further, we capture the operational and
manufacturing carbon footprint of AI computing and present an
end-to-end analysis for what and how hardware-software design
and at-scale optimization can help reduce the overall carbon
footprint of AI. Based on the industry experience and lessons
learned, we share the key challenges and chart out important
development directions across the many dimensions of AI. We
hope the key messages and insights presented in this paper
can inspire the community to advance the field of AI in an
environmentally-responsible manner.

I. INTRODUCTION

Artificial Intelligence (AI) is one of the fastest growing
domains spanning research and product development and
significant investment in Al is taking place across nearly every
industry, policy, and academic research. This investment in
Al has also stimulated novel applications in domains such as
science, medicine, finance, and education. Figure E] analyzes
the number of papers published within the scientific disciplines,
illustrating the growth trend in recent years[ﬂ

Al plays an instrumental role to push the boundaries of
knowledge and sparks novel, more efficient approaches to
conventional tasks. Al is applied to predict protein structures
radically better than previous methods. It has the potential to
revolutionize biological sciences by providing in-silico methods
for tasks only possible in a physical laboratory setting [1]]. Al
is demonstrated to achieve human-level conversation tasks,
such as the Blender Bot [2], and play games at superhuman
levels, such as AlphaZero [3]]. Al is used to discover new
electrocatalysts for efficient and scalable ways to store and
utilize renewable energy [4]], predicting renewable energy
availability in advance to improve energy utilization [5]],
operating hyperscale data centers efficiently [6]], growing plants
using less natural resources [7]], and, at the same time, being
used to tackle climate changes [8]], [9]. It is projected that, in
the next five years, the market for Al will increase by 10x into
hundreds of billions of dollars [10]]. All of these investments

'Based on monthly counts, Figure |1| estimates the cumulative number of
papers published per category on the arXiv database.
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Fig. 1. The growth of ML is exceeding that of many other scientific disciplines.
Significant research growth in machine learning is observed in recent years as
illustrated by the increasing cumulative number of papers published in machine
learning with respect to other scientific disciplines based on the monthly count
(y-axis measures the cumulative number of articles on arXiv).

in research, development, and deployment have led to a super-
linear growth in Al data, models, and infrastructure capacity.
With the dramatic growth of Al it is imperative to understand
the environmental implications, challenges, and opportunities
of this nascent technology. This is because technologies tend to
create a self-accelerating growth cycle, putting new demands
on the environment.

This work explores the environmental impact of Al from
a holistic perspective. More specifically, we present the
challenges and opportunities to designing sustainable Al
computing across the key phases of the machine learning (ML)
development process — Data, Experimentation, Training, and
Inference — for a variety of Al use cases at Facebook, such
as vision, language, speech, recommendation and ranking. The
solution space spans across our fleet of datacenters and on-
device computing. Given particular use cases, we consider the
impact of Al data, algorithms, and system hardware. Finally,
we consider emissions across the life cycle of hardware systems,
from manufacturing to operational use.

Al Data Growth. In the past decade, we have seen an
exponential increase in Al training data and model capacity.
Figure 2[b) illustrates that the amount of training data at
Facebook for two recommendation use cases — one of the
fastest growing areas of ML usage at Facebook— has increased
by 2.4x and 1.9x in the last two years, reaching exabyte scale.
The increase in data size has led to a 3.2x increase in data
ingestion bandwidth demand. Given this increase, data storage
and the ingestion pipeline accounts for a significant portion of
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Fig. 2. Deep learning has witnessed an exponential growth in data, model parameters, and system resources over the recent years. (a) The 1000x model size
growth has led to higher model accuracy for various ML tasks. For example, with GPT-3, to increase the model quality BLEU score from 5 to 40 requires a
model 1,000x larger in size. (b) At Facebook, the amount of data for recommendation use cases has roughly doubled between 2019 and 2021, leading to 3.2
times increase in the data ingestion bandwidth demand. (c) Facebook’s recommendation and ranking model sizes have increased by 20 times during the same
time period [11]. (d) The explosive growth in Al has driven 2.9x and 2.5X capacity increases for Al training and inference, respectively.

the infrastructure and power capacity compared to ML training
and end-to-end machine learning life cycles.

Al Model Growth. The ever-increasing data volume has also
driven a super-linear trend in model size growth. Figure [J[(a) de-
picts the 1000x model size increase for GPT3-based language
translation tasks [12], [13], whereas for Baidu’s search engine,
the model of 1000x larger in size improves accuracy in AUC
by 0.030. Despite small, the accuracy improvement can lead
to significantly higher-quality search outcomes [14]. Similarly,
Figure c) illustrates that between 2019 and 2021, the size
of recommendation models at Facebook has increased by
20x [15], [16l, [17], [11]. Despite the large increase in model
sizes, the memory capacity of GPU-based Al accelerators,
e.g. 32GB (NVIDIA V100, 2018) to 80GB (NVIDIA A100,
2021), has increased by < 2x every 2 years. The resource
requirements for strong Al scaling clearly outpaces that of
system hardware.

Al Infrastructure Growth. The strong performance scaling
demand for ML motivates a variety of scale-out solutions [11]],
[L8] by leveraging parallelism at scale with a massive collection
of training accelerators. Figure [2(d) illustrates that the explosive
growth in Al use cases at Facebook has driven 2.9x increase
in Al training infrastructure capacity over the 1.5 years. In
addition, we observe trillions of inference per day across
Facebook’s data centers—more than doubling in the past 3
years. The increase in inference demands has also led to an
2.5x increase in Al inference infrastructure capacity. Last but
not least, the carbon footprint of Al goes beyond its operational
energy consumption. The embodied carbon footprint of systems
is becoming a dominating factor for AI’s overall environmental
impact (Section [19].

The Elephant in the Room. Despite the positive societal
benefits [20]], the endless pursuit of achieving higher model
quality has led to the exponential scaling of Al with significant
energy and environmental footprint implications. Although
recent work shows the carbon footprint of training one large
ML model, such as Meena [21], is equivalent to 242,231 miles
driven by an average passenger vehicle [22], this is only one
aspect; to fully understand the real environmental impact we
must consider the Al ecosystem holistically going forward —
beyond looking at model training alone and by accounting

for both operational and embodied carbon footprint of Al
We must look at the ML pipeline end-to-end: data collection,
model exploration and experimentation, model training, model
optimization and run-time inference. The frequency of training
and scale of each stage of the ML development cycle matter.
From the systems perspective, the life cycle of ML software
and system hardware, including manufacturing and operational
use, must also be considered.

Optimizing across ML pipelines and systems life cycles end-
to-end is a complex and challenging task. While training large,
sparsely-activated neural networks improves model scalability,
achieving higher accuracy at lower operational energy foot-
print [21], it can incur higher embodied carbon footprint from
the increase in the system resource requirement. Shifting model
training and inference to data centers with carbon-free energy
can reduce emissions; however, this approach may not scale to
a broad set of use cases. Infrastructure for carbon-free energy
is limited by factors such as geography and available materials
(e.g. rare metals), and takes significant economic resources and
time to build. In addition, as on-device learning becomes more
ubiquitously adopted to improve data privacy, we can see more
computation being shifted away from data centers to the edge,
where access to renewable energy is limited.

A Holistic Approach. This paper is the first to take a holistic
approach to characterize the environmental footprint of Al
computing from experimentation and training to inference.
We characterize the carbon footprint of Al computing by
examining the model development cycle across industry-scale
machine learning use cases at Facebook (Section [[I). This is
illustrated by the more than 800X operational carbon footprint
reduction achieved through judicious hardware-software co-
design for a Transformer-based universal language model.
Taking a step further, we present an end-to-end analysis for
both operational and embodied carbon footprint for Al training
and inference (Section [[II). Based on the industry experience
and lessons learned, we chart out opportunities and important
development directions across the dimensions of Al including —
data, algorithm, systems, metrics, standards, and best practices
(Section [[V)). We hope the key messages (Section and the
insights in this paper can inspire the community to advance
the field of Al in an environmentally-responsible manner.
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Fig. 3. Model Development Phases over Al System Hardware Life Cycle: (a) At Facebook, we observe a rough power capacity breakdown of 10:20:70 for
Al infrastructures devoted to the three key phases — Experimentation, Training, and Inference; (b) Considering the primary stages of the ML pipeline
end-to-end, the energy footprint of RM1 is roughly 31:29:40 over Data, Experimentation/Training, and Inference; (c) Despite the investment to neutralize
the operational footprint with carbon-free energy, the overall data center electricity use continues to grow, demanding over 7.17 million MWh in 2020 [23].

II. MODEL DEVELOPMENT PHASES AND Al SYSTEM
HARDWARE LIFE CYCLE

Figure (3| depicts the major development phases for ML —
Data Processing, Experimentation, Training, and Inference
(Section [[I-A) — over the life cycle of Al system hardware
(Section [[I-B). Driven by distinct objectives of Al research
and advanced product development, infrastructure is designed
and built specifically to maximize data storage and ingestion
efficiency for the phase of Data Processing, developer effi-
ciency for the phase of Experimentation, training throughput
efficiency for the phase of Training, and tail-latency bounded
throughput efficiency for Inference.

A. Machine Learning Model Development Cycle

ML researchers extract features from data during the Data
Processing phase and apply weights to individual features
based on feature importance to the model optimization objective.
During Experimentation, the researchers design, implement
and evaluate the quality of proposed algorithms, model ar-
chitectures, modeling techniques, and/or training methods for
determining model parameters. This model exploration process
is computationally-intensive. A large collection of diverse ML
ideas are explored simultaneously at-scale. Thus, during this
phase, we observe unique system resource requirements from
the large pool of training experiments. Within Facebook’s ML
research cluster, 50% (p50) of ML training experiments take up
to 1.5 GPU days while 99% (p99) of the experiments complete
within 24 GPU days. There are a number of large-scale, trillion
parameter models which require over 500 GPUs days.

Once a ML solution is determined as promising, it moves into
Training where the ML solution is evaluated using extensive
production data — data that is more recent, is larger in quantity,
and contains richer features. The process often requires
additional hyper-parameter tuning. Depending on the ML task
requirement, the models can be trained/re-trained at different

frequencies. For example, models supporting Facebook’s Search
service were trained at an hourly cadence whereas the Language
Translation models were trained weekly [24]. A p50 production
model training workflow takes 2.96 GPU days while a training
workflow at p99 can take up to 125 GPU days.

Finally, for Inference, the best-performing model is de-
ployed, producing trillions of daily predictions to serve billions
of users worldwide. The total compute cycles for inference
predictions are expected to exceed the corresponding training
cycles for the deployed model.

B. Machine Learning System Life Cycle

Life Cycle Analysis (LCA) is a common methodology to
assess the carbon emissions over the product life cycle. There
are four major phases: manufacturing, transport, product use,
and recyclingﬂ From the perspective of AI's carbon footprint
analysis, manufacturing and product use are the focus. Thus,
in this work, we consider the overall carbon footprint of
Al by including manufacturing — carbon emissions from
building infrastructures specifically for Al (i.e., embodied
carbon footprint) and product use — carbon emissions from
the use of Al (i.e., operational carbon footprint).

While quantifying the exact breakdown between operational
and embodied carbon footprint is a complex process, we
estimate the significance of embodied carbon emissions using
Facebook’s Greenhouse Gas (GHG) emission statisticﬂ In this
case, more than 50% of Facebook’s emissions owe to its value
chain — Scope 3 of Facebook’s GHG emission. As a result,
a significant embodied carbon cost is paid upfront for every
system component brought into Facebook’s fleet of datacenters,
where Al is the biggest growth driver.

2Recycling is an important domain, for which the industry is developing
a circular economy model to up-cycle system components — design with
recycling in mind.

3Facebook Sustainability Data: https:/sustainability.fb.com/report/2020-sust
ainability-report/.
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Fig. 4. The carbon footprint of the LM model is dominated by Inference
whereas, for RM1 — RMS, the carbon footprint of Training versus Inference is
roughly equal. The average carbon footprint for ML training tasks at Facebook
is 1.8 times larger than that of Meena used in modern conversational agents
and 0.3 times of GPT-3’s carbon footprint. Carbon footprint for inference
tasks is included for models that are used in production. Note: the operational
carbon footprint of AI does not correlate with the number of model parameters.
The OSS large-scale ML tasks are based on the vanilla model architectures
from [21] and may not be reflective of production use cases.

III. AI COMPUTING’S CARBON FOOTPRINT

A. Carbon Footprint Analysis for Industry-Scale ML Training
and Deployment

Figure [] illustrates the operational carbon emissions for
model training and inference across the ML tasks. We analyze
six representative machine learning models in production
at Facebook]l LM refers to Facebook’s Transformer-based
Universal Language Model for text translation [25]. RM1 —
RMS represent five unique deep learning recommendation and
ranking models for various Facebook products [26]], [27].

We compare the carbon footprint of Facebook’s production
ML models with seven large-scale, open-source (OSS) models:
BERT-NAS, T5, Meena, GShard-600B, Switch Transformer,
and GPT-3. Note, we present the operational carbon footprint
of the OSS model training from [28]], [21]]. The operational
carbon footprint results can vary based on the exact Al
systems used and the carbon intensity of the energy mixture.
Models with more parameters do not necessarily result in
longer training time nor higher carbon emissions. Training
the Switch Transformer model equipped with 1.5 trillion
parameters [29] produces significantly less carbon emission
than that of GPT-3 (750 billion parameters) [13]]. This illustrates
the carbon footprint advantage of operationally-efficient model
architectures.

“4In total, the six models account for a vast majority of compute resources
for the overall inference predictions at Facebook, serving billions of users
world wide.
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Fig. 5. When considering the overall life cycle of ML models and systems in
this analysis, manufacturing carbon cost is roughly 50% of the (location-based)
operational carbon footprint of large-scale ML tasks (Figure [). Taking into
account carbon-free energy, such as solar, the operational energy consumption
can be significantly reduced, leaving the manufacturing carbon cost as the
dominating source of AI’s carbon footprint.

Both Training and Inference can contribute significantly to the
overall carbon footprint of machine learning tasks at Facebook.
The exact breakdown between the two phases varies across
ML use cases.

The overall operational carbon footprint is categorized into
offline training, online training, and inference. Offline training
encompasses both experimentation and training models with
historical data. Online training is particularly relevant to
recommendation models where parameters are continuously
updated based on recent data. The inference footprint represents
the emission from serving production traffic. The online training
and inference emissions are considered over the period of
offline training. For recommendation use cases, we find the
carbon footprint is split evenly between training and inference.
On the other hand, the carbon footprint of LM is dominated
by the inference phase, using much higher inference resources
(65%) as compared to training (35%).

Both operational and embodied carbon emissions can con-
tribute significantly to the overall footprint of ML tasks.

Operational Carbon Footprint: Across the life cycle of
the Facebook models shown in Figure [4] the average carbon
footprint is 1.8 higher than that of the open-source Meena
model [30] and one-third of GPT-3’s training footprint. To
quantify the emissions of Facebook’s models we measure
the total energy consumed, assume location-based carbon
intensities for energy mixesE] and use a data center Power
Usage Effectiveness (PUE) of 1.1. In addition to model-level
and hardware-level optimizations, Facebook’s renewable energy
procurement [23|] programs mitigates these emissions.

Embodied Carbon Footprint: To quantify the embodied
carbon footprint of Al hardware, we use LCA (Section [[I-B).
We assume GPU-based Al training systems have similar

SRenewable energy and sustainability programs of Facebook [23].
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Fig. 6. Optimization is an iterative process — we have achieved an average of
20% operational energy footprint reduction every 6 months across the machine
learning hardware-software stack.

embodied footprint as the production footprint of Apple’s 28-
core CPU with dual AMD Radeon GPUs (2000kg CO>) [31].
For CPU-only systems, we assume half the embodied emissions.
Based on the characterization of model training and inference at
Facebook, we assume an average utilization of 30-60% over the
3- to 5-year lifetime for servers. Figure [3] presents the overall
carbon footprint for the large scale ML tasks at Facebook,
spanning both operational and embodied carbon footprint.
Based on the assumptions of location-based renewable energy
availability, the split between the embodied and (location-
based) operational carbon footprint is roughly 30% / 70%
for the large scale ML tasks. Taking into account carbon-free
energy, such as solar, the operational carbon footprint can be
significantly reduced, leaving the manufacturing carbon cost
as the dominating source of AI’s carbon footprint.

B. Carbon Footprint Optimization from Hardware-Software
Co-Design

Optimization is an iterative process — we reduce the power
footprint across the machine learning hardware-software stack
by 20% every 6 months. But at the same time, Al infrastructure
continued to scale out. The net effect, with Jevon’s Paradox, is
a 28.5% operational power footprint reduction over two years

(Figure [3).

Optimization across AI Model Development and System
Stack over Time: Figure [6] shows the operational power
footprint reduction across Facebook’s Al fleet over two years.
The improvement come from four areas of optimizations:
model (e.g., designing resource-efficient models), platform
(e.g., PyTorch’s support for quantization), infrastructure (e.g.,
data center optimization and low-precision hardware), and
hardware (e.g., domain-specific acceleration). Each bar illus-
trates the operational power reduction across Facebook’s Al
fleet over 6-month period from each of the optimization areas.
The optimizations in aggregate provide, on average, a 20%
reduction in operational power consumption every six months.
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Fig. 7. For the cross-lingual ML task (LM), the operational energy footprint
can be significantly reduced by more than 800X using platform-level caching,
GPUs, low precision data format, and additional algorithmic optimization.

The compounded benefits highlight the need for cross-stack
optimizations.

Optimizing the Carbon Footprint of LMs: We dive
into a specific machine learning task at Facebook: language
translation using a Transformer-based architecture (LM). LM
is designed based on the state-of-the-art cross-lingual un-
derstanding through self-supervision. Figure [7] analyzes the
power footprint improvements over a collection of optimization
steps for LM: platform-level caching, GPU acceleration, low
precision format on accelerator, and model optimization. In
aggregate the optimizations reduce the infrastructure resources
required to serve LM at scale by over 800x. We outline the
optimization benefits from each area below.

o Platform-Level Caching. Starting with a CPU server
baseline, application-level caching improves power effi-
ciency by 6.7x. These improvements are a result of pre-
computing and caching frequently accessed embeddings
for language translation tasks. Using DRAM and Flash
storage devices as caches, these pre-computed embeddings
can be shared across applications and use cases.

o GPU acceleration. In addition to caching, deploying LM
across GPU-based specialized Al hardware unlocks an
additional 10.1x energy efficiency improvement.

o Algorithmic optimization. Finally, algorithmic optimiza-
tions provide an additional 12x energy efficiency re-
duction. Halving precision (e.g., going from 32-bit to
16-bit operations) provides a 2.4x energy efficiency
improvement on GPUs. Another 5x energy efficiency gain
can be achieved by using custom operators to schedule
encoding steps within a single kernel of the Transformer
module, such as [32].

Optimizing the Carbon Footprint of RMs: The LM
analysis is used as an example to highlight the optimiza-
tion opportunities available with judicious cross-stack, hard-
ware/software optimization. In addition to optimizing the
carbon footprint for the language translation task, we describe
additional optimization techniques tailored for ranking and
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Fig. 8. The iterative optimization process has led to 28.5% operational energy
footprint reduction over the two-year time period (Section [[II=B). Despite the
significant operational power footprint reduction, we continue to see the overall
electricity demand for Al to increase over time — an example of Jevon’s
Paradox, where efficiency improvement stimulates additional novel Al use
cases.

recommendation use cases.

A major infrastructure challenge faced by deep learning
RM training and deployment (RM1 — RMS) is the fast-rising
memory capacity and bandwidth demands (Figure [2). There are
two primary sub-nets in a RM: the dense fully-connected (FC)
network and the sparse embedding-based network. The FC
network is constructed with multi-layer perceptions (MLPs),
thus computationally-intensive. The embedding network is used
to project hundreds of sparse, high-dimensional features to low-
dimension vectors. It can easily contribute to over 95% of the
total model size. For a number of important recommendation
and ranking use cases, the embedding operation dominates the
inference execution time [27]], [33]].

To tackle the significant memory capacity and bandwidth
requirement, we deploy model quantization for RMs [34].
Quantization offers two primary efficiency benefits: the low-
precision data representation reduces the amount of compu-
tation requirement and, at the same time, lowers the overall
memory capacity need. By converting 32-bit floating-point
numerical representation to 16-bit, we can reduce the overall
RM2 model size by 15%. This has led to 20.7% reduction in
memory bandwidth consumption. Furthermore, the memory
capacity reduction enabled by quantization unblocks novel
systems with lower on-chip memory. For example, for RM1,
quantization has enabled RM deployment on highly power-
efficient systems with smaller on-chip memory, leading to an
end-to-end inference latency improvement of 2.5 times.

C. Machine Learning Infrastructures at Scale

ML Accelerators: GPUs are the de-facto training acceler-
ators at Facebook, contributing to significant power capacity
investment in the context of Facebook’s fleet of datacenters.
However, GPUs can be severely under-utilized during both the
ML Experimentation and Training phases (Figure [10) [35]. To
amortize the upfront embodied carbon cost of every accelerator
deployed into Facebook’s datacenters, maximizing accelerator
utilization is a must.

Efficiency of Scale: The higher throughput performance
density achieved with ML accelerators reduces the total number
of processors deployed into datacenter racks. This leads to

more effective amortization of shared infrastructure overheads.
Furthermore, datacenter capacity is not only limited by physical
space but also power capacity — higher operational power
efficiency directly reduces the inherited carbon cost from
manufacturing of IT infrastructures and datacenter buildings.

At-Scale Efficiency Optimization for Facebook Data
Centers: Servers in Facebook data center fleets are customized
for internal workloads only — machine learning tasks [24]]
or not [36], [37]. Compared to public cloud providers, this
puts Facebook at a unique position for at-scale resource man-
agement design and optimization. First, Facebookcustomizes
server SKUs — compute, memcached, storage tiers and ML
accelerators — to maximize performance and power efficiency.
Achieving a Power Usage Effectiveness (PUE) of about 1.10,
Facebook’s data centers are about 40% more efficient than
small-scale, typical data centers.

Furthermore, the large-scale deployment of servers of
different types provides an opportunity to build performance
measurement and optimization tools to ensure high utilization of
the underlying infrastructure. For data center fleets in different
geographical regions where the actual server utilization exhibits
a diurnal pattern, Auto-Scaling frees the over-provisioned
capacity during off-peak hours, by up to 25% of the web
tier’s machines [38]]. By doing so, it provides opportunistic
server capacity for others to use, including offline ML training.
Furthermore, static power consumption plays a non-trivial role
in the context of the overall data center electricity footprint.
This motivates more effective processor idle state management.

Carbon-Free Energy: Finally, over the past years, Face-
bookhas invested in carbon free energy sources to neutralize its
operational carbon footprint [23]. Reaching net zero emissions
entails matching every unit of energy consumed by data
centers with 100% renewable energy purchased by Facebook.
Remaining emissions are offset with various sustainability
programs, further reducing the operational carbon footprint of
Al computing at Facebook. As Section will later show,
more can be done.

D. Going Beyond Efficiency Optimization

Despite the opportunities for optimizing energy efficiency
and reducing environmental footprint at scale, there are many
reasons why we must care about scaling Al in a more
environmentally-sustainable manner. Al growth is multiplicative
beyond current industrial use cases. Although domain-specific
architectures improve the operational energy footprint of Al
model training by more than 90% [21]], these architectures
require more system resources, leading to larger embodied
carbon footprints.

While shifting model training and inference to data centers
with carbon-free energy sources can reduce emissions, the
solution may not scale to all Al use cases. Infrastructure for
carbon free energy is limited by rare metals and materials,
and takes significant economic resources and time to build.
Furthermore, the carbon footprint of federated learning and
optimization use cases at the edge is estimated to be similar to
that of training a Transformer Big model (Figure [TT). As on-
device learning becomes more ubiquitously adopted to improve
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Fig. 9. As accelerator utilization improves over time, both operational and
embodied carbon footprints of Al improve. Carbon-free energy helps reduce
the operational carbon footprint, making embodied carbon cost the dominating
factor. To reduce the rising carbon footprint of Al computing at-scale, we must
complement efficiency and utilization optimization with novel approaches to
reduce the remaining embodied carbon footprint of Al systems.

data privacy, we expect to see more computation being shifted
away from data centers to the edge, where access to renewable
energy may be limited. The edge-cloud space for Al poses
interesting design opportunities (Section [[V-C).

The growth of Al in all dimensions outpaces the efficiency im-
provement at-scale. Figure E] illustrates that, as GPU utilization
is improved (x-axis) for LM training on GPUs, both embodied
and operational carbon emissions will reduce. Increasing GPU
utilization up to 80%, the overall carbon footprint decreases
by 3x. Powering Al services with renewable energy sources
can further reduce the overall carbon footprint by a factor of 2.
Embodied carbon cost becomes the dominating source of AI’s
overall carbon footprint. To curb the rising carbon footprint
of AI computing at-scale (Figure [§] and Figure [9), we must
look beyond efficiency optimization and complement efficiency
and utilization optimization with efforts to tackle the remaining
embodied carbon footprint of Al systems.

IV. A SUSTAINABILITY MINDSET FOR Al

To tackle the environmental implications of AI’s exponential
growth (Figure [2), the first key step requires ML practitioners
and researchers to develop and adopt an sustainability mindset.
The solution space is wide open—while there are significant
efforts looking at Al system and infrastructure efficiency opti-
mization, the Al data, experimentation, and training algorithm
efficiency space (Sections and beyond system
design and optimization (Section is less well explored.
We cannot optimize what cannot be measured — telemetry to
track the carbon footprint of Al technologies must be adopted
by the community (Section [V-A). We synthesize a number of
important directions to scale Al in a sustainable manner and to
minimize the environmental impact of Al for the next decades.

The field of Al is currently primarily driven by research that
seeks to maximize model accuracy — progress is often used
synonymously with improved prediction quality. This endless
pursuit of higher accuracy over the decade of Al research has
significant implications in computational resource requirement
and environmental footprint. To develop Al technologies
responsibly, we must achieve competitive model accuracy at a
fixed or even reduced computational and environmental cost.
Despite the recent calls-to-action [28]], [39], [40l, [41], [21], the

overall community remains under-invested in research that aims
at deeply understanding and minimizing the cost of Al. We
conjecture the factors that may have contributed to the current
state in Appendix [Al To bend the exponential growth curve
of AI and its environmental footprint, we must build a future
where efficiency is an evaluation criterion for publishing ML
research on computationally-intensive models beyond accuracy-
related measures.

A. Data Utilization Efficiency

Data Scaling and Sampling: No data is like more data
— data scaling is the de-facto approach to increase model
quality, where the primary factor for accuracy improvement
is driven by the size and quality of training data, instead of
algorithmic optimization. However, data scaling has significant
environmental footprint implications. To keep the model
training time manageable, overall system resources must be
scaled with the increase in the data set size, resulting in larger
embodied carbon footprint and operational carbon footprint
from the data storage and ingestion pipeline and model training.
Alternatively, if training system resources are kept fixed, data
scaling increases training time, resulting in a larger operational
energy footprint.

When designed well, however, data scaling, sampling and
selection strategies can improve the competitive analysis for ML
algorithms, reducing the environmental footprint of the process
(Appendix [A). For instance, Sachdeva et al. demonstrated that
intelligent data sampling with merely 10% of data sub-samples
can effectively preserve the relative ranking performance
of different recommendation algorithms [42]. This ranking
performance is achieved with an average of 5.8 times execution
time speedup, leading to significant operating carbon footprint
reduction.

Data Perishability: Understanding key characteristics of
data is fundamental to efficient data utilization for Al applica-
tions. Not all data is created equal and data collected over time
loses its predictive value gradually. Understanding the rate at
which data loses its predictive value has strong implications on
the resulting carbon footprint. For example, natural language
data sets can lose half of their predictive value in the time
period of less than 7 years (the half-life time of data) [43]]. The
exact half-life period is a function of context. If we were able
to predict the half-life time of data, we can devise effective
sampling strategies to subset data at different rates based on
its half-life. By doing so, the resource requirement for the data
storage and ingestion pipeline can be significantly reduced [44]
— lower training time (operational carbon footprint) as well as
storage needs (embodied carbon footprint).

B. Experimentation and Training Efficiency

The experimentation and training phases are closely coupled
(Section[M)). There is a natural trade-off between the investment
in experimentation and the subsequent training cost (Section L))
Neural architecture search (NAS) and hyperparameter op-
timization (HPO) are techniques that automate the design
space exploration. Despite their capability to discover higher-
performing neural networks, NAS and HPO can be extremely



resource-intensive, involving training many models, especially
when using simple approaches. Strubell et al. show that grid-
search NAS can incur over 3000x environmental footprint
overhead [28]. Utilizing much more sample-efficient NAS and
HPO methods [45]], [46] can translate directly into carbon
footprint improvement. In addition to reducing the number of
training experiments, one can also reduce the training time of
each experiment. By detecting and stopping under-performing
training workflows early, unnecessary training cycles can be
eliminated.

Multi-objective optimization explores the Pareto frontier of
efficient model quality and system resource trade-offs. If used
early in the model exploration process, it enables more informed
decisions about which model to train fully and deploy given
certain infrastructure capacity. Beyond model accuracy and
timing performance [47], [48], [49], [S0], energy and carbon
footprint can be directly incorporated into the cost function as
optimization objectives to enable discovery of environmentally-
friendly models. Furthermore, when training is decoupled from
NAS, sub-networks tailoring to specialized system hardware
can be selected without additional training |51, [52], [S3], [54].
Such approaches can significantly reduce the overall training
time, however, at the expense of increased embodied carbon
footprint.

Developing resource-efficient model architectures funda-
mentally reduce the overall system capacity need of ML
tasks. From the systems perspective, accelerator memory
is scarce. However, DNNs, such as neural recommendation
models, require significantly higher memory capacity and
bandwidth [55], [33]. This motivates researchers to develop
memory-efficient model architectures. For example, the Tensor-
Train compression technique (TT-Rec) achieves more than
100x memory capacity reduction with negligible training time
and accuracy trade-off [56]. Similarly, the design space trade-
off between memory capacity requirement, training time, and
model accuracy is also explored in Deep Hash Embedding
(DHE) [57]]. While training time increases lead to higher
operational carbon footprint, in the case of TT-Rec and DHE,
the memory-efficient model architectures require significantly
lower memory capacity while better utilizing the computational
capability of training accelerators, resulting in lower embodied
carbon footprint.

Developing efficient training algorithms is a long-time
objective of research in optimization and numerical meth-
ods [58]. Evaluations of optimization methods should account
for all experimentation efforts required to tune optimizer
hyperparameters, not just the method performance after tun-
ing [59], [60]. In addition, significant research has gone
into algorithmic approaches to efficiently scale training [61]],
[62] by reducing communication cost via compression [63]],
[64]], pipelining [65], and sharding [66], [67]. The advances
have enabled efficient scaling to larger models and larger
datasets. We expect efficient training methods to continue
as an important domain. While this paper has focused on
supervised learning relying labeled data, algorithmic efficiency
extends to other learning paradigms including self-supervised
and semi-supervised learning (Appendix [C).

GPU Utilization

Fig. 10. A vast majority of model experimentation (over tens of thousands of
training workflows) utilizes GPUs at only 30-50%, leaving room for utilization
and efficiency improvements.
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C. Efficient, Environmentally-Sustainable Al Infrastructure and
System Hardware

To amortize the embodied carbon footprint, model developers
and system architects must maximize the utilization of acceler-
ator and system resources when in use and prolong the lifetime
of Al infrastructures. Existing practices such as the move to
domain-specific architectures at cloud scale [68], [69], [[70]
reduce Al computing’s footprint by consolidating computing
resources at scale and by operating the shared infrastructures
more environmentally-friendly with carbon free energyﬂ

Accelerator Virtualization and Multi-Tenancy Support:
Figure[I0]illustrates the utilization of GPU accelerators in Face-
book’s research training infrastructure. A significant portion
of machine learning model experimentation utilizes GPUs at
only 30-50%, leaving significant room for improvements to
efficiency and overall utilization. Virtualization and workload
consolidation technologies can help maximize accelerator
utilization [[71l]. Google’s TPUs have also recently started
supporting virtualization [[72]. Multi-tenancy for Al accelerators
is gaining traction as an effective way to improve resource
utilization, thereby amortizing the upfront embodied carbon
footprint of customized system hardware for Al at the expense
of potential operational carbon footprint increase [[73]], [[74],
(750, [76l, [771.

Environmental Sustainability as a Key AI System Design
Principle: Today, servers are designed to optimize performance
and power efficiency. However, system design with a focus
on operational energy efficiency optimization does not always
produce the most environmentally-sustainable solution [[78]],
[[79]], [19]. With the rising embodied carbon cost and the expo-
nential demand growth of Al, system designers and architects
must re-think fundamental system hardware design principles
to minimize computing’s footprint end-to-end, considering the
entire hardware and ML model development life cycle. In
addition to the respective performance, power, and cost profiles,
the environmental footprint characteristics of processors over
the generations of CMOS technologies, DDRx and HBM mem-
ory technologies, SSD/NAND-flash/HDD storage technologies
can be orders-of-magnitude different [80]. Thus, designing Al

SWe discuss additional important directions for building environmentally-
sustainable systems in Appendix including datacenter infrastructure
disaggregation; fault tolerant, resilient Al systems.



systems with the least environmental impact requires explicit
consideration of environmental footprint characteristics at the
design time.

The Implications of General-Purpose Processors,
General-Purpose Accelerators, Reconfigurable Systems,
and ASICs for AI: There is a wide variety of system
hardware choices for Al from general-purpose processors
(CPUs), general-purpose accelerators (GPUs or TPUs), field-
programmable gate arrays (FPGAs) [81]], to application-specific
integrated circuit (ASIC), such as Eyeriss [82]. The exact
system deployment choice can be multifaceted — the cadence
of ML algorithm and model architecture evolution, the di-
versity of ML use cases and the respective system resource
requirements, and the maturity of the software stack. While ML
accelerator deployment brings a step-function improvement in
operational energy efficiency, it may not necessarily reduce
the carbon footprint of AI computing overall. This is because
of the upfront embodied carbon footprint associated with the
different system hardware choices. From the environmental
sustainability perspective, the optimal point depends on the
compounding factor of operational efficiency improvement over
generations of ML algorithms/models, deployment lifetime
and embodied carbon footprint of the system hardware. Thus,
to design for environmental sustainability, one must strike a
careful balance between efficiency and flexibility and, at the
same time, consider environmental impact as a key design
dimension for next-generation Al systems.

Carbon-Efficient Scheduling for AT Computing At-Scale:
As the electricity consumption of hyperscale data centers
continues to rise, data center operators have devoted significant
investment to neutralize operational carbon footprint. By
operating large-scale computing infrastructures with carbon
free energy, technology companies are taking an important step
to address the environmental implications of computing. More
can be done however.

As the renewable energy proportion in the electricity grid
increases, fluctuations in energy generation will increase due to
the intermittent nature of renewable energy sources (i.e. wind,
solar). Elastic carbon-aware workload scheduling techniques
can be used in and across datacenters to predict and exploit
the intermittent energy generation patterns [83]. However such
scheduling algorithms might require server over-provisioning
to allow for flexibility of shifting workloads to times when
carbon-free energy is available. Furthermore, any additional
server capacity comes with manufacturing carbon cost which
needs to be incorporated into the design space. Alternatively,
energy storage (e.g. batteries, pumped hydro, flywheels, molten
salt) can be used to store renewable energy during peak
generation times for use during low generation times. There
is an interesting design space to achieve 24/7 carbon-free Al
computing.

On-Device Learning On-device Al is becoming more
ubiquitously adopted to enable model personalization [84],
[85], [86] while improving data privacy [87], [88], [89], [90I,
yet its impact in terms of carbon emission is often overlooked.
On-device learning emits non-negligible carbon. Figure
illustrates that the operational carbon footprint for training a
small ML task using federated learning (FL) is comparable to
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Fig. 11. Federated learning and optimization can result in a non-negligible
amount of carbon emissions, equivalent to the carbon footprint of training
Transformerp;q [21]. FL-1 and FL-2 represent two production FL
applications. P100-Base represents the carbon footprint of T'ransformerpg;g
training on P100 GPU whereas TPU-base is T'ransformerp;q training on
TPU. P100-Green and TPU-Green consider renewable energy at the cloud
(Methodology detail in Appendix [B).

that of training an orders-of-magnitude larger Transformer-
based model in a centralized setting. As FL trains local
models on client devices and periodically aggregates the model
parameters for a global model, without collecting raw user
data [87]], the FL process can emit non-negligible carbon at the
edge due to both computation and wireless communication.

It is important to reduce Al’s environmental footprint at the
edge. With the ever-increasing demand for on-device use cases
over billions of client devices, such as teaching Al to understand
the physical environment from the first-person perception [91]]
or personalizing Al tasks, the carbon footprint for on-device
Al can add up to a dire amount quickly. Also, renewable
energy is far more limited for client devices compared to
datacenters. Optimizing the overall energy efficiency of FL
and on-device Al is an important first step [92], [93], [94],
[95], [96]. Reducing embodied carbon cost for edge devices is
also important, as manufacturing carbon cost accounts for 74%
of the total footprint [19] of client devices. It is particularly
challenging to amortize the embodied carbon footprint because
client devices are often under-utilized [97].

V. CALL-TO-ACTION

A. Development of Easy-to-Adopt Telemetry for Assessing Al’s
Environmental Footprint

While the open source community has started building tools
to enable automatic measurement of Al training’s environmental
footprint [39], [40], [98]], [99] and the ML research community
requiring a broader impact statement for the submitted research
manuscript, more can be done in order to incorporate efficiency
and sustainability into the design process. Enabling carbon
accounting methodologies and telemetry that is easy to adopt
is an important step to quantify the significance of our
progress in developing Al technologies in an environmentally-
responsible manner. While assessing the novelty and quality
of ML solutions, it is crucial to consider sustainability metrics
including energy consumption and carbon footprint along with
measures of model quality and system performance.



Metrics for AI Model and System Life Cycles: Standard
carbon footprint accounting methods for AI’s overall carbon
footprint are at a nascent stage. We need simple, easy-to-
adopt metrics to make fair and useful comparisons between
Al innovations. Many different aspects must be accounted
for, including the life cycles of both AI models (Data,
Experimentation, Training, Deployment) and system hardware
(Manufacturing and Use) (Section [II).

In addition to incorporating an efficiency measure as part
of leader boards for various ML tasks, data [100], modelﬂ
training algorithms [101], environmental impact must also be
considered and adopted by Al system hardware developers. For
example, MLPerf [102]], [LO3]], [104] is the industry standard
for ML system performance comparison. The industry has
witnessed significantly higher system performance speedup,
outstripping what is enabled by Moore’s Law [[105], [L106].
Moreover, an algorithm efficiency benchmark is under develop-
menf®] The MLPerf benchmark standards can advance the field
of Al in an environmentally-competitive manner by enabling
the measurement of energy and/or carbon footprint.

Carbon Impact Statements and Model Cards: We believe
it is important for all published research papers to disclose
the operational and embodied carbon footprint of proposed
design; we are only at the beginning of this journeyﬂ Note,
while embodied carbon footprints for AI hardware may not be
readily available, describing hardware platforms, the number of
machines, total runtime used to produce results presented in a
research manuscript is an important first step. In addition, new
models must be associated with a model card that, among other
aspects of data sets and models [[107], describes the model’s
overall carbon footprint to train and conduct inference.

VI. KEY TAKEAWAYS

The Growth of AI: Deep learning has witnessed an
exponential growth in training data, model parameters, and
system resources over the recent years (Figure 2). The amount
of data for Al has grown by 2.4x, leading to 3.2 increase in
the data ingestion bandwidth demand at Facebook. Facebook’s
recommendation model sizes have increased by 20x between
2019 and 2021. The explosive growth in Al use cases has
driven 2.9% and 2.5x capacity increases for Al training and
inference at Facebook over the recent 18 months, respectively.
The environmental footprint of Al is staggering (Figure 4]
Figure [5).

A Holistic Approach: To ensure an environmentally-
sustainable growth of Al, we must consider the Al ecosystem
holistically going forward. We must look at the machine learn-
ing pipelines end-to-end — data collection, model exploration
and experimentation, model training, optimization and run-
time inference (Section [[I). The frequency of training and
scale of each stage of the ML pipeline must be considered
to understand salient bottlenecks to sustainable Al. From the
system’s perspective, the life cycle of model development and

TPapers with code: https://paperswithcode.com/sota/image- classification-on
-imagenet
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system hardware, including manufacturing and operational use,
must also be accounted for.

Efficiency Optimization: Optimization across the axes of al-
gorithms, platforms, infrastructures, hardware can significantly
reduce the operational carbon footprint for the Transformer-
based universal translation model by 810x. Along with other
efficiency optimization at-scale, this has translated into 25.8%
operational energy footprint reduction over the two-year period.
More must be done to bend the environmental impact from the
exponential growth of AI (Figure [§ and Figure [9).

An Sustainability Mindset for AI: Optimization beyond
efficiency across the software and hardware stack at scale is
crucial to enabling future sustainable Al systems. To develop
Al technologies responsibly, we must achieve competitive
model accuracy at a fixed or even reduced computational
and environmental cost. We chart out potentially high-impact
research and development directions across the data, algorithms
and model, experimentation and system hardware, and telemetry
dimensions for Al at datacenters and at the edge (Section V).

We must take a deliberate approach when developing
Al research and technologies, considering the environmental
impact of innovations and taking a responsible approach to
technology development [108]. That is, we need Al to be green
and environmentally-sustainable.

VII. CONCLUSION

This paper is the first effort to explore the environmental
impact of the super-linear trends for Al growth from a holistic
perspective, spanning data, algorithms, and system hardware.
We characterize the carbon footprint of Al computing by
examining the model development cycle across industry-scale
ML use cases at Facebook and, at the same time, considering
the life cycle of system hardware. Furthermore, we capture
the operational and manufacturing carbon footprint of Al
computing and present an end-to-end analysis for what and
how hardware-software design and at-scale optimization can
help reduce the overall carbon footprint of Al. We share
the key challenges and chart out important directions across
all dimensions of Al—data, algorithms, systems, metrics,
standards, and best experimentation practices. Advancing the
field of machine intelligence must not in turn make climate
change worse. We must develop Al technologies with a deeper
understanding of the societal and environmental implications.
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Fig. 12. Model quality of recommendation use cases improves as we scale up
the amount of data and/or the number of model parameters (e.g., embedding
cardinality or dimension), leading to higher energy and carbon footprint.
Maximizing model accuracy for the specific recommendation use case comes
with significant energy cost — Roughly 4 X energy saving can be achieved
with only 0.004 model quality degradation (green vs. yellow stars).

APPENDIX

Despite the recent calls-to-action [28]], [39], [40l, [41], the
overall community remains under-invested in research that aims
at deeply understanding and minimizing the cost of Al. There
are several factors that may have contributed to the current
state of Al

o Lack of incentives: Over 90% of the ML publications
only focus on model accuracy improvements at the
expense of efficiency [109]. Challengeﬂ incentivize
investment into efficient approaches.

Lack of common tools: There is no standard telemetry
in place to provide accurate, reliable energy and carbon
footprint measurement. The measurement methodology
is complex — factors, such as datacenter infrastructures,
hardware architectures, energy sources, can perturb the
final measure easily.

Lack of normalization factors: Algorithmic progress in
ML is often presented in some measure of model accuracy,
e.g., BLEU, points, ELO, cross-entropy loss, but without
considering resource requirement as a normalization factor,
e.g., the number of

CPU/GPU/TPU hours used, the overall energy consump-
tion and/or carbon footprint required.

Platform fragmentation: Implementation details can
have a significant impact on real-world efficiency, but
best practices remain elusive and platform fragmentation
prevents performance and efficiency portability across
model development.

A. Data Utilization Efficiency

Figure [12] depicts energy footprint reduction potential when
data and model scaling is performed in tandem. The x-axis

10Efficient Open-Domain Question Answering (https:/efficientqa.github.io/),
SustaiNLP: Simple and Efficient Natural Language Processing (https://site
s.google.com/view/sustainlp2020/home), and WMT: Machine Translation
Efficiency Task (http://www.statmt.org/wmt2 1/etficiency-task.html).


https://efficientqa.github.io/
https://sites.google.com/view/sustainlp2020/home
https://sites.google.com/view/sustainlp2020/home
http://www.statmt.org/wmt21/efficiency-task.html

represents the energy footprint required per training step
whereas the y-axis represents model error. The blue solid
lines capture model size scaling (through embedding hash
scaling) while the training data set size is kept fixed. Each
line corresponds to a different data set size, in an increasing
order from top to bottom. The points within each line represent
different model (embedding) sizes, in an increasing order from
left to right. The red dashed lines capture data scaling while the
model size is kept fixed. Each line corresponds to a different
embedding hash size, in an increasing order from left to right.
The points within each line represent different data sizes, in
an increasing order from top to bottom. The dashed black
line captures the performance scaling trend as we scale data
and model sizes in tandem. This represents the energy-optimal
scaling approach.

Scaling data sizes or model sizes independently deviates from
the energy-optimal trend. We highlight two energy-optimal
settings along the Pareto-frontier curve. The yellow star uses
the scaling setting of Data scaling 2x and Model scaling 2x
whereas the green star adopts the setting of Data scaling 8x
and Model scaling 16<. The yellow star consumes roughly 4x
lower energy as compared to the green star with only 0.004
model quality degradation in Normalized Entropy. Overall
model quality performance has a (diminishing) power-law
relationship with the corresponding energy consumption and
the power of the power law is extremely small (0.002-0.004).
This means achieving higher model quality through model-data
scaling for recommendation use cases incurs significant energy
cost.

B. Efficient, Environmentally-Sustainable Al Systems

Disaggregating Machine Learning Pipeline Stages: As
depicted in Figure [3] the overall training throughput efficiency
for large-scale ML models depends on the throughput perfor-
mance of both data ingestion and pre-processing and model
training. Disaggregating the data ingestion and pre-processing
stage of the machine learning pipeline from model training
is the de-facto approach for industry-scale machine learning
model training. This allows training accelerator, network
and storage I/0O bandwidth utilization to scale independently,
thereby increasing the overall model training throughput by
56% [44]]. Disaggregation with well-designed check-pointing
support [[110], [111] improves training fault tolerance as well.
By doing so, failure on nodes that are responsible for data
ingestion and pre-processing can be recovered efficiently
without requiring re-runs of the entire training experiment.
From a sustainability perspective, disaggregating the data
storage and ingestion stage from model training maximizes
infrastructure efficiency by using less system resources to
achieve higher training throughput, resulting in lower embodied
carbon footprint. By increasing fault tolerance, the operational
carbon footprint is reduced at the same time.

Fault-Tolerant AI Systems and Hardware: One way to
amortize the rising embodied carbon cost of Al infrastructures
is to extend hardware lifetime. However, hardware ages
— depending on the wear-out characteristics, increasingly
more errors can surface over time and result in silent data
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corruption, leading to erroneous computation, model accuracy
degradation, non-deterministic ML execution, or fatal system
failure. In a large fleet of processors, silent data corruption
can occur frequently enough to have disruptive impact on
service productivity [112], [113]. Decommissioning an Al
system entirely because of hardware faults is expensive from the
perspective of resource and environmental footprints. System
architects can design differential reliability levels for micro
architectural components on an Al system depending on the
ML model execution characteristics. Alternatively, algorithmic
fault tolerance can be built into deep learning programming
frameworks to provide a code execution path that is cognizant
of hardware wear-out characteristics.

On-Device Learning: Federated learning and optimization
can result in a non-negligible amount of carbon emissions
at the edge, similar to the carbon footprint of training
Transformerp;, [21]. Figure shows that the federated
learning and optimization process emits non-negligible carbon
at the edge due to both computation and wireless communi-
cation during the process. To estimate the carbon emission,
we used a similar methodology to [114]. We collected the
90-day log data for federated learning production use cases
at Facebook, which recorded the time spent on computation,
data downloading, and data uploading per client device. We
multiplied the computation time with the estimated device
power and upload/download time with the estimated router
power, and omitted other energy. We assumed a device power of
3W and a router power of 7.5W [[L15], [114]. Model training on
client edge devices is inherently less energy-efficient because
of the high wireless communication overheads, sub-optimal
training data distribution in individual client devices [[114], large
degree of system heterogeneity among client edge devices, and
highly-fragmented edge device architectures that make system-
level optimization significantly more challenging [116]]. Note,
the wireless communication energy cost takes up a significant
portion of the overall energy footprint of federated learning,
making energy footprint optimization on communication im-
portant.

C. Efficiency and Self-Supervised Learning

Self-supervised learning (SSL) have received much attention
in the research community in recent years. SSL. methods train
deep neural networks without using explicit supervision in
the form of human-annotated labels for each training sample.
Having humans annotate data is a time-consuming, expensive,
and typically noisy process. SSL. methods are typically used
to train foundation models — models that can readily be fine-
tuned using a small amount of labeled data on a down-stream
task [[117]. SSL methods have been extremely successful for
pre-training large language models, becoming the de-facto
standard, and they have also attracted great interest in computer
vision.

When comparing supervised and self-supervised methods,
there is a glaring trade-off between having labels and the
amount of computational overhead involved in pre-training. For
example, Chen et al. report achieving 69.3% top-1 validation
accuracy with a ResNet-50 model after SSL pre-training for



1000 epochs on the ImageNet dataset and using the linear
evaluation protocol, freezing the pre-trained feature extractor,
and fine-tuning a linear classifier on top for 60 epochs using the
full ImageNet dataset with all labels [118]]. In contrast, the same
model typically achieves at least 76.1% top-1 accuracy after
90 epochs of fully-supervised training. Thus, in this example,
using labels and supervised training is worth a roughly 10x
reduction in training effort, measured in terms of number of
passes over the dataset.

Recent work suggests that incorporating even a small amount
of labeled data can significantly bridge this gap. Assran et
al. describe an approach called Predicting view Assignments
With Support samples (PAWS) for semi-supervised pre-training
inspired by SSL [119]. With access to labels for just 10% of
the training images in ImageNet, a ResNet-50 achieves 75.5%
top-1 accuracy after just 200 epochs of PAWS pre-training.
Running on 64 V100 GPUs, this takes roughly 16 hours. Similar
observations have recently been made for language model pre-
training as well [120].

Self-supervised pre-training potentially has advantages in
that a single foundation model can be trained (expensive) but
then fine-tuned (inexpensive), amortizing the up front cost
across many tasks [117]]. Substantial additional research is
needed to better understand the cost-benefit trade-offs for this
paradigm.
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